MATRICES IN MODULAR LATTICES

BENEDEK SKUBLICS

Let $(a_1, \ldots, a_m, c_{12}, \ldots, c_{1m})$ be a spanning von Neumann m-frame of a modular lattice L, and let $(u_1, \ldots, u_n, v_{12}, \ldots, v_{1n})$ be a spanning von Neumann n-frame of the interval $[0, a_1]$. Assume that either $m \ge 4$, or L is Arguesian and $m \ge 3$. Let R^* denote the coordinate ring of $(a_1, \ldots, a_m, c_{12}, \ldots, c_{1m})$. If $n \ge 2$, then there is a ring S^* such that R^* is isomorphic to the ring of all $n \times n$ matrices over S^* . If $n \ge 4$ or L is Arguesian and $n \ge 3$, then we can choose S^* as the coordinate ring of $(u_1, \ldots, u_n, v_{12}, \ldots, v_{1n})$.

The proof uses product frames which were defined by Czedli [1]. The talk is based on [2].

References

[2] G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, to appear.

URL: http://www.math.u-szeged.hu/~bskublics/

CSM – The First Conference of PhD Students in Mathematics, June 29 – July 2, 2010

^[1] G. Czédli: The product of von Neumann n-frames, its characteristic, and modular fractal lattices, Algebra Universalis 60 (2009), 217-230.