Approximate Jensen-convexity and convexity WITH RESPECT TO A SUBFIELD

Noémi Nagy
University of Miskolc, Miskolc, Hungary

In this talk we show that if a function satisfies the Jensen-inequality (or the inequality describing \mathbb{Q}-convexity) with an appropriate error term then the function is Jensen-convex (without error) as well.

First we consider a function f, which is defined on an open interval I of \mathbb{R}. Let ℓ_{I} be the length of the interval I and define J_{I} as $] 0, \ell_{I}\left[\right.$, furthermore let $\psi: J_{I} \rightarrow[0,+\infty[$ be such that $\lim _{t \rightarrow 0+} \frac{\psi(t)}{t^{2}}=0$. We prove that if $f: I \rightarrow \mathbb{R}$ satisfies the inequality

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}+\psi(|x-y|)
$$

for every $x, y \in I$, then f is Jensen-convex.
We also prove that if a real function f, which is defined on a K-algebraically open K-convex subset D of a vector space X over K (where K is a subfield of \mathbb{R}), satisfies the inequality

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)+c[\lambda(1-\lambda)|x-y|]^{p}
$$

for every $x, y \in D$ and $\lambda \in[0,1] \cap K$, with a fixed non-negative real number c and a fixed exponent $p>1$, then it has to be K-convex, i.e., f satisfies the above inequality with $c=0$ as well. Considering $K=\mathbb{Q}$, we can see that the last statement can be applied for (approximately) Jensen-convex functions.

Moreover we show that the (α, \mathbb{F})-convexity of a function f is equivalent to two other statements. Namely, a function f is (α, \mathbb{F})-convex on a nonempty convex subset D of a real linear space X if and only if the inequality

$$
\frac{f(u)-f(u-s h)-\alpha(-s h)}{s} \leq \frac{f(u+r h)-f(u)+\alpha(r h)}{r}
$$

is satisfied for all $r, s \in \mathbb{F}_{+}, u \in D, h \in X$ (where $u-s h, u+r h \in D$), or there exists a function A (defined on $D \times X$) such that

$$
f(u+r h)-f(u) \leq r A(u, h)-\alpha(r h)
$$

for all $u \in D, r \in \mathbb{F} h \in X$ (where $u+r h \in D$).
We also prove that under certain conditions for the functions f and α, the mapping A described above can be written as

$$
A(u, h)=\lim _{s \rightarrow, s \in \mathbb{F}_{+}} \frac{f(u+s h)-f(u)}{s}
$$

for all $x \in D, h \in X$. Moreover, the mapping $h \mapsto A(u, h)$ is positive \mathbb{F}-homogeneous and subadditive for every $u \in D$.

This is a joint work with Zoltán Boros from the University of Debrecen.

