OnLine hypergraph coloring WITH AND WITHOUT REJECTION

Judit Nagy-György
University of Szeged, Szeged, Hungary

Let H be a hypergraph with vertex set $V(H)$ and edge set $E(H)$. A coloring is a proper coloring of H if no edge of H is monochromatic. The (proper) chromatic number of H is denoted by $\chi(H)$. A proper coloring of H is conflict-free if for each edge $e \in E(H)$, some color occurs on exactly one vertex of e. The conflict-free chromatic number of H is denoted by $\chi_{C F}(H)$. A rainbow coloring of H is a proper coloring of H such that for every edge $e \in E(H)$, the colors of all vertices of e are distinct. The rainbow chromatic number of H is denoted by $\chi_{R}(H)$. Rainbow coloring is conflict-free.
Online coloring without rejection. An online hypergraph coloring algorithm colors the i-th vertex of the hypergraph by only looking at the subhypergraph $H_{i}=\left(V_{i}, E_{i}\right)$ where V_{i} contains the first i vertices and E_{i} contains the edges of the hypergraph which are subsets of V_{i}. The cost of the algorithm is the number of the used colors.

Theorem 1 (Imreh, Nagy-György, [1]). Let $k \geq 3$. For every online hypergraph coloring algorithm A there exists a 2-colorable k-uniform hypergraph H on n vertices with $\chi_{A}(H) \geq\lceil n /(k-1)\rceil$. If H is a k-uniform hypergraph then then First Fit algorithm uses at most $\lceil n /(k-1)\rceil$ colors.

Theorem 2. No online algorithm uses less then $n-1$ colors on 2-cf-colorable hypergraphs on n vertices. If H is a 2-cf-colorable hypergraph then First Fit algorithm uses at most $n-1$ colors if $n>2$.

Proposition 3. No online algorithm uses less then n colors to rainbow-color hypergraphs on n vertices.

Online coloring with rejection. If we allow rejection then all of vertices have penalty. In here the edges having rejected vertex are also rejected. The penalties of rejected vertices are added to the cost.

Theorem 4. If $k \geq 3$, for every ε there is an online algorithm $\mathcal{A}_{\varepsilon}$ and n_{ε}, such that $\mathcal{A}_{\varepsilon}$ at most $\lceil n /(k-1)\rceil / 2+\varepsilon$ competitive on k-uniform 2-proper-colorable hypergraphs with at least n_{ε} vertices.

Theorem 5. There is an online algorithm with competitive ratio at most $(n-1) / \varphi+1$ on 2-cf-colorable hypergraphs on n vertices where $\varphi=(1+\sqrt{5}) / 2$. No online algorithm exists which is $C n+D$-competitive in the problem of conflict free coloring with rejection for hypergraphs containing n vertices and some constants $c<1 / \varphi$ and D.

Proposition 6. There is an online algorithm for rainbow coloring with rejection with competitive ratio n and there is no online algorithm with competitive ratio less then n.

This is a joint work with Csanád Imreh.
This research was supported by the European Union and the State of Hungary, cofinanced by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 'National Excellence Program'.
[1] Cs. Imreh, J. Nagy-György, Online hypergraph coloring, Information Processing Letters 109 (2008), 23-26.

