Web Supplement for Complex Chebyshev Polynomials (2012-14):
Description [to be completed].
Results 1:
α=π/2 (semicircle/semidisk)
deg 1:
P1a=m-1, root 1 (τ(C,1)(0)=τ(S,1)(0)=Root[P1a,1]=1)
deg 2:
P2a=m2+4m-4, root 2 (τ(C,2)(0)=τ(S,2)(0)=Root[P2a,2]~.828427)
deg 3:
P3a=m4+44m2-16, root=2 (τ(C,3)(0)=τ(S,3)(0)=Root[P3a,2]~.600566)
deg 4:
P4a=m6-160m5+896m4-2240m3-768m2+3072m-1024, root=2 (τ(C,4)(0)=Root[P4a,2]~.426417)
P4b=m7-41m6-13m5-7m4-64m3+56m2-48m+16, root=2 (τ(S,4)(0)=Root[P4b,2]~.428592)
deg 5:
P5a=m4+168m3+640m2+640m-256, root=2 (τ(C,5)(0)=Root[P5a,2]~.301733)
P5b=2121843m22-80430176m20-447447275m18-1030213279m16-1363646416m14-1172262368m12-660934400m10-218989824m8-31686656m6-647168m4+65536, root=3 (τ(S,5)(0)=Root[P5b,3]~.314564)
P6a=m12+11568m11+32064m10+30375168m9-279310336m8+213975040m7-1156890624m6+7164657664m5-11530141696m4+4777312256m3+2348810240m2-1879048192m+268435456,
root=3 (τ(C,6)(0)=Root[P6m1,3]~.213383)
P6b=--(~.234697)
Results 2:
α=π/3 (arc/sector)
deg 1:
P1a=4m2-3, root 2 (τ(C,1)(1/2)=τ(S,1)(1/2)=Root[P1a,2]~.866025)
deg 2:
P2a=m2+6m-3, root=2 (τ(C,2)(1/2)=Root[P2a,2]~.464102)
P2b=2m-1, root 1 (τ(S,2)(1/2)=Root[P2b,1]=.5)
deg 3:
P3a=16m8+648m6+14553m4-14202m2+729, root=3 (τ(C,3)(1/2)=Root[P3a,3]~.233167)
P3b=8m2-12m+3, root 1 (τ(S,3)(1/2)=Root[P3b,1]~.316987)
deg 4:
P4a=m6-252m5+714m4+306m3-3015m2+2430m-243, root=2 (τ(C,4)(1/2)=Root[P4a,2]~.116624)
P4b=1744m8+19872m7-104652m6+185004m5-147447m4+44388m3+6210m2-5832m+729, root=3 (τ(S,4)(1/2)=Root[P4b,3]~.189080)
deg 5:
P5a=m16-6234m14+251683209m12-1085250906m10+36947937780m8-74276829738m6+53201685897m4-12839260266m2+43046721, root=3 (τ(C,5)(1/2)=Root[P5a,3]~.0583132)
P5b=--(~.107174)
deg 6:
P6a=m12+22530m11-847629m10+20704122m9-228947391m8+385650666m7-2052104652m6+1552297608m5+2442565530m4-3315640716m3+1358107317m2-200884698m+4782969, root=3 (τ(C,6)(1/2)=Root[P6a,3]~.029157)
P6b=--(~.063304)
Results 3:
α=2π/3 (arc/sector)
deg 1:
P1a=m-1, root 1 (τ(C,1)(-1/2 )=τ(S,1)(-1/2)=Root[P1a,1]=1)
deg 2:
P2a=m-1, root 1 (τ(C,2)(-1/2)=τ(S,2)(-1/2)=Root[P2a,1]=1)
deg 3:
P3a=16m8+648m6+14553m4-14202m2+729, root=4 (τ(C,3)(-1/2)=τ(S,3)(-1/2)=Root[P3a,4]~.940035)
deg 4:
P4a=m3-72m2+27m+27, root=2 (τ(C,4)(-1/2)=τ(S,4)(-1/2)=Root[P4a,2]~.834198)
deg 5:
P5a=m16-6234m14+251683209m12-1085250906m10+36947937780m8-74276829738m6+53201685897m4-12839260266m2+43046721, root=4 (τ(C,5)(-1/2)=τ(S,5)(-1/2)=Root[P5a,4]~.727999)
deg 6:
P6a=m6+95m5+4659m4+8524m3+2052m2-7047m+729, root=2 (τ(C,6)(-1/2)=τ(S,6)(-1/2)=Root[P6a,2]~.632036)
deg 7:
P7a=256m32+...+984770902183611232881, root=5 (τ(A,7)(-1/2)=Root[P7a,2]~.547808)
984770902183611232881 - 4709846277829618283702538 m^2 +
360758311333745564221764561 m^4 - 9784118639755436807948540904 m^6 +
105636987810917193568445380872 m^8 -
344439152590304644226459232498 m^10 +
314088761681036804012958869364 m^12 -
70474534757063012413064367810 m^14 +
15498109430414144893479481992 m^16 -
3462091044030437387120431128 m^18 +
722278003427167466060358705 m^20 - 12326389974716365066405338 m^22 +
365781838652489741544369 m^24 + 672710142830280914448 m^26 +
299942074868994144 m^28 - 5407659264 m^30 + 256 m^32
Full Description of the Solutions
Results 1:
α=π/2 (semicircle, semicircular arc)
deg 1:
P1m1=m-1, root 1 (τ(C,1)(0)=τ(S,1)(0)=Root[P1m1,1]=1)
P1m2=m-1, root 1 ((τ(C,1)(0))2=(τ(S,1)(0))2=Root[P1m2,1]=1)
P1a0=a, root 1 (a0(C,1)(0)=a0(S,1)(0)=0)
Remark. No inner extrema
deg 2:
P2m1=m2+4m-4, root 2 (τ(C,2)(0)=τ(S,2)(0)=Root[P2m1,2]~.828427)
P2m2=m2-24m+16, root 1 ((τ(C,2)(0))2=(τ(S,2)(0))2=Root[P2m2,1]~.686292)
P2a0=a2+2a-1, root 2 (a0(C,2)(0)=a0(S,2)(0)=Root[P2a0,2]~.414214)
P2a1=a2+4a+2, root 2 (a1(C,2)(0)=a1(S,2)(0)=Root[P2a1,2]~-.585786)
P2r1=r4-4r3-1, root 3 (r1(C,2)(0)=r1(S,2)(0)=Root[P2r1,3]~.292893-.573086i)
P2r2=r4-4r3-1, root 4 (r2(C,2)(0)=r2(S,2)(0)=Root[P2r2,4]~.292893+.573086i)
Remark. No inner extrema
deg 3:
P3m1=m4+44m2-16, root=2 (τ(C,3)(0)=τ(S,3)(0)=Root[P3m1,2]~.600566)
P3m2=m2+44m-16, root=2 ((τ(C,3)(0))2=(τ(S,3)(0))2=Root[P3m2,2]~.360680)
P3a0=a4+4a2-1, root 1 (a0(C,3)(0)=a0(S,3)(0)=Root[P3a0,1]~-.485868)
P3a1=a-1, root 1 (a1(C,3)(0)=a1(S,3)(0)=Root[P3a1,1]=1)
P3a2=a4+20a2-25, root 1 (a2(C,3)(0)=a2(S,3)(0)=Root[P3a2,1]~-1.08643)
P3r1=r12+24r10+r8-12r6-r4+4r2-1, root 2 (r1(C,3)(0)=r1(S,3)(0)=Root[P2r1,2]~.673139)
P3r2=r12+24r10+r8-12r6-r4+4r2-1, root 9 (r2(C,3)(0)=r2(S,3)(0)=Root[P2r2,9]~.206648-.824070i)
P3r3=r12+24r10+r8-12r6-r4+4r2-1, root 10 (r3(C,3)(0)=r3(S,3)(0)=Root[P2r2,10]~.206648+.824070i)
P3x1=x8+8x6-2x4+8x2+1, root 8 (x1(C,3)(0)=x1(S,3)(0)=Root[P3x1,8]~.786151+.618034i)
P3xr1=x4+x2-1, root=2 (xr1(C,3)(0)=xr1(S,3)(0)=Root[P3xr1,2]~.786151)
deg 4:
P4m1=m6-160m5+896m4-2240m3-768m2+3072m-1024, root=2 (τ(C,4)(0)=Root[P4m1,2]~.426417)
P4m2=m6-23808m5+84480m4-5412864m312517376m2-7864320m+1048576, root=1 ((τ(C,4)(0))2=Root[P4m2,1]~.181831)
P4a0=a6+6a5-7a4+4a3+7a2-2a-1, root=4 (a0(C,4)(0)=Root[P4a0,4]~.497610)
P4a1=a6-80a5-262a4-320a3-196a2-64a-8, root=1 (a1(C,4)(0)=Root[P4a1,1]~-1.28440)
P4a2=a6-104a5+98a4+40a3+164a2+80a-8, root=3 (a2(C,4)(0)=Root[P4a2,3]~1.79913)
P4a3=a6+24a5-46a4+96a3+300a2-96a-8, root=2 (a3(C,4)(0)=Root[P4a3,2]~-1.58592)
P4r1=r24-24r23+58r22+156r21+964r20-1472r19+486r18-228r17-1003r16+1008r15-924r14+56r13+
+160r12-608r11+428r10-40r9-149r8+104r7-62r6+44r5+28r4-32r3+14r2+12r-1, root=17 (r1(C,4)(0)=Root[P4r1,17]~.137779-.916121i)
P4r2=r24-24r23+58r22+156r21+964r20-1472r19+486r18-228r17-1003r16+1008r15-924r14+56r13+
+160r12-608r11+428r10-40r9-149r8+104r7-62r6+44r5+28r4-32r3+14r2+12r-1, root=18 (r2(C,4)(0)=Root[P4r3,18]~.137779+.916121i)
P4r3=r24-24r23+58r22+156r21+964r20-1472r19+486r18-228r17-1003r16+1008r15-924r14+56r13+
+160r12-608r11+428r10-40r9-149r8+104r7-62r6+44r5+28r4-32r3+14r2+12r-1, root=23 (r3(C,4)(0)=Root[P4r3,23]~.655182-.387974i)
P4r4=r24-24r23+58r22+156r21+964r20-1472r19+486r18-228r17-1003r16+1008r15-924r14+56r13+
+160r12-608r11+428r10-40r9-149r8+104r7-62r6+44r5+28r4-32r3+14r2+12r-1, root=24 (r4(C,4)(0)=Root[P4r4,24]~.655182+.387974i)
P4x1=x12-12x11-86x10-276x9-465x8-512x7-484x6-512x5-465x4-276x3-86x2-12x+1, root=12 (x1(C,4)(0)=Root[P4x1,12]~.541766+.840529i)
P4xr1=4x6-24x5-92x4-108x3-28x2+32x+17, root=3 (xr1(C,4)(0)=Root[P4xr1,3]~.541766)
deg 5:
P5m1=m4+168m3+640m2+640m-256, root=2 (τ(C,5)(0)=Root[P5m1,2]~.301733)
P5m2=m4-26944m3+194048m2-737280m+65536, root=1 ((τ(C,5)(0))2=Root[P5m2,1]~.0910429)
P5a0=a8+24a6-22a4+16a2-3, root=1 (a0(C,5)(0)=Root[P5a0,1]~-.499591)
P5a1=a4-64a3+134a2-64a+9, root=1 (a1(C,5)(0)=Root[P5a1,1]~1.54124)
P5a2=a8+296a6-1872a4-896a2-768, root=1 (a2(C,5)(0)=Root[P5a2,1]~-2.58540)
P5a3=a4+100a3-132a2-304a-432, root=2 (a3(C,5)(0)=Root[P5a3,2]~2.84297)
P5a4=a8+496a6-2302a4+3640a2-13467, root=1 (a4(C,5)(0)=Root[P5a4,1]~-2.08581)
P5x1=x32+216x30+1080x28-7160x26+38172x24-59688x22+87432x20-64440x18+
+74310x16-64440x14+87432x12-59688x10+38172x8-7160x6+1080x4+216x2+1, root=22 (x1(C,5)(0)=Root[P5x1,22]~.378549+.925581i)
P5x2=x32+216x30+1080x28-7160x26+38172x24-59688x22+87432x20-64440x18+
+74310x16-64440x14+87432x12-59688x10+38172x8-7160x6+1080x4+216x2+1, root=30 (x2(C,5)(0)=Root[P5x2,30]~.914152+.405371i)
P5rx1=x16+50x14-115x12-60x10+482x8-658x6+400x4-108x2+9, root=3 (rx1(C,5)(0)=Root[P5rx1,3]~.378549)
P5rx2=x16+50x14-115x12-60x10+482x8-658x6+400x4-108x2+9, root=4 (rx2(C,5)(0)=Root[P5rx2,4]~.914152)
P5r1=r40+296r38+10562r36-29680r34+256457r32+170208r30-332552r28-258816r26+124354r24+177264r22+
+18860r20-48608r18-32998r16-13344r14+23480r12+6784r10-5283r8-3672r6+2658r4-432r2-3, root=2 (r1(C,5)(0)=Root[P5r1,2]~.787688)
P5r2=r40+296r38+10562r36-29680r34+256457r32+170208r30-332552r28-258816r26+124354r24+177264r22+
+18860r20-48608r18-32998r16-13344r14+23480r12+6784r10-5283r8-3672r6+2658r4-432r2-3, root=25 (r2(C,5)(0)=Root[P5r2,25]~.0951271-.955008i)
P5r3=r40+296r38+10562r36-29680r34+256457r32+170208r30-332552r28-258816r26+124354r24+177264r22+
+18860r20-48608r18-32998r16-13344r14+23480r12+6784r10-5283r8-3672r6+2658r4-432r2-3, root=26 (r3(C,5)(0)=Root[P5r3,26]~.0951271+.955008i)
P5r4=r40+296r38+10562r36-29680r34+256457r32+170208r30-332552r28-258816r26+124354r24+177264r22+
+18860r20-48608r18-32998r16-13344r14+23480r12+6784r10-5283r8-3672r6+2658r4-432r2-3, root=31 (r4(C,5)(0)=Root[P5r4,31]~.553935-.617854i)
P5r5=r40+296r38+10562r36-29680r34+256457r32+170208r30-332552r28-258816r26+124354r24+177264r22+
+18860r20-48608r18-32998r16-13344r14+23480r12+6784r10-5283r8-3672r6+2658r4-432r2-3, root=32 (r5(C,5)(0)=Root[P5r5,32]~.553935+.617854i)
deg 6:
P6m1=m12+11568m11+32064m10+30375168m9-279310336m8+213975040m7-1156890624m6+7164657664m5-11530141696m4+4777312256m3+2348810240m2-1879048192m+268435456,
root=3 (τ(C,6)(0)=Root[P6m1,3]~.213383)
P6m2=m12-133754496m11-702290407424m10-945515284561920m9+64775234558885888m8+164372411527987200m7+4423226371862429696m6-27896468892882567168m5+59708105934143225856m4-50682569024474185728m3+17280311770220593152m2-2269814212194729984m+72057594037927936, root=1 ((τ(C,6)(0))2=Root[P6m2,1]~.0455323)
P6a0=a12+12a11-26a10+44a9+127a8-40a7-60a6-40a5+31a4+28a3-10a2-4a+1, root=6 (a0(C,6)(0)=Root[P6a0,6]~.499930)
P6a1=a12-728a11-10164a10-302608a9-851060a8+1061440a7+8033792a6+15182080a5+15025840a4+8706688a3+2928960a2+514304a+33856, root=1 (a1(C,6)(0)=Root[P6a1,1]~-1.79257)
P6a2=a12+6452a11+45042a10-142012a9-1825265a8-403352a7+10754492a6+22844200a5+23526895a4+14362980a3+5129970a2+1021076a+74593, root=5 (a2(C,6)(0)=Root[P6a2,5]~3.48506)
P6a3=a12+7504a11-95608a10+662592a9+1400704a8-15837440a7+16467584a6+1610752a5-10668032a4-3162112a3+335872a2+196608a+16384, root=2 (a3(C,6)(0)=Root[P6a3,2]~-4.52925)
P6a4=a12-1732a11-27010a10-1783332a9+9671975a8-3969864a7-11451628a6-10065352a5+17542607a4-882420a3+3445518a2-3770644a-22871, root=5 (a4(C,6)(0)=Root[P6a4,5]~4.13601)
P6a5=a12+72a11-652a10+6864a9+72908a8+78016a7+25344a6-382976a5-945104a4+2217600a3-1448256a2+229120a+188992, root=3 (a5(C,6)(0)=Root[P6a5,3]~-2.58579)
P6x1=x48-48x47-72x46+6256x45+108660x44+635088x43+1589256x42-876432x41-21828798x40-99279184x39-327097176x38-919213680x37-
-2222790236x36-4592413008x35-8284374504x34-13568500592x33-20781036049x32-29982156640x31-40654829136x30-51998358560x29-63314097688x28-73787616608x27-82230454320x26-87559689248x25-
-89345239652x24-87559689248x23-82230454320x22-73787616608x21-63314097688x20-51998358560x19-40654829136x18-29982156640x17-20781036049x16-13568500592x15-8284374504x14-4592413008x13-
-2222790236x12-919213680x11-327097176x10-99279184x9-21828798x8-876432x7+1589256x6+635088x5+108660x4+6256x3-72x2-48x+1, root=38 (x1(C,6)(0)=Root[P6x1,38]~.274098+.961702i)
P6x2=x48-48x47-72x46+6256x45+108660x44+635088x43+1589256x42-876432x41-21828798x40-99279184x39-327097176x38-919213680x37-
-2222790236x36-4592413008x35-8284374504x34-13568500592x33-20781036049x32-29982156640x31-40654829136x30-51998358560x29-63314097688x28-73787616608x27-82230454320x26-87559689248x25-
-89345239652x24-87559689248x23-82230454320x22-73787616608x21-63314097688x20-51998358560x19-40654829136x18-29982156640x17-20781036049x16-13568500592x15-8284374504x14-4592413008x13-
-2222790236x12-919213680x11-327097176x10-99279184x9-21828798x8-876432x7+1589256x6+635088x5+108660x4+6256x3-72x2-48x+1, root=46 (x1(C,6)(0)=Root[P6x2,46]~.768762+.639534i)
P6r1=r72-72z71+1080z70+3280z69+42382z68-784440z67+247448z66-470576z65+46064089z64-88003008z63
+161498624z62+409090432z61-836412272z60-929463872z59+1147256704z58-2313654400z57+2104584628z56+1184895776z55-2740721824z54+3229709504z53
-2993526712z^52+469961952z^51+1678564192z^50-1949975360z^49+2556660164z^48-1612368448z^47+452764544z^46+774391424z^45-920919696z^44+1302943296z^43
-556749056*z^42+119666816*z^41+7666350*z^40-147165872*z^39+236109456*z^38-306918688*z^37+286808596*z^36-159991376*z^35-20113840*z^34+145905888*z^33
-284458834*z^32+53718976*z^31-71134976*z^30-95597952*z^29+107783408*z^28-63076288*z^27-30044800*z^26+5964928*z^25-55581756*z^24-13179616*z^23
+13414368*z^22-8148800*z^21-20859192*z^20+4255456*z^19-150816*z^18-10354496*z^17+4748212*z^16-2838464*z^15-3716736*z^14+2067840*z^13
-2445808z12+580544z11+1349632z10-1594496z9-174119z8+513720z7-138760z6-85296z5+20558z4+1736z3+216z2-48z+1
root=45 (r1(C,6)(0)=Root[P6r1,45]~.00685555-.973557i)
root=46 (r2(C,6)(0)=Root[P6r2,46]~.00685555+.973557i)
root=57 (r3(C,6)(0)=Root[P6r3,57]~.451706-.752965i)
root=58 (r4(C,6)(0)=Root[P6r4,58]~.451706+.752965i)
root=67 (r5(C,6)(0)=Root[P6r5,67]~.772634-.289456i)
root=68 (r6(C,6)(0)=Root[P6r6,68]~.772634+.289456i)
Complex Chebyshev Polynomials with Different Methods
Description.
Code: QE1001
Name: Sec2a (Chebyshev on sectors (1st boundary arc), d=2, k\in [1/sqrt2, 1])
Vars: 4
Formula: (Ea1)(Ax)[(0<=x<=1) ==> [T^2(x,m,a1)(/.y->Sqrt[1/k^2-1] x)<=m^2]]
Output:
SW/HW: Mma9/Qepcad/Corei7-920
Best Time (confirmed): 1.5 sec [M9quine]
Remarks.
qepcad 203 sec
proj-lev-factors 1 17(12)
Description.
Code: QE1101
Name: Sec2a (Chebyshev on sectors (direct), d=2, k=0, half disk)
Vars: 5
Formula: (Ea0)(Ea1)(Ax)(Ay)[(x^2+y^2<=1 /\ x>=0) ==> [T^2(x,y,a0,a1)<=m^2]]
Output: 2(Sqrt[2]-1)<=m<9/10
SW/HW: Mma9/Qepcad/Corei7-920
Best Time (confirmed): 1486 sec [M9quine]
Remarks. 5GB!, !m\in[82/100,9/10]
qepcad ?? sec
proj-lev-factors 1 ??(??)
Description.
Code: QE1102
Name: Sec2a (Chebyshev on sectors (direct), coeffs, d=2, k=0, half disk)
Vars: 4
Formula: (Ax)(Ay)[(x^2+y^2<=1 /\ x>=0) ==> [T^2(x,y,a0,a1)<=(2(Sqrt[2]-1))^2]]
Output: a0=Sqrt[2]-1, a1=Sqrt[2]-2
SW/HW: Mma9/Qepcad/Corei7-920
Best Time (confirmed): 27 sec [M9quine]
Remarks.
qepcad ?? sec
proj-lev-factors 1 ??(??)
Real Chebyshev Polynomials with Different Methods
I=[0,1] (similar result should be obtaiend for [-1,1],[-1,0],[0,s])
deg=2
QE: MMA9
m=1/8 (.17s one stroke, ass m \in[0,1])
coeffs: a0=1/8,a1=-1. (0.s)
details-
deg=3
QE MMA9
m=1/32 (6.4s in two stroke(m|a0a10a2), ass m \in[0,1])
coeffs: a0=-1/32, a1=9/16, a2=-3/2. (95s)
details-
GB1 (EquiOsc):
2048m^7-6720m^6+2640m^5+4564m^4+1263m^3+84m^2-4m=(..)(32m-1) (0.01s)
Coeffs:=a0=-1/32, a1=9/16, a2=-3/2. (0s)
deg=4
QE-
GB1 (EquiOsc+RabTrick):
8192m^4-2112m^3+144m^2-m=(m)*(8m-1)^2*(128m-1) (.1s)
Coeffs:=a0=1/128,a1=-1/4,a2=5/4,a3=-2. (also with QE in two stroke and with CAD 40sec)
deg=5
QE-
GB1 (EquiOsc+RabTrick):
(m)*(m+2)^3*(512m-1)(m^2-246m+4)^2(256m^2-176m-1)^3 (365s)
Coeffs:=a0=-1/512,a1=25/256,a2=-25/32,a3=35/16,a4=-5/2.
Remark.
Lex variable ordering: v,w,x,y,z,z2,a2,a3,a4,m
{e5c,e5c/.x->y,(e5c/.x->z)-2m,(e5c/.x->z2)-2m, D[e5c,x],D[e5c/.x->y,y],D[e5c/.x->z,z],D[e5c/.x->z2,z2],1+v(x-y),1+w(z-z2)}
where e5c=(2m-1-a2-a3-a4)x+a2x^2+a3x^3+a4x^4+a5x^5
Robert Vajda