POTENTIAL SYSTEMS WITH MEAN CURVATURE OPERATOR IN MINKOWSKI SPACE

Gurban Daniela Ana

West University, Timişoara, Romania

Using critical point theory for lower semicontinuous convex perturbations of a C^1 functional, we establish the existence of multiple nontrivial solutions for one parameter potential systems of type

$$\begin{cases} \mathcal{M}(u) = \mu_1(x)|u|^{q_1-1}u - \lambda F_u(x, u, v), & x \in \Omega, \\ \mathcal{M}(v) = \mu_2(x)|v|^{q_2-1}v - \lambda F_v(x, u, v), & x \in \Omega, \\ u|_{\partial\Omega} = 0 = v|_{\partial\Omega}. \end{cases}$$

Here, Ω is a bounded domain in \mathbb{R}^N $(N \ge 2)$ with boundary $\partial \Omega$ of class C^2 , \mathcal{M} is the mean curvature operator in Minkowski space:

$$\mathcal{M}(u) = \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 - |\nabla u|^2}}\right),$$

 $F: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ is a Carathéodory function, with $F(x, \cdot, \cdot)$ of class C^1 for a.e. $x \in \Omega$, satisfying an appropriate L^{∞} -growth condition. The constants $q_1, q_2 > 0$ are fixed, $\mu_1, \mu_2 \in L^{\infty}(\Omega)$ are positive (i.e. ≥ 0 a.e. in Ω) functions and $\lambda > 0$ is a real parameter.

We essentially employ a technique introduced in [1].

The talk is based on joint work with Petru Jebelean and Călin Şerban.

- C. BEREANU, P. JEBELEAN, AND J. MAWHIN, The Dirichlet problem with mean curvature operator in Minkowski space – a variational approach, Adv. Nonlinear Stud. 14 (2014), 315–326.
- [2] D. GURBAN, P. JEBELEAN, AND C. ŞERBAN, Nontrivial solutions for potential systems involving the mean curvature operator in Minkowski space, *submitted*.