Play with LEGO!

The Kalmár-Steinhaus function and selective compounds of games

Tamás Waldhauser
University of Luxembourg

Colloquium on Combinatorial Games
Luxembourg 10 May 2010

Outline

(1) The Kalmár-Steinhaus function and selective compounds of games
(2) Play with LEGO!

Outline

(1) The Kalmár-Steinhaus function and selective compounds of games
(2) Play with LEGO!

How to win a game?

Game: $\mathcal{G}=(P, M, T)$

- P is the set of positions
- $M \subseteq P \times P$ is the set of moves
- $T=\{p \in P \mid \nexists q \in P:(p, q) \in M\}$ is the set of terminal positions

How to win a game?

Game: $\mathcal{G}=(P, M, T)$

- P is the set of positions
- $M \subseteq P \times P$ is the set of moves
- $T=\{p \in P \mid \nexists q \in P:(p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.

How to win a game?

Game: $\mathcal{G}=(P, M, T)$

- P is the set of positions
- $M \subseteq P \times P$ is the set of moves
- $T=\{p \in P \mid \nexists q \in P:(p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.
Partition P into good and bad positions such that

$$
\text { good } \xrightarrow{\forall} \text { bad and bad } \xrightarrow{\exists} \text { good. }
$$

How to win a game?

Game: $\mathcal{G}=(P, M, T)$

- P is the set of positions
- $M \subseteq P \times P$ is the set of moves
- $T=\{p \in P \mid \nexists q \in P:(p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.
Partition P into good and bad positions such that

$$
\text { good } \xrightarrow{\forall} \text { bad and bad } \xrightarrow{\exists} \text { good. }
$$

Winning strategy: always move to a good position!

The Sprague-Grundy function

There is a unique function $\gamma: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

$$
\gamma(p)=\operatorname{mex}\{\gamma(q) \mid p \rightarrow q\}=\min \left(\mathbb{N}_{0} \backslash\{\gamma(q) \mid p \rightarrow q\}\right)
$$

The Sprague-Grundy function

There is a unique function $\gamma: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

$$
\gamma(p)=\operatorname{mex}\{\gamma(q) \mid p \rightarrow q\}=\min \left(\mathbb{N}_{0} \backslash\{\gamma(q) \mid p \rightarrow q\}\right)
$$

The good positions are exactly the zeros of this function:

$$
p \text { is good } \Longleftrightarrow \gamma(p)=0
$$

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_{1} \wedge \cdots \wedge \mathcal{G}_{n}$ (product, conjunctive compound): move in all of them

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_{1} \wedge \cdots \wedge \mathcal{G}_{n}$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_{1} \vee \cdots \vee \mathcal{G}_{n}$ (join, selective compound): move in some of them

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_{1} \wedge \cdots \wedge \mathcal{G}_{n}$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_{1} \vee \cdots \vee \mathcal{G}_{n}$ (join, selective compound): move in some of them

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_{1} \wedge \cdots \wedge \mathcal{G}_{n}$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_{1} \vee \cdots \vee \mathcal{G}_{n}$ (join, selective compound): move in some of them

The game of nim

- position: k heaps of beans
- move: take away some beans from one heap

Playing several games simultaneously

There are many ways to play games $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ simultaneously:

- $\mathcal{G}_{1}+\cdots+\mathcal{G}_{n}$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_{1} \wedge \cdots \wedge \mathcal{G}_{n}$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_{1} \vee \cdots \vee \mathcal{G}_{n}$ (join, selective compound): move in some of them

The game of nim

- position: k heaps of beans
- move: take away some beans from one heap

This is a sum of k one-heap nim games:

$$
\mathcal{N}_{k}=\mathcal{N}_{1}+\cdots+\mathcal{N}_{1}
$$

The SG function of the sum

Theorem

The exists a binary operation \oplus on \mathbb{N}_{0} such that

$$
\gamma_{\mathcal{G}_{1}+\mathcal{G}_{2}}\left(p_{1}, p_{2}\right)=\gamma_{\mathcal{G}_{1}}\left(p_{1}\right) \oplus \gamma_{\mathcal{G}_{2}}\left(p_{2}\right) .
$$

The SG function of the sum

Theorem

The exists a binary operation \oplus on \mathbb{N}_{0} such that

$$
\gamma_{\mathcal{G}_{1}+\mathcal{G}_{2}}\left(p_{1}, p_{2}\right)=\gamma_{\mathcal{G}_{1}}\left(p_{1}\right) \oplus \gamma_{\mathcal{G}_{2}}\left(p_{2}\right) .
$$

Corollary

$$
\gamma_{\mathcal{N}_{k}}\left(n_{1}, \ldots, n_{k}\right)=\gamma_{\mathcal{N}_{1}}\left(n_{1}\right) \oplus \cdots \oplus \gamma_{\mathcal{N}_{1}}\left(n_{k}\right)=n_{1} \oplus \cdots \oplus n_{k}
$$

Nim addition

\oplus	0			3				7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Nim addition

\oplus	0		2	3	4			7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

binary addition without carrying (bitwise XOR)

The Kalmár-Steinhaus function

There is a unique function $\varkappa: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

- if there is an even number in $\{\varkappa(q) \mid p \rightarrow q\}$, then

$$
\varkappa(p)=1+\min \left(\{\varkappa(q) \mid p \rightarrow q\} \cap 2 \mathbb{N}_{0}\right),
$$

The Kalmár-Steinhaus function

There is a unique function $\varkappa: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

- if there is an even number in $\{\varkappa(q) \mid p \rightarrow q\}$, then

$$
\varkappa(p)=1+\min \left(\{\varkappa(q) \mid p \rightarrow q\} \cap 2 \mathbb{N}_{0}\right),
$$

- if all numbers in $\{\varkappa(q) \mid p \rightarrow q\}$ are odd, then

$$
\varkappa(p)=1+\max \{\varkappa(q) \mid p \rightarrow q\} .
$$

The Kalmár-Steinhaus function

There is a unique function $\varkappa: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

- if there is an even number in $\{\varkappa(q) \mid p \rightarrow q\}$, then

$$
\varkappa(p)=1+\min \left(\{\varkappa(q) \mid p \rightarrow q\} \cap 2 \mathbb{N}_{0}\right),
$$

- if all numbers in $\{\varkappa(q) \mid p \rightarrow q\}$ are odd, then

$$
\varkappa(p)=1+\max \{\varkappa(q) \mid p \rightarrow q\} .
$$

The Kalmár-Steinhaus function

There is a unique function $\varkappa: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

- if there is an even number in $\{\varkappa(q) \mid p \rightarrow q\}$, then

$$
\varkappa(p)=1+\min \left(\{\varkappa(q) \mid p \rightarrow q\} \cap 2 \mathbb{N}_{0}\right),
$$

- if all numbers in $\{\varkappa(q) \mid p \rightarrow q\}$ are odd, then

$$
\varkappa(p)=1+\max \{\varkappa(q) \mid p \rightarrow q\} .
$$

In short,

$$
\varkappa(p)=1+\text { lego }\{\varkappa(q) \mid p \rightarrow q\} .
$$

The Kalmár-Steinhaus function

There is a unique function $\varkappa: P \rightarrow \mathbb{N}_{0}$ such that for all $p \in P$

- if there is an even number in $\{\varkappa(q) \mid p \rightarrow q\}$, then

$$
\varkappa(p)=1+\min \left(\{\varkappa(q) \mid p \rightarrow q\} \cap 2 \mathbb{N}_{0}\right),
$$

- if all numbers in $\{\varkappa(q) \mid p \rightarrow q\}$ are odd, then

$$
\varkappa(p)=1+\max \{\varkappa(q) \mid p \rightarrow q\} .
$$

In short,

$$
\varkappa(p)=1+\text { lego }\{\varkappa(q) \mid p \rightarrow q\} .
$$

The good positions are easily determined from this function:

$$
p \text { is good } \Longleftrightarrow \varkappa(p) \text { is even. }
$$

The KS function of the conjunctive/selective compound

Theorem

$$
\varkappa_{\mathcal{G}_{1} \wedge \mathcal{G}_{2}}\left(p_{1}, p_{2}\right)=\min \left(\varkappa_{\mathcal{G}_{1}}\left(p_{1}\right), \varkappa_{\mathcal{G}_{2}}\left(p_{2}\right)\right)=\varkappa_{\mathcal{G}_{1}}\left(p_{1}\right) \wedge \varkappa_{\mathcal{G}_{2}}\left(p_{2}\right) .
$$

The KS function of the conjunctive/selective compound

Theorem

$$
\varkappa_{\mathcal{G}_{1} \wedge \mathcal{G}_{2}}\left(p_{1}, p_{2}\right)=\min \left(\varkappa_{\mathcal{G}_{1}}\left(p_{1}\right), \varkappa_{\mathcal{G}_{2}}\left(p_{2}\right)\right)=\varkappa_{\mathcal{G}_{1}}\left(p_{1}\right) \wedge \varkappa_{\mathcal{G}_{2}}\left(p_{2}\right) .
$$

Theorem

There exists a binary operation \boxplus on \mathbb{N}_{0} such that

$$
\varkappa_{\mathcal{G}_{1} \vee \mathcal{G}_{2}}\left(p_{1}, p_{2}\right)=\varkappa_{\mathcal{G}_{1}}\left(p_{1}\right) \boxplus \varkappa_{\mathcal{G}_{2}}\left(p_{2}\right) .
$$

The operation \boxplus

\boxplus	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	1	3	3	5	5	7	7
2	2	3	4	5	6	7	8	9
3	3	3	5	5	7	7	9	9
4	4	5	6	7	8	9	10	11
5	5	5	7	7	9	9	11	11
6	6	7	8	9	10	11	12	13
7	7	7	9	9	11	11	13	13

The operation $⿴ 囗 十$

\boxplus	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	1	3	3	5	5	7	7
2	2	3	4	5	6	7	8	9
3	3	3	5	5	7	7	9	9
4	4	5	6	7	8	9	10	11
5	5	5	7	7	9	9	11	11
6	6	7	8	9	10	11	12	13
7	7	7	9	9	11	11	13	13

$a \boxplus b=$
－$a+b, \quad$ if a or b is even
－$a+b-1$ ，if a and b are odd

Grundy nim, disjunctive version

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline \gamma(n) & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 4
\end{array}
$$

Grundy nim, disjunctive version

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
\hline \gamma(n) & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 3 & 2 & 1 & 3 & 2 & 4
\end{array} \\
& \gamma(10)=\operatorname{mex}(\gamma(1) \oplus \gamma(9), \gamma(2) \oplus \gamma(8), \gamma(3) \oplus \gamma(7), \gamma(4) \oplus \gamma(6)) \\
& =\operatorname{mex}(0 \oplus 1,0 \oplus 2,1 \oplus 0,0 \oplus 1) \\
& =\operatorname{mex}(1,2,1,1)=0
\end{aligned}
$$

Grundy nim, disjunctive version

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline \gamma(n) & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 3 & 2 & 1 & 3 & 2 \\
\hline
\end{array} \\
& \gamma(10)=\operatorname{mex}(\gamma(1) \oplus \gamma(9), \gamma(2) \oplus \gamma(8), \gamma(3) \oplus \gamma(7), \gamma(4) \oplus \gamma(6)) \\
& =\operatorname{mex}(0 \oplus 1,0 \oplus 2,1 \oplus 0,0 \oplus 1) \\
& =\operatorname{mex}(1,2,1,1)=0
\end{aligned}
$$

Grundy nim, conjunctive version

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\varkappa(n)$	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Grundy nim, conjunctive version

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\varkappa(n)$	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$$
\begin{aligned}
\varkappa(10) & =1+\operatorname{lego}(\varkappa(1) \wedge \varkappa(9), \varkappa(2) \wedge \varkappa(8), \varkappa(3) \wedge \varkappa(7), \varkappa(4) \wedge \varkappa(6)) \\
& =1+\operatorname{lego}(0 \wedge 1,0 \wedge 1,1 \wedge 1,1 \wedge 1) \\
& =1+\operatorname{lego}(0,0,1,1)=1+0=1
\end{aligned}
$$

Grundy nim, conjunctive version

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\varkappa(n)$	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$$
\begin{aligned}
\varkappa(10) & =1+\operatorname{lego}(\varkappa(1) \wedge \varkappa(9), \varkappa(2) \wedge \varkappa(8), \varkappa(3) \wedge \varkappa(7), \varkappa(4) \wedge \varkappa(6)) \\
& =1+\operatorname{lego}(0 \wedge 1,0 \wedge 1,1 \wedge 1,1 \wedge 1) \\
& =1+\operatorname{lego}(0,0,1,1)=1+0=1
\end{aligned}
$$

$$
n \text { is good } \Longleftrightarrow n=1,2
$$

Grundy nim, selective version

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\varkappa(n)$	0	0	1	2	3	3	4	5	5	6	7	7	8	9	9	10	11	11

Grundy nim, selective version

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\varkappa(n)$	0	0	1	2	3	3	4	5	5	6	7	7	8	9	9	10	11	11

$$
\begin{aligned}
\varkappa(10) & =1+\operatorname{lego}(\varkappa(1) \boxplus \varkappa(9), \varkappa(2) \boxplus \varkappa(8), \varkappa(3) \boxplus \varkappa(7), \varkappa(4) \boxplus \varkappa(6)) \\
& =1+\operatorname{lego}(0 \boxplus 5,0 \boxplus 5,1 \boxplus 4,2 \boxplus 3) \\
& =1+\operatorname{lego}(5,5,5,5)=1+5=6
\end{aligned}
$$

Grundy nim, selective version

$$
\left.\begin{array}{rl}
n & 1 \\
\hline & 2 \\
& 3 \\
\hline & 4 \\
5 & 5 \\
6 & 6 \\
7 & 8 \\
\hline
\end{array}\right)
$$

$$
n \text { is good } \Longleftrightarrow n=1,2 \text { or } n \equiv 1(\bmod 3)
$$

Outline

(1) The Kalmár-Steinhaus function and selective compounds of games

(2) Play with LEGO!

Side moves

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s/m,h $\leq \infty$) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \operatorname{good}
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \operatorname{good}
$$

Playing LEGO(s/m,h $\leq \infty)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

LEGO $(s, h \leq \infty)$, disjunctive version

8	1	1	1	1	1	1	1	1
7	0	1	0	1	0	1	0	1
6	1	1	1	1	1	1	1	1
5	0	1	0	1	0	1	0	1
4	1	1	1	1	1	1	1	1
3	0	1	0	1	0	1	0	1
2	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0	1
γ	1	2	3	4	5	6	7	8

LEGO $(s, h \leq \infty)$, disjunctive version

8	1	1	1	1	1	1	1	1
7	0	1	0	1	0	1	0	1
6	1	1	1	1	1	1	1	1
5	0	1	0	1	0	1	0	1
4	1	1	1	1	1	1	1	1
3	0	1	0	1	0	1	0	1
2	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0	1
γ	1	2	3	4	5	6	7	8

(a, b) is good
I
$a b$ is odd

LEGO $(s, h \leq \infty)$, conjunctive version

8	1	3	3	5	5	5	5	6
7	1	3	3	4	4	4	4	5
6	1	3	3	4	4	4	4	5
	5	1	3	3	4	4	4	4
4	5							
	1	3	3	4	4	4	4	5
3	1	2	2	3	3	3	3	3
2	1	2	2	3	3	3	3	3
	1	0	1	1	1	1	1	1

LEGO $(\mathrm{s}, h \leq \infty)$, conjunctive version

$$
\begin{gathered}
(a, b) \text { is good } \\
\hat{\mathbb{I}} \\
\left\lfloor\log _{2} a\right\rfloor=\left\lfloor\log _{2} b\right\rfloor
\end{gathered}
$$

LEGO $(s, h \leq \infty)$, selective version

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
		2	3	4	5			

LEGO $(s, h \leq \infty)$, selective version

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
	1	2	3	4	5	6	7	8

$$
\begin{gathered}
(a, b) \text { is good } \\
\Uparrow \\
?(a)=?(b)
\end{gathered}
$$

For $a \in \mathbb{N}$ let $\|a\|=n$ if the binary representation of a has the following form:

$$
a=\cdots 1 \overbrace{0 \cdots 0}^{n} .
$$

The norm

For $a \in \mathbb{N}$ let $\|a\|=n$ if the binary representation of a has the following form:

$$
a=\cdots 1 \overbrace{0 \cdots 0}^{n} .
$$

Key properties of the norm
For all $a \in \mathbb{N}$ we have
(1) $\nexists a_{1}, a_{2}:\|a\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a=a_{1}+a_{2}$,
(c) $\forall n<\|a\| \exists a_{1}, a_{2}: n=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a=a_{1}+a_{2}$.

The good positions

Theorem

An $a \times b$ rectangle is good iff $\|a\|=\|b\|$; a position is good iff all its pieces are good.

The good positions

Theorem

An $a \times b$ rectangle is good iff $\|a\|=\|b\|$; a position is good iff all its pieces are good.

Proof.

good $\xrightarrow{\forall}$ bad: if $\|b\|=\|a\|$, then
(1) $\nexists a_{1}, a_{2}:\|b\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a=a_{1}+a_{2}$.

The good positions

Theorem

An $a \times b$ rectangle is good iff $\|a\|=\|b\|$; a position is good iff all its pieces are good.

Proof.

good $\xrightarrow{\forall}$ bad: if $\|b\|=\|a\|$, then
(1) $\nexists a_{1}, a_{2}:\|b\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a=a_{1}+a_{2}$.
bad $\xrightarrow{\exists}$ good: if $\|b\|<\|a\|$, then
(2) $\exists a_{1}, a_{2}:\|b\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a=a_{1}+a_{2}$.

LEGO $(s, h \leq \infty)$, selective version

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	3	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
x	1	2	3		5			

LEGO $(s, h \leq \infty)$, selective version

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
		2	3	4	5	6	7	

$$
\begin{aligned}
& \varkappa(a, b)= \\
& \quad \text { - } a b-1, \text { if }\|a\|=0 \text { or }\|b\|=0 \\
& \text { - } a b-2, \text { if }\|a\|=\|b\| \geq 1 \\
& \text { - } a b-3, \text { otherwise }
\end{aligned}
$$

The good positions

 $\operatorname{LEGO}(\mathrm{m}, h \leq \infty)$

$$
\operatorname{good} \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

The norm

If a is even, then let $\|a\|=n$ if the ternary representation of a has one of the following two forms:

$$
\begin{aligned}
& a=\cdots 2 \overbrace{0 \cdots 0}^{n}, \\
& a=\cdots 1 \overbrace{\overbrace{2 \cdots 0 / 2} 10 \cdots 0}^{n} .
\end{aligned}
$$

If a is odd, then let $\|a\|=n$ if the ternary representation of a has the following form:

$$
a=\cdots \mathbf{1} \overbrace{\sigma / 2 \cdots 0 / 2}^{n} .
$$

The norm

$\operatorname{LEGO}(\mathrm{m}, h \leq \infty)$
If a is even, then let $\|a\|=n$ if the ternary representation of a has one of the following two forms:

$$
\left.\begin{array}{l}
a=\cdots 2 \overbrace{0 \cdots 0}^{n}, \\
a=\cdots 1 \overbrace{0 / 2 \cdots 0 / 2}^{n}, \\
\mathbf{1} 0 \cdots 0
\end{array}\right) .
$$

If a is odd, then let $\|a\|=n$ if the ternary representation of a has the following form:

$$
a=\cdots \mathbf{1} \overbrace{\sigma / 2 \cdots 0 / 2}^{n} .
$$

Key properties of the norm

For all $a \in \mathbb{N}$ we have
(1) $\nexists a_{1}, a_{2}, a_{3}:\|a\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|=\left\|a_{3}\right\|$ and $a=a_{1}+a_{2}+a_{3}$,
(2) $\forall n<\|a\| \exists a_{1}, a_{2}, a_{3}: n=\left\|a_{1}\right\|=\left\|a_{2}\right\|=\left\|a_{3}\right\|$ and $a=a_{1}+a_{2}+a_{3}$.

The good positions

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

The norm

For $a \in \mathbb{N}$ let $\|a\|=n$ if the ternary representation of a has one of the following two forms:

$$
\begin{aligned}
& a=\cdots \mathbf{1} \overbrace{0 \cdots 0}^{n}, \\
& a=\cdots \overbrace{\overbrace{1 / 2 \cdots 1 / 2} 20 \cdots 0}^{n} .
\end{aligned}
$$

The norm

LEGO(s/m,h $\leq \infty)$

For $a \in \mathbb{N}$ let $\|a\|=n$ if the ternary representation of a has one of the following two forms:

$$
\begin{aligned}
& a=\cdots \mathbf{1} \overbrace{0 \cdots 0}^{n}, \\
& a=\cdots \overbrace{\overbrace{1 / 2 \cdots 1 / 2} 20 \cdots 0}^{n} .
\end{aligned}
$$

Key properties of the norm

For all $a \in \mathbb{N}$ we have
(1) $\nexists a_{1}, a_{2}, a_{3}:\|a\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|=\left\|a_{3}\right\|$ and $a=a_{1}+a_{2}+a_{3}$,
(2) $\forall n<\|a\| \exists a_{1}, a_{2}, a_{3}: n=\left\|a_{1}\right\|=\left\|a_{2}\right\|=\left\|a_{3}\right\|$ and $a=a_{1}+a_{2}+a_{3}$.

$\operatorname{LEGO}(m, h \leq \infty)$

[^0]
$\operatorname{LEGO}(\mathrm{m}, h \leq \infty)$

VS.
LEGO(s/m,h $\leq \infty)$
$(2 a-1,2 b),(2 a, 2 b-1)$, $(2 a-1,2 b-1),(2 a, 2 b)$ are good in LEGO $(m, h \leq \infty)$
(a, b) is good in
LEGO($\mathrm{s} / \mathrm{m}, h \leq \infty)$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h $\leq 2)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h $\leq 2)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h ≤ 2) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

The good positions

$\operatorname{LEGO}(m, h \leq 2)$

$$
\operatorname{good} \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

For $a \in \mathbb{N}$ let $\|a\|=\left\lfloor\log _{2}(a+1)\right\rfloor$.

The norm

For $a \in \mathbb{N}$ let $\|a\|=\left\lfloor\log _{2}(a+1)\right\rfloor$.

Key properties of the norm

For all $a \in \mathbb{N}$ we have
(1) $\nexists a_{1}, a_{2}:\|a\|=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a>a_{1}+a_{2}$,
(2) $\forall n<\|a\| \exists a_{1}, a_{2}: n=\left\|a_{1}\right\|=\left\|a_{2}\right\|$ and $a>a_{1}+a_{2}$.

Hyper-LEGO

Theorem

In the d-dimensional version of any of the previously mentioned games

$$
\left(a_{1}, \ldots, a_{d}\right) \text { is good } \Longleftrightarrow\left\|a_{1}\right\| \oplus \cdots \oplus\left\|a_{d}\right\|=0
$$

Hyper-LEGO

Theorem

In the d-dimensional version of any of the previously mentioned games

$$
\left(a_{1}, \ldots, a_{d}\right) \text { is good } \Longleftrightarrow\left\|a_{1}\right\| \oplus \cdots \oplus\left\|a_{d}\right\|=0 .
$$

Proof.

Play "poker nim" with the norms.

Playing LEGO(s,h \quad 3) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h $\leq 3)$ selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h $\leq 3)$ selectively

$$
\operatorname{good} \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h \quad 3) selectively

$$
\operatorname{good} \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h \quad 3) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h \quad 3) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h \quad 3) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

Playing LEGO(s,h \quad 3) selectively

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

The good positions

$$
\text { good } \xrightarrow{\forall} \text { bad } \quad \text { bad } \xrightarrow{\exists} \text { good }
$$

The good positions

LEGO(s, $h \leq 3)$

Theorem
An $a \times b$ rectangle in the second layer is good iff $a=b$.

The good positions

Theorem

An $a \times b$ rectangle in the second layer is good iff $a=b$. An $a \times b$ rectangle in the first layer is good iff the sum of the partial quotients of the continued fraction representation of $\frac{a}{b}$ is odd.

Acknowledgement

The present project is supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).

[^0]: good $\xrightarrow{\forall}$ bad
 bad $\xrightarrow{\exists}$ good

