TWO-DIMENSIONAL MODULI SPACES OF IRREGULAR Higgs Bundles

Péter Ivanics, András Stipsicz, Szilárd Szabó
Budapest University of Technology and Economics, Budapest, Hungary

We give a complete description of the two-dimensional moduli spaces of stable Higgs bundles of rank 2 over $\mathbb{C} P^{1}$ with unique pole of order 4 as singularity, having regular leading-order term, and endowed with a generic compatible parabolic structure such that the parabolic degree of the Higgs bundle is 0 .

The motivation of this study is that the moduli spaces of irregular Higgs bundles are linked to the generalization of Hodge structures, Riemann-Hilbert correspondence and integrable systems.

In our study the Higgs bundles are (\mathcal{E}, Θ) pairs, where \mathcal{E} is a rank 2 vector bundle over $\mathbb{C} P^{1}$. If K denotes the canonical holomorphic line bundle on $\mathbb{C} P^{1}$, then Θ is the meromorphic section of $\operatorname{End}(\mathcal{E} \otimes K)$ and Θ has a single pole of order 4. One needs to distinguish two cases, depending on whether the leading-order term (at singularity) is a regular semi-simple endomorphism (untwisted case), or has non-vanishing nilpotent part (twisted case). The polar part of irregular Higgs bundles depends on some complex parameters.

It is known [1] that if one fixes finitely many points on $\mathbb{C} P^{1}$ and suitable polar parts for a Higgs bundle near those points, then one gets a holomorphic symplectic moduli space of Higgs bundles over $\mathbb{C} P^{1}$ with the given asymptotic behavior at the singularities. We denote this moduli space by \mathcal{M}. In our case, \mathcal{M} turns out to be of complex dimension 2, and this imply that \mathcal{M} is an elliptic fibration over a curve [3]. Our results will confirm this expectation, with one singular fiber of type \widetilde{E}_{7} (untwisted case) or \widetilde{E}_{8} (twisted case). On the other hand, there are several possibilities for the other singular fibers.

Theorem 1. Assume that the polar part of the Higgs bundles is untwisted. Then \mathcal{M} is biregular to the complement of the fiber at infinity $\left(\widetilde{E}_{7}\right)$ in an elliptic fibration of the rational elliptic surface such that the set of other singular fibers of the fibration is:
(1) a type III fiber if $\Delta=0$ and $\lambda_{+}=0$;
(2) a type II and an I_{1} fiber if $\Delta=0$ and $\lambda_{+} \neq 0$;
(3) an I_{2} and an I_{1} fiber if $\Delta \neq 0$ and $\lambda_{+}=0$;
(4) and three I_{1} fibers otherwise,
where Δ and λ_{+}depend on the complex parameters of the polar part of irregular Higgs bundles. (For the definition of various types of singular fibers see [2].)

Similarly to Theorem 1, there is a theorem provides a complete description of the singular fibers of the fibration in the twisted case.
[1] O. Biquard, Ph. Boalch, Wild non-abelian Hodge theory on curves, Compos. Math., 140 (1), (2004), 179-204.
[2] K. Kodaira, On compact analytic surfaces: II, Ann. Math., 77, (1963), 563-626.
[3] Sz. Szabó, The birational geometry of irregular Higgs bundles, (2015), arXiv:1502.02003.

