The 24th Annual Vojtěch Jarník International Mathematical Competition Ostrava, 4th April 2014 Category I

Problem 1 Find all complex numbers z such that $|z^3 + 2 - 2i| + z\overline{z}|z| = 2\sqrt{2}$. (\overline{z} is the conjugate of z.)

Problem 2 We have a deck of 2n cards. Each shuffling changes the order from $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$ to $a_1, b_1, a_2, b_2, \ldots, a_n, b_n$. Determine all even numbers 2n such that after shuffling the deck 8 times the original order is restored.

Problem 3 Let $n \ge 2$ be an integer and let x > 0 be a real number. Prove that

$$\left(1 - \sqrt{\tanh x}\right)^n + \sqrt{\tanh(nx)} < 1.$$

Recall that $\tanh t = \frac{e^{2t} - 1}{e^{2t} + 1}$.

Problem 4 Let P_1, P_2, P_3, P_4 be the graphs of four quadratic polynomials drawn in the coordinate plane. Suppose that P_1 is tangent to P_2 at the point q_2, P_2 is tangent to P_3 at the point q_3, P_3 is tangent to P_4 at the point q_4 , and P_4 is tangent to P_1 at the point q_1 . Assume that all the points q_1, q_2, q_3, q_4 have distinct x-coordinates. Prove that q_1, q_2, q_3, q_4 lie on a graph of an at most quadratic polynomial.