APPROXIMATE JENSEN-CONVEXITY AND CONVEXITY WITH RESPECT TO A SUBFIELD

Noémi Nagy University of Miskolc, Miskolc, Hungary

In this talk we show that if a function satisfies the Jensen-inequality (or the inequality describing \mathbb{Q} -convexity) with an appropriate error term then the function is Jensen-convex (without error) as well.

First we consider a function f, which is defined on an open interval I of \mathbb{R} . Let ℓ_I be the length of the interval I and define J_I as $]0, \ell_I[$, furthermore let $\psi : J_I \to [0, +\infty[$ be such that $\lim_{t\to 0+} \frac{\psi(t)}{t^2} = 0$. We prove that if $f : I \to \mathbb{R}$ satisfies the inequality

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2} + \psi(|x-y|)$$

for every $x, y \in I$, then f is Jensen-convex.

We also prove that if a real function f, which is defined on a K-algebraically open K-convex subset D of a vector space X over K (where K is a subfield of \mathbb{R}), satisfies the inequality

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) + c\left[\lambda(1 - \lambda)|x - y|\right]^{p}$$

for every $x, y \in D$ and $\lambda \in [0, 1] \cap K$, with a fixed non-negative real number c and a fixed exponent p > 1, then it has to be K-convex, i.e., f satisfies the above inequality with c = 0 as well. Considering $K = \mathbb{Q}$, we can see that the last statement can be applied for (approximately) Jensen-convex functions.

Moreover we show that the (α, \mathbb{F}) -convexity of a function f is equivalent to two other statements. Namely, a function f is (α, \mathbb{F}) -convex on a nonempty convex subset D of a real linear space X if and only if the inequality

$$\frac{f(u) - f(u - sh) - \alpha(-sh)}{s} \le \frac{f(u + rh) - f(u) + \alpha(rh)}{r}$$

is satisfied for all $r, s \in \mathbb{F}_+$, $u \in D$, $h \in X$ (where $u - sh, u + rh \in D$), or there exists a function A (defined on $D \times X$) such that

$$f(u+rh) - f(u) \le r A(u,h) - \alpha(rh)$$

for all $u \in D$, $r \in \mathbb{F}$ $h \in X$ (where $u + rh \in D$).

We also prove that under certain conditions for the functions f and α , the mapping A described above can be written as

$$A(u,h) = \lim_{s \to s} \frac{f(u+sh) - f(u)}{s}$$

for all $x \in D$, $h \in X$. Moreover, the mapping $h \mapsto A(u, h)$ is positive \mathbb{F} -homogeneous and subadditive for every $u \in D$.

This is a joint work with Zoltán Boros from the University of Debrecen.