ONLINE HYPERGRAPH COLORING WITH AND WITHOUT REJECTION

Judit Nagy-György

University of Szeged, Szeged, Hungary

Let H be a hypergraph with vertex set V(H) and edge set E(H). A coloring is a proper coloring of H if no edge of H is monochromatic. The (proper) chromatic number of H is denoted by $\chi(H)$. A proper coloring of H is conflict-free if for each edge $e \in E(H)$, some color occurs on exactly one vertex of e. The conflict-free chromatic number of H is denoted by $\chi_{CF}(H)$. A rainbow coloring of H is a proper coloring of H such that for every edge $e \in E(H)$, the colors of all vertices of e are distinct. The rainbow chromatic number of H is denoted by $\chi_{R}(H)$. Rainbow coloring is conflict-free.

Online coloring without rejection. An online hypergraph coloring algorithm colors the *i*-th vertex of the hypergraph by only looking at the subhypergraph $H_i = (V_i, E_i)$ where V_i contains the first *i* vertices and E_i contains the edges of the hypergraph which are subsets of V_i . The cost of the algorithm is the number of the used colors.

Theorem 1 (Imreh, Nagy-György, [1]). Let $k \ge 3$. For every online hypergraph coloring algorithm A there exists a 2-colorable k-uniform hypergraph H on n vertices with $\chi_A(H) \ge \lceil n/(k-1) \rceil$. If H is a k-uniform hypergraph then then First Fit algorithm uses at most $\lceil n/(k-1) \rceil$ colors.

Theorem 2. No online algorithm uses less than n - 1 colors on 2-cf-colorable hypergraphs on n vertices. If H is a 2-cf-colorable hypergraph than First Fit algorithm uses at most n - 1 colors if n > 2.

Proposition 3. No online algorithm uses less than n colors to rainbow-color hypergraphs on n vertices.

Online coloring with rejection. If we allow *rejection* then all of vertices have penalty. In here the edges having rejected vertex are also rejected. The penalties of rejected vertices are added to the cost.

Theorem 4. If $k \geq 3$, for every ε there is an online algorithm $\mathcal{A}_{\varepsilon}$ and n_{ε} , such that $\mathcal{A}_{\varepsilon}$ at most $\lceil n/(k-1) \rceil/2 + \varepsilon$ competitive on k-uniform 2-proper-colorable hypergraphs with at least n_{ε} vertices.

Theorem 5. There is an online algorithm with competitive ratio at most $(n-1)/\varphi + 1$ on 2-cf-colorable hypergraphs on n vertices where $\varphi = (1 + \sqrt{5})/2$. No online algorithm exists which is Cn + D-competitive in the problem of conflict free coloring with rejection for hypergraphs containing n vertices and some constants $c < 1/\varphi$ and D.

Proposition 6. There is an online algorithm for rainbow coloring with rejection with competitive ratio n and there is no online algorithm with competitive ratio less then n.

This is a joint work with Csanád Imreh.

This research was supported by the European Union and the State of Hungary, cofinanced by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 'National Excellence Program'. CS. IMREH, J. NAGY-GYÖRGY, Online hypergraph coloring, Information Processing Letters 109 (2008), 23–26.