Play with LEGO!

The Kalmár-Steinhaus function and selective compounds of games

Tamás Waldhauser

University of Luxembourg

Colloquium on Combinatorial Games Luxembourg 10 May 2010

1 The Kalmár-Steinhaus function and selective compounds of games

How to win a game?

Game: $\mathcal{G} = (P, M, T)$

- *P* is the set of positions
- $M \subseteq P \times P$ is the set of moves
- $T = \{p \in P \mid \nexists q \in P : (p, q) \in M\}$ is the set of terminal positions

 $\mathsf{Game:} \ \mathcal{G} = (\mathit{P}, \mathit{M}, \mathit{T})$

- *P* is the set of positions
- $M \subseteq P \times P$ is the set of moves

• $T = \{p \in P \mid \nexists q \in P : (p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.

 $\mathsf{Game:} \ \mathcal{G} = (\mathit{P}, \mathit{M}, \mathit{T})$

- *P* is the set of positions
- $M \subseteq P \times P$ is the set of moves

• $T = \{p \in P \mid \nexists q \in P : (p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.

Partition P into good and bad positions such that

good
$$\xrightarrow{\forall}$$
 bad and bad $\xrightarrow{\exists}$ good.

Game: $\mathcal{G} = (P, M, T)$

- *P* is the set of positions
- $M \subseteq P \times P$ is the set of moves

• $T = \{p \in P \mid \nexists q \in P : (p, q) \in M\}$ is the set of terminal positions

Normal play: the last player to move is the winner.

Partition P into good and bad positions such that

good
$$\xrightarrow{\forall}$$
 bad and bad $\xrightarrow{\exists}$ good.

Winning strategy: always move to a good position!

There is a unique function $\gamma\colon P o \mathbb{N}_0$ such that for all $p\in P$

$$\gamma\left(p
ight) =\max\left\{ \gamma\left(q
ight)\mid p
ightarrow q
ight\} =\min\left(\mathbb{N}_{0}\setminus\left\{ \gamma\left(q
ight)\mid p
ightarrow q
ight\}
ight) .$$

There is a unique function $\gamma \colon P \to \mathbb{N}_0$ such that for all $p \in P$

$$\gamma\left(p
ight) =\max\left\{ \gamma\left(q
ight)\mid p
ightarrow q
ight\} =\min\left(\mathbb{N}_{0}\setminus\left\{ \gamma\left(q
ight)\mid p
ightarrow q
ight\}
ight) .$$

The good positions are exactly the zeros of this function:

$$p ext{ is good } \iff \gamma\left(p
ight) = 0.$$

• $\mathcal{G}_1 + \cdots + \mathcal{G}_n$ (sum, disjunctive compound): move in one of them

G₁ + · · · + G_n (sum, disjunctive compound): move in one of them
G₁ ∧ · · · ∧ G_n (product, conjunctive compound): move in all of them

- $\mathcal{G}_1 + \cdots + \mathcal{G}_n$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_1 \wedge \cdots \wedge \mathcal{G}_n$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_1 \lor \cdots \lor \mathcal{G}_n$ (join, selective compound): move in some of them

- $\mathcal{G}_1 + \cdots + \mathcal{G}_n$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_1 \wedge \cdots \wedge \mathcal{G}_n$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_1 \lor \cdots \lor \mathcal{G}_n$ (join, selective compound): move in some of them

- $\mathcal{G}_1 + \cdots + \mathcal{G}_n$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_1 \wedge \cdots \wedge \mathcal{G}_n$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_1 \lor \cdots \lor \mathcal{G}_n$ (join, selective compound): move in some of them

The game of nim

- position: k heaps of beans
- move: take away some beans from one heap

- $\mathcal{G}_1 + \cdots + \mathcal{G}_n$ (sum, disjunctive compound): move in one of them
- $\mathcal{G}_1 \wedge \cdots \wedge \mathcal{G}_n$ (product, conjunctive compound): move in all of them
- $\mathcal{G}_1 \lor \cdots \lor \mathcal{G}_n$ (join, selective compound): move in some of them

The game of nim

- position: k heaps of beans
- move: take away some beans from one heap

This is a sum of k one-heap nim games:

$$\mathcal{N}_k = \mathcal{N}_1 + \cdots + \mathcal{N}_1.$$

Theorem

The exists a binary operation \oplus on \mathbb{N}_0 such that

$$\gamma_{\mathcal{G}_{1}+\mathcal{G}_{2}}\left(\textit{p}_{1},\textit{p}_{2}
ight)=\gamma_{\mathcal{G}_{1}}\left(\textit{p}_{1}
ight)\oplus\gamma_{\mathcal{G}_{2}}\left(\textit{p}_{2}
ight).$$

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

Theorem

The exists a binary operation \oplus on \mathbb{N}_0 such that

$$\gamma_{\mathcal{G}_{1}+\mathcal{G}_{2}}\left(\textit{p}_{1},\textit{p}_{2}
ight)=\gamma_{\mathcal{G}_{1}}\left(\textit{p}_{1}
ight)\oplus\gamma_{\mathcal{G}_{2}}\left(\textit{p}_{2}
ight).$$

Corollary

$$\gamma_{\mathcal{N}_{k}}\left(\textit{n}_{1},\ldots,\textit{n}_{k}
ight)=\gamma_{\mathcal{N}_{1}}\left(\textit{n}_{1}
ight)\oplus\cdots\oplus\gamma_{\mathcal{N}_{1}}\left(\textit{n}_{k}
ight)=\textit{n}_{1}\oplus\cdots\oplus\textit{n}_{k}$$

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

Nim addition

\oplus	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Nim addition

\oplus	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

binary addition without carrying (bitwise XOR)

There is a unique function $\varkappa\colon P\to \mathbb{N}_0$ such that for all $p\in P$

ullet if there is an even number in $\{arkappa(q)\mid p\rightarrow q\}$, then

$$arkappa\left(p
ight) =1+{\sf min}\left(\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} \cap2\mathbb{N}_{0}
ight)$$
 , (least even)

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

There is a unique function $\varkappa\colon P o \mathbb{N}_0$ such that for all $p \in P$

• if there is an even number in $\{arkappa\left(q
ight)\mid p
ightarrow q\}$, then

$$arkappa\left(p
ight) =1+\min\left(\left\{ arkappa\left(q
ight)\mid p
ightarrow q
ight\} \cap2\mathbb{N}_{0}
ight)$$
 , (least even)

ullet if all numbers in $\{arkappa(q) \mid p
ightarrow q\}$ are odd, then

$$arkappa\left(p
ight) =1+\max\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} .$$
 (greatest odd)

There is a unique function $\varkappa\colon P o \mathbb{N}_0$ such that for all $p \in P$

• if there is an even number in $\{arkappa\left(q
ight)\mid p
ightarrow q\}$, then

$$arkappa\left(p
ight) =1+\min\left(\left\{ arkappa\left(q
ight)\mid p
ightarrow q
ight\} \cap2\mathbb{N}_{0}
ight)$$
 , (least even)

ullet if all numbers in $\{arkappa(q) \mid p
ightarrow q\}$ are odd, then

$$arkappa\left(p
ight) =1+\max\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} .$$
 (greatest odd)

There is a unique function $\varkappa\colon P\to\mathbb{N}_0$ such that for all $p\in P$

ullet if there is an even number in $\{arkappa(q)\mid p
ightarrow q\}$, then

$$arkappa\left(p
ight) =1+\min\left(\left\{ arkappa\left(q
ight)\mid p
ightarrow q
ight\} \cap2\mathbb{N}_{0}
ight)$$
 , (least even)

• if all numbers in $\{arkappa(q) \mid p
ightarrow q\}$ are odd, then

$$arkappa\left(p
ight) =1+\max\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} .$$
 (greatest odd)

In short,

$$arkappa\left(p
ight)=1+ ext{lego}\left\{arkappa\left(q
ight)\mid p
ightarrow q
ight\}.$$

There is a unique function $\varkappa\colon P\to \mathbb{N}_0$ such that for all $p\in P$

• if there is an even number in $\{arkappa(q) \mid p
ightarrow q\}$, then

$$arkappa\left(p
ight) =1+\min\left(\left\{ arkappa\left(q
ight)\mid p
ightarrow q
ight\} \cap2\mathbb{N}_{0}
ight)$$
 , (least even)

• if all numbers in $\{arkappa(q) \mid p
ightarrow q\}$ are odd, then

$$arkappa\left(p
ight) =1+ ext{max}\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} .$$
 (greatest odd)

In short,

$$arkappa\left(p
ight) =1+ ext{lego}\left\{ arkappa\left(q
ight) \mid p
ightarrow q
ight\} .$$

The good positions are easily determined from this function:

$$p \text{ is good } \iff \varkappa(p) \text{ is even.}$$

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

The KS function of the conjunctive/selective compound

Theorem

$$arkappa_{\mathcal{G}_{1}\wedge\mathcal{G}_{2}}\left(extsf{p}_{1}, extsf{p}_{2}
ight) = \min\left(arkappa_{\mathcal{G}_{1}}\left(extsf{p}_{1}
ight), arkappa_{\mathcal{G}_{2}}\left(extsf{p}_{2}
ight)
ight) = arkappa_{\mathcal{G}_{1}}\left(extsf{p}_{1}
ight) \wedge arkappa_{\mathcal{G}_{2}}\left(extsf{p}_{2}
ight)$$

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

Theorem

$$arkappa_{\mathcal{G}_{1}\wedge\mathcal{G}_{2}}\left(extsf{p}_{1}, extsf{p}_{2}
ight) = \min\left(arkappa_{\mathcal{G}_{1}}\left(extsf{p}_{1}
ight), arkappa_{\mathcal{G}_{2}}\left(extsf{p}_{2}
ight)
ight) = arkappa_{\mathcal{G}_{1}}\left(extsf{p}_{1}
ight) \wedge arkappa_{\mathcal{G}_{2}}\left(extsf{p}_{2}
ight).$$

Theorem

There exists a binary operation \boxplus on \mathbb{N}_0 such that

$$\varkappa_{\mathcal{G}_{1}\vee\mathcal{G}_{2}}\left(\textit{p}_{1},\textit{p}_{2}
ight)=\varkappa_{\mathcal{G}_{1}}\left(\textit{p}_{1}
ight)\boxplus\varkappa_{\mathcal{G}_{2}}\left(\textit{p}_{2}
ight).$$

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

The operation \boxplus

Ħ	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	1	3	3	5	5	7	7
2	2	3	4	5	6	7	8	9
3	3	3	5	5	7	7	9	9
4	4	5	6	7	8	9	10	11
5	5	5	7	7	9	9	11	11
6	6	7	8	9	10	11	12	13
7	7	7	9	9	11	11	13	13

The operation \boxplus

⊞	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	1	3	3	5	5	7	7
2	2	3	4	5	6	7	8	9
3	3	3	5	5	7	7	9	9
4	4	5	6	7	8	9	10	11
5	5	5	7	7	9	9	11	11
6	6	7	8	9	10	11	12	13
7	7	7	9	9	11	11	13	13

 $a \boxplus b =$

- a + b, if a or b is even
- a + b 1, if a and b are odd

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

$$\begin{split} \gamma(10) &= \mathsf{mex}\left(\gamma(1)\oplus\gamma(9)\,,\gamma(2)\oplus\gamma(8)\,,\gamma(3)\oplus\gamma(7)\,,\gamma(4)\oplus\gamma(6)\right) \\ &= \mathsf{mex}\left(0\oplus1,0\oplus2,1\oplus0,0\oplus1\right) \\ &= \mathsf{mex}\left(1,2,1,1\right) = 0 \end{split}$$

$$\begin{split} \gamma(10) &= \mathsf{mex}\left(\gamma(1)\oplus\gamma(9)\,,\gamma(2)\oplus\gamma(8)\,,\gamma(3)\oplus\gamma(7)\,,\gamma(4)\oplus\gamma(6)\right) \\ &= \mathsf{mex}\left(0\oplus1,0\oplus2,1\oplus0,0\oplus1\right) \\ &= \mathsf{mex}\left(1,2,1,1\right) = 0 \end{split}$$

$n \text{ is good } \iff ???$

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

$$\begin{split} \varkappa(10) &= 1 + \mathsf{lego}\,(\varkappa(1) \land \varkappa(9) \,, \varkappa(2) \land \varkappa(8) \,, \varkappa(3) \land \varkappa(7) \,, \varkappa(4) \land \varkappa(6)) \\ &= 1 + \mathsf{lego}\,(0 \land 1, 0 \land 1, 1 \land 1, 1 \land 1) \\ &= 1 + \mathsf{lego}\,(0, 0, 1, 1) = 1 + 0 = 1 \end{split}$$

$$\begin{split} \varkappa(10) &= 1 + \mathsf{lego}\,(\varkappa(1) \land \varkappa(9) \,, \varkappa(2) \land \varkappa(8) \,, \varkappa(3) \land \varkappa(7) \,, \varkappa(4) \land \varkappa(6)) \\ &= 1 + \mathsf{lego}\,(0 \land 1, 0 \land 1, 1 \land 1, 1 \land 1) \\ &= 1 + \mathsf{lego}\,(0, 0, 1, 1) = 1 + 0 = 1 \end{split}$$

$$n \text{ is good } \iff n = 1, 2$$

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

$$\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$$

$$\begin{split} \varkappa(10) &= 1 + \mathsf{lego}\left(\varkappa(1) \boxplus \varkappa(9), \varkappa(2) \boxplus \varkappa(8), \varkappa(3) \boxplus \varkappa(7), \varkappa(4) \boxplus \varkappa(6)\right) \\ &= 1 + \mathsf{lego}\left(0 \boxplus 5, 0 \boxplus 5, 1 \boxplus 4, 2 \boxplus 3\right) \\ &= 1 + \mathsf{lego}\left(5, 5, 5, 5\right) = 1 + 5 = 6 \end{split}$$
$$\begin{split} \varkappa(10) &= 1 + \mathsf{lego}\,(\varkappa(1) \boxplus \varkappa(9)\,,\varkappa(2) \boxplus \varkappa(8)\,,\varkappa(3) \boxplus \varkappa(7)\,,\varkappa(4) \boxplus \varkappa(6)) \\ &= 1 + \mathsf{lego}\,(0 \boxplus 5, 0 \boxplus 5, 1 \boxplus 4, 2 \boxplus 3) \\ &= 1 + \mathsf{lego}\,(5, 5, 5, 5) = 1 + 5 = 6 \end{split}$$

 $n \text{ is good} \iff n = 1, 2 \text{ or } n \equiv 1 \pmod{3}$

The Kalmár-Steinhaus function and selective compounds of games

Side moves

Middle moves

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

8	1	1	1	1	1	1	1	1
7	0	1	0	1	0	1	0	1
6	1	1	1	1	1	1	1	1
5	0	1	0	1	0	1	0	1
4	1	1	1	1	1	1	1	1
3	0	1	0	1	0	1	0	1
2	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0	1
γ	1	2	3	4	5	6	7	8

8	1	1	1	1	1	1	1	1
7	0	1	0	1	0	1	0	1
6	1	1	1	1	1	1	1	1
5	0	1	0	1	0	1	0	1
4	1	1	1	1	1	1	1	1
3	0	1	0	1	0	1	0	1
2	1	1	1	1	1	1	1	1
1	0	1	0	1	0	1	0	1
γ	1	2	3	4	5	6	7	8

LEGO(s, $h \leq \infty$), conjunctive version

8	1	3	3	5	5	5	5	6
7	1	3	3	4	4	4	4	5
6	1	3	3	4	4	4	4	5
5	1	3	3	4	4	4	4	5
4	1	3	3	4	4	4	4	5
3	1	2	2	3	3	3	3	3
2	1	2	2	3	3	3	3	3
1	0	1	1	1	1	1	1	1
$\mathcal{\mathcal{X}}$	1	2	3	4	5	6	7	8

LEGO(s, $h \leq \infty$), conjunctive version

8	1	3	3	5	5	5	5	6
7	1	3	3	4	4	4	4	5
6	1	3	3	4	4	4	4	5
5	1	3	3	4	4	4	4	5
4	1	3	3	4	4	4	4	5
3	1	2	2	3	3	3	3	3
2	1	2	2	3	3	3	3	3
1	0	1	1	1	1	1	1	1
\mathcal{H}	1	2	3	4	5	6	7	8

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
\mathcal{H}	1	2	3	4	5	6	7	8

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
\mathcal{H}	1	2	3	4	5	6	7	8

$$(a, b)$$
 is good
 $(a, b) =? (b)$

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

For $a \in \mathbb{N}$ let ||a|| = n if the binary representation of a has the following form:

$$a = \cdots \mathbf{1} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n}$$

For $a \in \mathbb{N}$ let ||a|| = n if the binary representation of a has the following form:

$$a = \cdots \mathbf{1} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n}$$

Key properties of the norm

For all $a \in \mathbb{N}$ we have

1
$$\exists a_1, a_2 : ||a|| = ||a_1|| = ||a_2||$$
 and $a = a_1 + a_2$,

2 $\forall n < ||a|| \exists a_1, a_2 : n = ||a_1|| = ||a_2|| \text{ and } a = a_1 + a_2.$

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

Theorem

An $a \times b$ rectangle is good iff ||a|| = ||b||; a position is good iff all its pieces are good.

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

Theorem

An $a \times b$ rectangle is good iff ||a|| = ||b||; a position is good iff all its pieces are good.

Proof.

good
$$\xrightarrow{\forall}$$
 bad: if $||b|| = ||a||$, then

1
$$||a_1, a_2: ||b|| = ||a_1|| = ||a_2||$$
 and $a = a_1 + a_2$.

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

 $\mathsf{LEGO}(\mathsf{s},h\leq\infty)^{\mathsf{T}}$

Theorem

An $a \times b$ rectangle is good iff ||a|| = ||b||; a position is good iff all its pieces are good.

Proof.

good
$$\xrightarrow{\forall}$$
 bad: if $||b|| = ||a||$, then
1 $\nexists a_1, a_2 : ||b|| = ||a_1|| = ||a_2||$ and $a = a_1 + a_2$.
bad $\xrightarrow{\exists}$ good: if $||b|| < ||a||$, then
2 $\exists a_1, a_2 : ||b|| = ||a_1|| = ||a_2||$ and $a = a_1 + a_2$.

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
\mathcal{H}	1	2	3	4	5	6	7	8

8	7	13	23	29	39	45	55	62
7	6	13	20	27	34	41	48	55
6	5	10	17	21	29	34	41	45
5	4	9	14	19	24	29	34	39
4	3	5	11	14	19	21	27	29
3	2	5	8	11	14	17	20	23
2	1	2	5	5	9	10	13	13
1	0	1	2	3	4	5	6	7
х	1	2	3	4	5	6	7	8

$$arkappa\left(extbf{a} extbf{,} extbf{b}
ight) =% \left(egin{array}{c} egin{arr$$

•
$$ab - 1$$
, if $||a|| = 0$ or $||b|| = 0$

•
$$ab-2$$
, if $\|a\| = \|b\| \ge 1$

The good positions

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

$\overline{\mathsf{LEGO}(\mathsf{m},h\leq\infty)}$

The norm

 $LEGO(m, h \leq \infty)$

If *a* is even, then let ||a|| = n if the ternary representation of *a* has one of the following two forms:

If *a* is odd, then let ||a|| = n if the ternary representation of *a* has the following form:

$$a = \cdots \mathbf{1} \underbrace{\overbrace{0/2 \cdots 0/2}^{''}}_{2}.$$

The norm

 $LEGO(m, h \le \infty)$

If *a* is even, then let ||a|| = n if the ternary representation of *a* has one of the following two forms:

If *a* is odd, then let ||a|| = n if the ternary representation of *a* has the following form:

$$a = \cdots \mathbf{1} \underbrace{\overbrace{0/2 \cdots 0/2}^{"}}_{"}$$

Key properties of the norm

For all $a \in \mathbb{N}$ we have

1
$$\exists a_1, a_2, a_3 : ||a|| = ||a_1|| = ||a_2|| = ||a_3||$$
 and $a = a_1 + a_2 + a_3$,

3 $\forall n < ||a|| \exists a_1, a_2, a_3 : n = ||a_1|| = ||a_2|| = ||a_3|| \text{ and } a = a_1 + a_2 + a_3.$

6 8 9 10 11 12 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

The good positions

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

 $LEGO(s/m, h \le \infty)$

For $a \in \mathbb{N}$ let ||a|| = n if the ternary representation of a has one of the following two forms:

$$a = \cdots \mathbf{1} \underbrace{\mathbf{0} \cdots \mathbf{0}}_{n}^{n},$$
$$a = \cdots \mathbf{0} \underbrace{\mathbf{1}}_{1/2 \cdots 1/2}^{n} \mathbf{2} \mathbf{0} \cdots \mathbf{0}_{n}^{n}$$

For $a \in \mathbb{N}$ let ||a|| = n if the ternary representation of a has one of the following two forms:

$$a = \cdots \mathbf{1} \underbrace{\overrightarrow{0 \cdots 0}}_{n},$$
$$a = \cdots \mathbf{0} \underbrace{\overrightarrow{1/2 \cdots 1/2} \mathbf{2} \cdots \mathbf{0}}_{n}.$$

Key properties of the norm

For all $a \in \mathbb{N}$ we have

●
$$\nexists a_1, a_2, a_3 : ||a|| = ||a_1|| = ||a_2|| = ||a_3||$$
 and $a = a_1 + a_2 + a_3$,

3 $\forall n < ||a|| \exists a_1, a_2, a_3 : n = ||a_1|| = ||a_2|| = ||a_3||$ and $a = a_1 + a_2 + a_3$.

$LEGO(s/m, h \le \infty)$

 \Leftrightarrow

$$(2a - 1, 2b)$$
, $(2a, 2b - 1)$,
 $(2a - 1, 2b - 1)$, $(2a, 2b)$ are
good in LEGO(m, $h \le \infty$)

$$(a, b)$$
 is good in LEGO $(s/m, h \le \infty)$

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

Playing LEGO(s, $h \leq 2$) selectively

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

Playing LEGO(s, $h \leq 2$) selectively

Playing LEGO(s, $h \leq 2$) selectively

Playing LEGO(s, $h \leq 2$) selectively

The good positions

 $good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$

$LEGO(m, h \leq 2)$

For $a \in \mathbb{N}$ let $||a|| = \lfloor \log_2 (a+1) \rfloor$.

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

For
$$a \in \mathbb{N}$$
 let $\|a\| = \lfloor \log_2{(a+1)} \rfloor$.

Key properties of the norm

For all $a \in \mathbb{N}$ we have

2
$$\forall n < ||a|| \exists a_1, a_2 : n = ||a_1|| = ||a_2||$$
 and $a > a_1 + a_2$.

Theorem

In the d-dimensional version of any of the previously mentioned games

$$(a_1,\ldots,a_d)$$
 is good $\iff ||a_1|| \oplus \cdots \oplus ||a_d|| = 0.$

$$good \xrightarrow{\forall} bad bad \xrightarrow{\exists} good$$

Theorem

In the d-dimensional version of any of the previously mentioned games

$$(a_1,\ldots,a_d)$$
 is good $\iff ||a_1|| \oplus \cdots \oplus ||a_d|| = 0.$

Proof.

Play "poker nim" with the norms.

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

The good positions

$LEGO(s, h \le 3)$

Theorem

An $a \times b$ rectangle in the second layer is good iff a = b.

 $\mathsf{good} \xrightarrow{\forall} \mathsf{bad} \qquad \mathsf{bad} \xrightarrow{\exists} \mathsf{good}$

Theorem

An $a \times b$ rectangle in the second layer is good iff a = b. An $a \times b$ rectangle in the first layer is good iff the sum of the partial quotients of the continued fraction representation of $\frac{a}{b}$ is odd. The present project is supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).