The $24^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $4^{\text {th }}$ April 2014
Category I

Problem 1 Find all complex numbers z such that $\left|z^{3}+2-2 i\right|+z \bar{z}|z|=2 \sqrt{2}$. (\bar{z} is the conjugate of z.)

Problem 2 We have a deck of $2 n$ cards. Each shuffling changes the order from $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ to $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}$. Determine all even numbers $2 n$ such that after shuffling the deck 8 times the original order is restored.

Problem 3 Let $n \geq 2$ be an integer and let $x>0$ be a real number. Prove that

$$
(1-\sqrt{\tanh x})^{n}+\sqrt{\tanh (n x)}<1
$$

Recall that $\tanh t=\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1}$.

Problem 4 Let $P_{1}, P_{2}, P_{3}, P_{4}$ be the graphs of four quadratic polynomials drawn in the coordinate plane. Suppose that P_{1} is tangent to P_{2} at the point q_{2}, P_{2} is tangent to P_{3} at the point q_{3}, P_{3} is tangent to P_{4} at the point q_{4}, and P_{4} is tangent to P_{1} at the point q_{1}. Assume that all the points $q_{1}, q_{2}, q_{3}, q_{4}$ have distinct x-coordinates. Prove that $q_{1}, q_{2}, q_{3}, q_{4}$ lie on a graph of an at most quadratic polynomial.

