
Algebra univers. 52 (2004) 119–136
0002-5240/04/030119 – 18
DOI 10.1007/s00012-004-1819-7
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Finite posets and topological spaces in locally finite varieties

Benoit Larose and László Zádori

In Celebration of the Sixtieth Birthday of Ralph N. McKenzie

Abstract. We prove that if a finite connected poset admits an order-preserving Taylor
operation, then all of its homotopy groups are trivial. We use this to give new characterisa-
tions of locally finite varieties omitting type 1 in terms of the posets (or equivalently, finite
topological spaces) in the variety. Similar variants of other omitting-type theorems are pre-
sented. We give several examples of posets that admit various types of Taylor operations;
in particular, we exhibit a topological space which is not an H-space but is compatible with
a set of non-trivial identities, answering a question of W. Taylor.

1. Introduction

Fix a finite relational structure T of finite type and consider the following decision
problem: given a structure S of the same type as T , is there a homomorphism from
S to T ? There has been a great deal of interest recently in these so-called restricted
constraint satisfaction problems (CSP for short), see for example [2, 3, 4, 5, 9, 14, 20,
23]. The main questions concerning the algorithmic complexity of these problems
were first formulated by T. Feder and M. Vardi in [14]: (i) (Dichotomy problem)
under the assumption that P �= NP , is there a structure T whose decision problem
is neither in P nor NP-complete ? (ii) Classify the structures T according to the
complexity of their associated decision problem.

In 1998, P. Jeavons brought to light an interesting connection linking CSP’s and
universal algebra [18]. Given a finite structure T , let A(T ) denote the algebra
with the same universe as T and whose basic operations are all those that preserve
the basic relations of T . Roughly speaking, Jeavons’ result states that if the two
structures T and T ′ are such that the algebras A(T ) and A(T ′) are term equivalent,
then the decision problems for T and T ′ are polynomial-time equivalent. In [5] it
is shown that in fact we may restrict our attention to idempotent algebras: for
every finite structure T , there exists a finite structure T ′ such that (i) the decision

Presented by M. Valeriote.
Received September 18, 2002; accepted in final form March 19, 2003.
2000 Mathematics Subject Classification: 06A11, 08A70, 08B05.
Key words and phrases: Poset, locally finite varieties, Taylor terms, homotopy.
The first author’s research is supported by NSERC. The research of the second author is

supported by OTKA no. 034175 and T 037877.

119



120 B. Larose and L. Zádori Algebra univers.

problems for T and T ′ are polynomial-time equivalent, and (ii) the algebra A(T ′)
is idempotent. Bulatov, Krokhin and Jeavons have made the following conjecture
(which we reformulate slightly):

Conjecture 1.1 ([5]). Let T be a finite structure such that A(T ) is an idempo-
tent algebra. If A(T ) admits a Taylor term, then there exists a polynomial-time
algorithm that decides for any finite structure S similar to T whether there is a
homomorphism from S to T.

It is known that if the idempotent algebra A(T ) admits no Taylor term then the
decision problem for T is NP -complete ([5], see also [23].) In particular, verification
of the conjecture would solve the above-mentioned dichotomy problem. Partial
results have been obtained in the other direction; noteworthy are the recent results
of A. Bulatov proving tractability of the decision problem for structures admitting
a Malt’sev operation [2] and dichotomy for structures on 3 elements [3].

Given a finite poset P, one may consider the following decision problems:

(a) the CSP for P: the decision problem for the structure M with universe the
base set of the poset P, and whose relations are (i) the ordering of P and (ii)
every unary relation {p} with p ∈ P ;

(b) the retraction problem for P: given a poset Q that contains a copy of P, does
Q retract onto P?

These problems were shown to be polynomial-time equivalent in [20] (see also [23].)
Moreover, in [14], Feder and Vardi show that for every finite structure T there exists
a finite poset P such that the decision problem for T is polynomial-time equivalent
to the retraction problem for P. Notice that the algebra A(M) for problem (a) is
idempotent; in fact its term operations are precisely the idempotent operations that
preserve the ordering of P. Hence if the above conjecture is true, then the retraction
problem for a poset P must be decidable in polynomial time if P admits a Taylor
term operation. This is what led us to investigate these posets, and although our
findings do not seem to have any direct bearing on the conjecture yet, we believe
that we have gained some important insights into their structure.

In the next section, we present some terminology and notation as well as a few
basic results we shall require. Every poset may be viewed as a topological space, in
such a way that order-preserving maps are precisely the continuous ones. Theorem
3.2, the main result of section 3, states that if there exists an operation on a finite
connected poset which obeys Taylor identities, then all the homotopy groups of the
poset are trivial.

We note in passing the following interesting corollary. In 1985, E. Corominas
conjectured (see [8]) that if a poset P does not possess the fixed-point property but
all its proper retracts do, then this poset is idempotent trivial, i.e., no idempotent
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operation other than projections preserves the ordering of P .1 If a poset P has
trivial homotopy groups, then the associated simplicial complex is contractible (see
section 2) and hence it has the fixed-point property. It follows from a result of
Baclawski and Björner [1] that P must have the fixed-point property. Hence we
obtain the following special case of Corominas’ (still open) conjecture: if a poset P

does not have the fixed-point property, then it admits no Taylor term.
In section 4, we give a series of omitting types theorems for locally finite varieties

analogous to those found in Chapter 9 of Hobby and McKenzie’s Structure of Finite
Algebras [17], and similar in their topological flavour to the 1977 result of W. Taylor
where he introduced the terms we study here [31]. More precisely, we say that the
poset P is in the variety V if there exists an algebra in V whose basic operations
preserve the ordering of P (which presupposes of course that the base sets of A and
P are the same.) As a partial converse to Theorem 3.2, we prove in Theorem 4.2
that an idempotent locally finite variety V omits type 1 if and only if every finite
connected poset in V has trivial homotopy groups. A similar statement in terms
of finite topological spaces is also presented. In Theorem 4.4, idempotent locally
finite varieties omitting types 1 and 5 are characterised by the property that the
finite conected posets in the variety are dismantlable. Finally, Theorem 4.5 states
that idempotent locally finite varieties omitting types 1, 4 and 5 are precisely those
which have no non-trivial posets.

In section 5 we conclude with a series of examples to illustrate several types
of Taylor terms that can occur on posets. In particular, we construct a family of
posets which admit a semilattice term, some of which are not dismantlable. In
topological terms, these finite spaces are not contractible, and hence by a result
of Stong are not H-spaces [30]; on the other hand, the existence of a semilattice
term confirms a conjecture of W. Taylor who asked in [32] (see also [33]) whether
there exist topological spaces admitting continuous operations satisfying non-trivial
identities but no H-space structure.

Acknowledgments. We are grateful to Andrei Krokhin for his generosity in
sharing ideas. We are also indebted to André Lebel for his patience, enthusiasm
and helpful discussions. Finally, the authors wish to thank Walter Taylor for useful
suggestions and comments.

2. Background

We begin this section by reviewing some facts about finite posets and topological
spaces we shall require later. For basic notions of topology and basic notions on

1A bolder conjecture in the same paper, namely that connected, ramified, directly indecom-
posable posets are idempotent trivial, was shown to be false by McKenzie (see [16].)
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partial order and order-preserving maps we refer the reader to [6, 29] and [12, 24]
respectively.

From this point on we use boldface capital letters to denote a poset, and when
there is no risk of confusion we use the same symbol ‘≤’ to denote the partial
order on different posets. If P, Q, R . . . are posets then P , Q, R, . . . denote their
respective underlying set. For our purposes a function f : P → Q is a map if it is
order-preserving, i.e., if f(x) ≤ f(y) whenever x ≤ y. If f : Pn → P is a map, then
we say that the poset P admits the n-ary operation f or that f is an operation on
P. As usual, an operation f is idempotent if f(x, . . . , x) = x for all x. A subposet
Q of a poset P is a subset Q of P together with the restriction of the order relation
on P to Q.

An element of a poset P is irreducible if it possesses either a unique upper cover or
a unique lower cover in P. Let Q be a subposet of P. We say that P dismantles to Q
if we can write P = {x1, . . . , xn} such that for some j we have (i) Q = {xj , . . . , xn}
and (ii) for all i = 1, . . . , j − 1, xi is an irreducible element in the subposet of P
induced by {xi, . . . , xn}. In other words, one may define this concept recursively
as follows: (i) P dismantles to P; (ii) if Q is obtained from P by removing an
irreducible element, then P dismantles to Q; (iii) if P dismantles to Q and Q
dismantles to Q′ then P dismantles to Q′. A finite poset P is called dismantlable if
P dismantles to a one element subposet. A connected poset is ramified if it contains
more than one element and contains no irreducibles.

Let P and Q be posets. The poset PQ consists of all order-preserving maps from
Q to P ordered pointwise, i.e., f ≤ g if f(q) ≤ g(q) for all q ∈ Q. A subposet R of
P is a retract of P if there exists an isotone map r ∈ PP such that r(P ) = R and
r2 = r. Such a map is called a retraction from P to R. Notice that if P dismantles
to Q then Q is a retract of P.

Lemma 2.1 ([24]). Let P be a finite poset. Then the following conditions are
equivalent:

(1) P is ramified.
(2) Every automorphism of P is alone in its connected component of PP.

We shall need the following easy corollary:

Corollary 2.2 ([27]). Let P be a finite, connected, ramified poset.
Let f : Pn+1 −→ P be an idempotent map on P which is not a projection. Fix
elements a1, . . . , an in P. Then the map µ defined by µ(x) = f(a1, . . . , an, x) is not
onto.

Proof. It is easy to see that the map f induces a map g : Pn → PP where
g(a1, . . . , an) is the map defined by g(a1, . . . , an)(x) = f(a1, . . . , an, x) for all ai

and x. Since P is connected, so is the image of g. Suppose for a contradiction that
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g(a1, . . . , an) is onto for some ai. Then it is an automorphism of P, and by the
last result it is alone in its component of PP. Hence f does not depend on its first
n variables, and since it is idempotent, we get that f is the projection on the last
variable, a contradiction. �

Let P be a poset. The ideal topology on P is the topology whose open sets are
exactly the order ideals (down-sets, initial segments) of P, i.e., those subsets U

that satisfy the following condition: if u ≤ v and v ∈ U then u ∈ U . It is easy
to see that a map between posets is order-preserving if and only if it is continuous
when the posets are given the ideal topology (see for example [30].) The space P is
connected if and only if it is arc-connected, if and only if P is connected as a poset.

We shall use the following definition of homotopy groups (see [6]). Let In denote
the n-fold product of the interval [0, 1] with itself, and as usual let ∂In denote its
boundary, i.e., all n-tuples from In that contain the entry 0 or 1. Let P be a poset
and let p0 ∈ P . Let S denote the collection of all continuous maps from the pair
(In, ∂In) to the pair (P, p0), i.e., maps f : In −→ P such that f(∂In) ⊆ {p0}. Two
maps f, g ∈ S are homotopic (relative to ∂In) if there exists a continuous map
φ : I × In −→ P such that φ(0, x) = f(x) and φ(1, x) = g(x) for all x ∈ In, and
φ(t, x) = p0 for all t and all x ∈ ∂In. This is an equivalence relation on S; let
[In, ∂In; P, p0] denote the collection of equivalence classes. As usual, if f ∈ S we
denote the homotopy class of f by [f ].

For n ≥ 1, the n-th homotopy group of P with base point p0 is [In, ∂In; P, p0]
together with the following product: if f, g ∈ S define

(f � g)(t1, . . . , tn) =
{

f(t1, . . . , tn−1, 2tn) if tn ≤ 1/2,
g(t1, . . . , tn−1, 2tn − 1) if tn ≥ 1/2.

the group operation is then (well) defined by [f ] · [g] = [f � g]. The n-th homotopy
group of a connected poset P does not depend on the base point (up to isomor-
phism), and is denoted by πn(P). A poset P is 0-connected if it is connected; for
n ≥ 1 a connected poset P is n-connected if πk(P) is trivial for all 1 ≤ k ≤ n. A
poset is simply connected if it is 1-connected.

Let X and Y be path-connected topological spaces and let f : X −→ Y be
a continuous map. Then for every n ≥ 1 f induces a group homomorphism
f∗ : πn(X) −→ πn(Y ) defined in the obvious way: f∗([γ]) = [f ◦ γ] for all [γ] ∈
[In, ∂In; X, x0]. The map f is a weak homotopy equivalence if f∗ is an isomorphism
for all n ≥ 1. The map f is a homotopy equivalence if there exists a map g : Y −→ X

such that f ◦ g is homotopic to the identity map on Y and g ◦ f is homotopic to
the identity map on X . In particular, a space is contractible if it is homotopically
equivalent to a one-point space.

There is another topological space naturally associated to a poset which we
shall not require directly, but will make certain results easier to formulate (see for
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example [7]). Given a poset P, consider the simplicial complex that consists of all
the chains (totally ordered subsets) of P, and let P̂ denote the geometric realisation
of this complex. There is the following striking relationship between the two spaces:

Theorem 2.3 ([25]). Let P be a connected poset. There is a weak homotopy
equivalence between the space P (with the ideal topology) and the space P̂.

In particular, if P is n-connected for all n, then P̂ is a contractible space. Notice
however that P might not be contractible itself when viewed as a finite topological
space; such a space is contractible if and only if the poset P is dismantlable [30].2 It
should also be noted that if P dismantles to Q then Q is homotopically equivalent
to P [30].

Let i ≥ 1 be an integer. In what follows, i will stand for the i-element antichain,
i.e., the poset on i elements with no comparabilities. Let + indicate the ordinal
sum of posets, i.e., if P and Q are posets then P + Q is the poset on P ∪Q where
x ≤ y if (i) x ≤ y in P or (ii) x ≤ y in Q or (iii) if x ∈ P and y ∈ Q.

Example. Let n ≥ 1 and consider the poset Sn−1 = 2+ · · ·+2 that consists of the
ordinal sum of n copies of the two-element antichain. Then Ŝn−1 is homeomorphic
to the sphere Sn−1. In particular, the 4-crown S1 = 2 + 2 has the following
homotopy groups: π1(S1) = Z and πk(S1) = 0 for all k ≥ 2. Notice also that the
4-crown is idempotent trivial (projective), i.e., the only idempotent operations on
this poset are the projections [11], [8].

3. Posets with Taylor terms

Definition. Let P be a poset. A Taylor term for P is an order-preserving, idem-
potent n-ary operation f on P that satisfies, for each 1 ≤ i ≤ n, an identity of the
form

f(u1, . . . , ui−1, x, ui+1, . . . , un) ≈ f(v1, . . . , vi−1, y, vi+1, . . . , vn)

where each uj and vj is in {x, y}.

It is easy to see that, if a poset P admits a Taylor term f , then every retract of
P admits a Taylor term (which satisfies any linear identity that f does): if r is a
retraction of P onto R and f is an n-ary Taylor term on P, then the restriction of
r ◦ f to Rn is the desired operation.

If P is a poset, let A(P) denote an algebra with universe P whose fundamental
operations are all the order-preserving operations on P. The idempotent reduct

2See Figure 2 in section 5 for an example of a ramified poset P such that P̂ is contractible.
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of A(P) is the algebra whose fundamental operations are the idempotent order-
preserving operations on P. Let V(P) denote the variety generated by A(P). Fi-
nally let VI(P) denote the variety generated by the idempotent reduct of A(P).

A topological algebra is a triple 〈A; F, T 〉 where A = 〈A, F 〉 is an algebra and T is
a topology on A that makes all the operations in F continuous (where the topology
on powers of A is the usual product topology.) Let V be a variety. A topological
space in V is a topological space 〈A, T 〉 such that there exists a topological algebra
〈A; F, T 〉 with 〈A; F 〉 ∈ V .

We need the following special case of a result of Taylor:

Theorem 3.1 ([31]). Let V be an idempotent variety. Then the following are
equivalent:

(1) V admits a Taylor term;
(2) the arc components of every topological algebra in V have an Abelian funda-

mental group.

We may now state and prove the main result of this section:

Theorem 3.2. Let P be a connected finite poset. If P admits a Taylor term, then
P is n-connected for all n ≥ 0.

Proof. Fix n ≥ 1 and suppose for a contradiction that π = πn(P) is not trivial for
some connected poset P admitting a Taylor term. Let P be a counterexample of
minimal cardinality. Let p0 ∈ P .

Claim 1. π is Abelian.
Proof of Claim 1. Since higher homotopy groups are Abelian, it suffices to

consider only the case n = 1. The poset P, when viewed as a finite topological
space, is a topological space in VI(P). Hence by Taylor’s theorem the fundamental
group π1(P) of P is Abelian.

In what follows, we shall denote the group π additively, i.e., its group operation
will be denoted by + and its neutral element by 0. Let End(π) denote the ring of
endomorphisms of π, where as usual 1 denotes the identity endomorphism and 0
denotes the constant endomorphism.

Claim 2. (i) The poset P is ramified; (ii) if R is a proper retract of P then
πn(R) is trivial.

Proof of Claim 2. (i) If P is not ramified then we may dismantle it to a proper
retract R, which is homotopically equivalent to P. In particular, πn(R) is non-
trivial. However R admits a Taylor term because it is a retract of P, and this
contradicts the minimality of P. The proof of part (ii) is similar.

Let f : Pk → P be a map such that f(p0, . . . , p0) = p0. Then we define a function
f� : πk → π by the following: if [γi] ∈ [In, ∂In; P, p0] for i = 1, . . . , k, then let

f�([γ1], . . . , [γk]) = [f(γ1, . . . , γk)]
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where as usual

f(γ1, . . . , γk)(t1, . . . , tn) = f(γ1(t1, . . . , tn), . . . , γk(t1, . . . , tn))

for all tj ∈ In.
Claim 3. For any map f as above, the function f� is a well-defined group homo-

morphism. Furthermore, the correspondence f �→ f� commutes with composition,
i.e., we have

(f(g1, . . . , gs))� = f�(g�
1 , . . . , g�

s)

for all maps f, g1, . . . , gs for which the expression is defined. Also, if f is a projection
then so is f�.

Proof of Claim 3. This is a simple exercise left to the reader (see also Lemmas
6 and 8 of [33].)

Since P admits a Taylor term, it admits a non-trivial idempotent operation. It
follows that P must also admit a non-trivial binary idempotent operation, call it f

[22]. By Claim 1 and Claim 3 we have that, for any u, v ∈ π

f�(u, v) = f�(u, 0) + f�(0, v)

= r1u + r2v

for some r1, r2 ∈ End(π).
Claim 4. r1 + r2 = 1 in End(π).
Proof of Claim 4. Let [γ] ∈ [In, ∂In; P, p0]. Since f is idempotent we have that

f�([γ], [γ]) = [f(γ, γ)] = [γ]

hence f� is also idempotent. It follows that for any u ∈ π we have

(r1 + r2)(u) = r1u + r2u = f�(u, u) = u

and the claim follows.
Now consider the following maps on P: let f1(x) = f(x, p0) and let f2(x) =

f(p0, x) for all x ∈ P .
Claim 5. f�

1 = r1 and f�
2 = r2.

Proof of Claim 5. If ι stands for the identity map on P, and p0 stands for the
unary constant map with value p0 on P, then clearly ι� = 1 and p0

� = 0. It follows
from Claim 3 that

f�
1 = f(ι, p0)�

= f�(ι�, p0
�)

= r1(1) + r2(0)

= r1.

The proof for i = 2 is identical.
Claim 6. r1 and r2 are nilpotent elements of End(π).
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Proof of Claim 6. It suffices to prove the claim for r1. By Lemma 2.2 the map
f1 is not onto, and thus there exists some positive integer k such that (f1)k is a
retraction onto a proper retract R of P. By Claim 2 the n-th homotopy group of
R is trivial. It follows that (f1)k(γ) is homotopic to the constant map p0(γ) for
any [γ] ∈ [In, ∂In; P, p0]. Hence by Claims 3 and 5 we have that

(r1)k = (f�
1 )k = ((f1)k)� = p0

� = 0.

Now it follows from Claims 4 and 6 that r2 is an invertible element of End(π):
indeed, if (r1)k = 0 then

r2(1 + r1 + r2
1 + · · · + rk−1

1 ) = (1 − r1)(1 + r1 + r2
1 + · · · + rk−1

1 ) = 1 − rk
1 = 1.

But then we have that r2 is both nilpotent and invertible, which means that 0 = 1
in End(π), a contradiction since π is non-trivial. �

The converse of this result is easily seen to be false. Indeed, any bounded poset
(i.e., with a greatest and a least element) is dismantlable, and dismantlable posets
are contractible spaces; in particular they are n-connected for all n. However, it is
easy to construct bounded posets that do not admit Taylor terms. For example,
consider the poset

1 + 2 + 2 + 2 + 2 + 1;

every idempotent operation on this poset must preserve the 4 middle elements which
form a 4-crown, and hence no idempotent operation on P can obey any non-trivial
identity. Nonetheless, we prove in Theorem 4.2 that in an idempotent locally finite
variety V , if all the connected orderings invariant under the fundamental operations
of any finite algebra in V are simply connected then there is a term of V which obeys
some set of Taylor identities.

4. Omitting types theorems

We now present some omitting-types theorems based on the structural properties
of the orderings that are preserved by finite algebras in the variety. The basic results
and definitions we use can be found in [17]. Note also that our results can be stated
for arbitrary locally finite varieties by noting that a variety omits the type set {1}
or {1, 5} or {1, 4, 5} if and only if its full idempotent reduct does.

An ordered algebra is a triple 〈A; F,≤〉 where A = 〈A, F 〉 is an algebra and ≤ is
a partial order relation on A which is invariant under all the operations in F . Let
V be a variety. A poset in V is a poset P = 〈A,≤〉 such that there exists an ordered
algebra 〈A; F,≤〉 with 〈A; F 〉 ∈ V .

To every finite topological space X is associated naturally a quasiorder relation
� as follows: let x�y if every open set that contains y also contains x. This relation
is clearly reflexive and transitive, and is antisymmetric precisely when X satisfies
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the T0 separation axiom. It is a simple exercise to verify that a map between
finite spaces is continuous if and only if it is a homomorphism for the respective
quasiorders. Let ∼ denote the equivalence relation on X defined by x ∼ y if x�y�x.
The relation � induces a partial ordering on the quotient space X/∼; furthermore,
the quotient topology is precisely the ideal topology of this partial order. We shall
require the following:

Theorem 4.1 ([25], Theorem 4). Let X be a finite topological space, let � denote
the associated quasiorder and ∼ the equivalence induced by �. Then the quotient
map X : −→ X/∼ is a homotopy equivalence.

Here is our first main result of this section:

Theorem 4.2. Let V be a locally finite idempotent variety. Then the following
statements are equivalent:

(1) 1 �∈ typ{V};
(2) every finite connected poset in V is n-connected, for all n ≥ 0;
(3) for every finite connected poset P in V, the space P̂ is contractible;
(4) every finite path-connected topological space in V is n-connected, for all n ≥ 0;

is simply connected;

Proof. (1) ⇒ (2): Let P be a finite connected poset in V . By Lemma 9.4 and
Theorem 9.6 of [17], there exists a Taylor term for V . Hence P admits a Taylor
term and by Theorem 3.2 every homotopy group of P is trivial.

(2) ⇔ (3): Immediate from Theorem 2.3 and the fact that a path-connected
complex is contractible precisely when all its homotopy groups are trivial.

(2) ⇒ (4): Let X be a finite path-connected space in V . Denote by A the
underlying algebra. Then every fundamental operation of A is a continuous map,
so by the remarks above these operations preserve the quasiorder relation on X . In
particular, they must preserve the equivalence induced by the quasiorder and hence
∼ is a congruence of A. Thus A/∼ is a topological algebra in V whose topology is
that induced by a partial order. It is easy to see that this partial order is connected
since X is path-connected, so it follows that the space X/∼ is n-connected for all
n ≥ 0; by Theorem 4.1 we conclude that X has the same property.

(4) ⇒ (1): Suppose that 1 ∈ typ{V}. By Theorem 9.6 of [17], the variety V
interprets in the variety of sets; thus we can find a 4-element algebra in V whose
fundamental operations are projections. Then we can equip this algebra with the
ordering of a 4-crown to make it into an ordered algebra in V . Since the 4-crown is
connected but has a non-trivial fundamental group this completes the proof of the
theorem. �
Remark. Notice that in Theorem 4.2, one could replace statements (2) and (4) by
the following:
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(2′) every finite connected poset in V is simply connected;
(4′) every finite path-connected topological space in V is simply connected.

To prove our second result, we shall require the following special case of Lemma
4.1 of [24]:

Lemma 4.3 ([24]). Let P be a finite, connected, ramified poset whose proper re-
tracts are dismantlable. Let p be a ternary order-preserving operation on P.

(1) If p satisfies the identity p(x, y, y) = x then p is the projection onto the first
variable.

(2) If p satisfies the identities p(x, x, y) = p(x, y, x) = x then p is the projection
onto the first variable.

Theorem 4.4. Let V be a locally finite idempotent variety. Then the following
statements are equivalent:

(1) typ{V} ∩ {1, 5} = ∅;
(2) every finite connected poset in V is dismantlable;
(3) every finite path-connected topological space in V is contractible.

Proof. (1) ⇒ (2): Suppose for a contradiction that there exists a finite connected
poset P in V which is not dismantlable. By Theorem 9.8 of [17], we can find ternary
order-preserving operations d0, . . . , dn, p, e0, . . . , en on P which satisfy the following
identities:

x ≈ d0(x, y, z),

di(x, y, y) ≈ di+1(x, y, y) and ei(x, y, y) ≈ ei+1(x, y, y)

for even i < n,

di(x, x, y) ≈ di+1(x, x, y) and ei(x, x, y) ≈ ei+1(x, x, y)

for odd i < n,

dn(x, y, y) ≈ p(x, y, y) and p(x, x, y) ≈ e0(x, x, y),

di(x, y, x) ≈ di+1(x, y, x) and ej(x, y, x) ≈ ej+1(x, y, x)

for odd i < n and even j < n,

en(x, y, z) ≈ z.

Since P is not dismantlable, it must dismantle to a ramified retract. In fact, let R
be a ramified retract of P of minimum cardinality: then every proper retract of R
is dismantlable; and clearly R is connected. Furthermore, it is clear that the above
operations on P induce operations on R which obey the same identities. So we may
apply the last lemma to R: we have x ≈ d1(x, y, y) so d1 is the first projection.
Then we have that

d2(x, x, y) ≈ x ≈ d2(x, y, x)
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so d2 is also the first projection. Continuing in this fashion we obtain that

p(x, y, z) ≈ x.

However, the same argument applied to the sequence en, . . . , e0, p yields p(x, y, z) ≈
z, a contradiction.

(2) ⇒ (3): Let X be a finite path-connected space in V . Then as in the proof of
Theorem 4.2 we may construct the quotient space X/∼ as the underlying topology
of a topological (and ordered) algebra in V . Since X/∼ is contractible, by Theorem
4.1, X is also contractible.

(3) ⇒ (2): Immediate.
(2) ⇒ (1): Suppose that typ{V} ∩ {1, 5} �= ∅. Then by Theorem 9.8 of [17], the

variety V interprets in the variety of semilattices. Hence for every finite semilattice
there exists an algebra A in V with the same base set and such that the clone of
term operations of A is contained in the clone of the semilattice. Consequently,
every poset in the variety of semilattices is a poset in V as well. But there ex-
ists a connected non-dismantlable finite poset that admits a semilattice term (see
section 5), hence there is a non-dismantlable connected poset in V . �

Theorem 4.5. Let V be a locally finite idempotent variety. Then the following
statements are equivalent:

(1) typ{V} ∩ {1, 4, 5} = ∅;
(2) every poset in V is an antichain.
(3) every finite path-connected topological space in V is trivial.

Proof. (1) ⇒ (2): Let P be a poset in V . By Theorem 9.14 and Lemma 9.13 of
[17], the variety V is n+1-permutable for some n, and hence there exist operations
p1, . . . , pn on P that satisfy the following identities:

x ≈ p1(x, y, y)

pi(x, x, y) ≈ pi+1(x, y, y) for each i,

pn(x, x, y) ≈ y.

It is a simple exercise to verify that these identities imply that P contains no
comparability [10].

(2) ⇒ (3): let X be a finite path-connected topological space in V . Then X/∼ is
a space in V whose topology is that of a poset in V ; since this poset is an antichain,
its topology is discrete, i.e., every set is open. Hence the ∼ -blocks are open sets in
X/∼. Since X is path-connected it follows that there can be only one block, and
so the topology on X is trivial, i.e., the only open sets are X and the empty set.

(3) ⇒ (1): If typ{V} ∩ {1, 4, 5} �= ∅ then by Theorem 9.14 of [17] V is not n-
permutable for any n. Now, we apply a result of Hagemann [15] (a proof is implicit
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in [21]): a variety is n-permutable for some n if and only if every compatible quasi-
order of any algebra in the variety is a congruence. Thus V contains an algebra A

with a compatible quasi-order q that is not a congruence, i.e., q is not symmetric.
Hence, there are two elements of A that witness the failure of the symmetricity of q.
As V is locally finite these elements generate a finite algebra in V and q restricted
to this algebra is a compatible quasi-order that is not a congruence. So A may be
assumed to be finite. Moreover, by the idempotency of V the quasi-order q may be
assumed to be connected. Then the base set of A equipped with the ideal topology
of q is a non-trivial finite path-connected topological space in V . �

Remark. It is unlikely that further omitting-types results (such as omitting types
1, 2 and 5) can be obtained via structural properties of the posets in the variety.
Let F be a finite field, and let FV be the variety of vector spaces over F. Then
typ{FV} ⊆ {2}. On the other hand, the variety B of Boolean algebras satisfies
typ{B} ⊆ {3}. So B omits {1, 2, 5} but FV does not. As both varieties omit
{1, 4, 5}, by Theorem 4.5 the only posets in both of them are antichains.

5. Examples

In this section we present several examples of finite posets which admit various
types of Taylor terms. We start with a few basic definitions. Let X be a nonempty
set and let k ≥ 2. An idempotent operation f : Xk −→ X is a totally symmet-
ric operation (TSI for short) if it satisfies f(x1, . . . , xk) = f(y1, . . . , yk) whenever
{x1, . . . , xk} = {y1, . . . , yk}. TSI operations appear naturally in the study of the
complexity of constraint satisfaction problems, see [9, 23]. Clearly any TSI is a
Taylor operation. There is a simple way of building k-ary TSI operations: if ∨ is a
semilattice term on X , then the operation defined by

f(x1, . . . , xk) = x1 ∨ x2 ∨ · · · ∨ xk

is clearly a TSI operation. It is proved in [28] that a finite poset P admits a TSI
operation of every arity if it admits one of arity |P |.

Let X be a nonempty set and let k ≥ 3. A k-ary near-unanimity operation (nuf
for short) on X is an operation f that satisfies the identities

f(x, . . . , x, y) ≈ f(x, . . . , x, y, x) ≈ · · · ≈ f(y, x, . . . , x) ≈ x.

It is known that, for every finite poset P, the variety V(P) is congruence-modular
(equivalently, congruence-distributive) precisely when P admits an nuf [24]. A sub-
set Q ⊆ P of a poset P is called an idempotent subalgebra of P if it is invariant
under all the order-preserving idempotent operations on P. A connected poset
admits an nuf if and only if all its idempotent subalgebras are dismantlable (equiv-
alently, connected) [19]. If a poset P admits an nuf, then it admits TSI operations
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of every arity [23]. The converse is false: the poset P = 2 + 2 + 1 admits no nuf
(the minimal elements form an idempotent subalgebra which is disconnected), but
P admits a semilattice term, and hence TSI operations of every arity [23]. We do
not know if a poset which admits an nuf must also admit a semilattice term.

We shall now construct a family K of finite posets with the following properties:
(i) every poset in the family admits a semilattice term, and (ii) a finite poset admits
TSI operations of every arity if and only if it is a retract of some poset in K. Let P
be a finite poset. A subset Q ⊆ P is said to be convex if for all a, b, c ∈ P , a ≤ b ≤ c

and a, c ∈ Q imply that b ∈ Q. Let CP denote the family of all nonempty convex
sets of P with the following ordering: if X and Y are convex sets in P, declare
X ≤ Y if for every x ∈ X there exists y ∈ Y such that x ≤ y and for every y ∈ Y

there exists x ∈ X such that x ≤ y. It is clear that the one-element convex sets
form a subposet of CP isomorphic to P. It is shown in [28] that this subposet is a
retract of CP precisely when P admits TSI operations of every arity.

Lemma 5.1. For any poset P, the poset CP admits a semilattice term.

Proof. For any subset X of P let C(X) denote the convex hull of X , i.e., the
intersection of all convex subsets of P that contain X . It is clear that C a closure
operator on P, so the operation defined by X ∨ Y = C(X ∪ Y ) is a semilattice
operation on the set of non-empty convex sets of P (see [26], Theorem 2.11). It
remains to show that it preserves the ordering defined above. Notice first that for
any X ⊆ P , C(X) is the set of all y ∈ P such that there exist x, x′ ∈ X with
x ≤ y ≤ x′. Indeed, this set contains X , and is easily seen to be convex, so it
contains C(X). Conversely, C(X) is convex and contains X so it must contain any
element y such that x ≤ y ≤ x′ with x, x′ ∈ X .

Now let X ≤ X ′ and Y ≤ Y ′ in CP; we must show that X ∨ Y ≤ X ′ ∨ Y ′.
Let c ∈ C(X ∪ Y ). By the last remark there exists a ∈ X ∪ Y such that c ≤ a,
and it is clear that there exists b ∈ X ′ ∪ Y ′ such that a ≤ b. Hence c ≤ b where
b ∈ C(X ′ ∪ Y ′). The dual statement is identical. �

Proposition 5.2. There exists a 10-element ramified poset R with no semilattice
term, but which admits a totally symmetric idempotent operation of all arities.
Furthermore, there exists a poset with a semilattice term that dismantles to R.

Proof. Let P = 2 + 2 be the 4-crown. Let a, b denote the minimal elements and
let c, d denote the maximal elements of P. It is easy to see that in the poset CP,
the elements that contain both c and d may be up-dismantled to {c, d}, and by
symmetry the same is true for elements containing {a, b}, down-dismantling in this
case (Figure 1.) In other words, the following self-maps of CP

f(X) =
{

{c, d} if {c, d} ⊆ X ,
X otherwise,
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abc abd

abcd

Figure 1. The poset CP for P = 2 + 2.

and

g(X) =
{

{a, b} if {a, b} ⊆ X ,
X otherwise,

are order-preserving retractions. One verifies immediately that CP dismantles to
the intersection f(CP)∩g(CP) (or equivalently, fg(CP)). Let R denote this poset;
it consists of all subsets of {a, b, c, d} of cardinality at most 2 (Figure 2.) We prove
that R admits no semilattice term. Indeed, let ∗ be a commutative, idempotent
order-preserving operation on R. In what follows, we shall find it more convenient
to denote the set {x, y} by xy and the set {x} simply by x. We have the following:

bc ∗ bd = cd and ac ∗ bc = ab.

We show the first of these, the other being obtained by symmetry and duality.
Consider the subposet Q = {ab, b, bc, bd} of R: it is isomorphic to the 4-crown.
It is clear that ∗ must preserve every covering pair; furthermore, it must preserve
the set {b, ab} since these elements are precisely those below bc and bd. Since the
4-crown is idempotent trivial, ∗ cannot preserve Q, hence it cannot preserve the set
{bc, bd}. Since cd ≥ bc ∗ bd ≥ b and bc ∗ bd ≥ ab, the only possibility is bc ∗ bd = cd.

Now we have that

ac ∗ (bc ∗ bd) = ac ∗ cd ∈ {ac, cd}
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Figure 2. The poset R.

and
(ac ∗ bc) ∗ bd = ab ∗ bd ∈ {ab, bd}

so the operation ∗ is not associative. Note that R is a retract of the poset CP

which admits a semilattice term by Lemma 5.1; in particular, both CP and R
admit totally symmetric operations of all arities. �

A topological space X is an H-space if there exists a continuous operation
h : X2 −→ X and an element e ∈ X such that both the maps x �→ h(x, e) and
x �→ h(e, x) are homotopic to the identity on X . It is well-known that H-spaces
have an Abelian fundamental group. In [32] (see also [33]) Taylor asked whether
the existence of continuous operations obeying non-trivial identities force a space
to be an H-space. Consider for instance the following special case: for n ≥ 2, an
n-ary operation f is an n-mean if f obeys the identity

f(x1, . . . , xm) ≈ f(xσ(1), . . . , xσ(n))

for any permutation σ of the indices. Eckmann, Ganea and Hilton have shown that
if a CW-complex admits an n-mean then it must be an H-space [13]. The posets R
and CP above show that the answer to Taylor’s question is negative, in general, and
that the result of Eckmann, Ganea and Hilton above cannot be extended to general
spaces. Indeed, it is known that the finite path-connected H-spaces are precisely
the contractible ones [30]; however, R and CP are not dismantlable (and hence not
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contractible spaces), but both these spaces admit Taylor terms (and in fact CP

admits a semilattice term). Moreover, these finite spaces admit TSI operations,
and in particular, n-means.
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