Inverse monoids and immersions of 2-complexes

John Meakin, Nora Szakacs
University of Szeged, Hungary

It is well known that under mild conditions on a connected topological space \(\mathcal{X} \), connected covers of \(\mathcal{X} \) may be classified via conjugacy classes of subgroups of the fundamental group of \(\mathcal{X} \). In [1], we extend these results to the study of immersions into 2-dimensional CW-complexes. An immersion \(f : \mathcal{D} \rightarrow \mathcal{C} \) between CW-complexes is a cellular map such that each point \(y \in \mathcal{D} \) has a neighborhood \(U \) that is mapped homeomorphically onto \(f(U) \) by \(f \). In order to classify immersions into a 2-dimensional CW-complex \(\mathcal{C} \), we need to replace the fundamental group of \(\mathcal{C} \) by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex. We also give a process to construct the 2-complex corresponding to a given conjugacy class given by its generators. We prove that when it is finitely generated, the process ends after a finite number of steps.

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program - Elaborating and operating an inland student and researcher personal support system convergence program”. The project was subsidized by the European Union and co-financed by the European Social Fund. This research was partially supported by the Hungarian National Foundation for Scientific Research grant no. K104251.