# Lattices

A lattice (of rank d) is a subgroup  $\Gamma$  of  $(\mathbb{R}^n; +)$  generated by d linearly independent vectors  $\omega_1, \ldots, \omega_d$ :

$$\Gamma = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_d = \{c_1\omega_1 + \cdots + c_d\omega_d : c_i \in \mathbb{Z}\}.$$

If d = n, then we say that  $\Gamma$  is a full-rank lattice.



Let  $\Gamma$  be a full-rank lattice in  $\mathbb{R}^n$  with basis  $\omega_1, \ldots, \omega_n$ . The set

$$P = \{x_1\omega_1 + \cdots + x_n\omega_n : 0 \le x_i < 1\} \subseteq \mathbb{R}^n$$

is the fundamental parallelotope of L.



#### Fact

Translates of *P* cover  $\mathbb{R}^n$  without overlaps:

$$\mathbb{R}^n = \bigcup_{\gamma \in \Gamma}^{\bullet} \left( \gamma + P \right).$$

In other words, each coset of  $\Gamma$  (as a subgroup of  $\mathbb{R}^n$ ) has a unique representative in P.

#### Fact

Translates of *P* cover  $\mathbb{R}^n$  without overlaps:

$$\mathbb{R}^n = \bigcup_{\gamma \in \Gamma}^{\bullet} (\gamma + P) \, .$$

In other words, each coset of  $\Gamma$  (as a subgroup of  $\mathbb{R}^n$ ) has a unique representative in P.

Let  $\Omega$  be the  $n \times n$  matrix obtained by writing  $\omega_1, \ldots, \omega_n$  next to each other as column vectors. Then the volume of P is

$$\operatorname{vol}(P) = |\det \Omega| = |\det (\omega_1, \dots, \omega_n)|$$
.

The volume of the fundamental parallelotope is independent of the choice of the basis.

The volume of the fundamental parallelotope is independent of the choice of the basis.

## Proof.

Let  $\omega_1, \ldots, \omega_n$  and  $\omega'_1, \ldots, \omega'_n$  be two bases of with parallelotopes P and P'. Since  $\omega_1, \ldots, \omega_n$  is a basis, each  $\omega'_j$  can be obtained as a linear combination of  $\omega_1, \ldots, \omega_n$  with integer coefficients:

$$\omega'_i = c_{1i}\omega_1 + \cdots + c_{ni}\omega_n \quad (i = 1, \ldots, n).$$

In other words, we have  $\Omega' = \Omega \cdot C$ , where  $C = (c_{ij}) \in \mathbb{Z}^{n \times n}$ .

The volume of the fundamental parallelotope is independent of the choice of the basis.

## Proof.

Let  $\omega_1, \ldots, \omega_n$  and  $\omega'_1, \ldots, \omega'_n$  be two bases of with parallelotopes P and P'. Since  $\omega_1, \ldots, \omega_n$  is a basis, each  $\omega'_j$  can be obtained as a linear combination of  $\omega_1, \ldots, \omega_n$  with integer coefficients:

$$\omega'_i = c_{1i}\omega_1 + \cdots + c_{ni}\omega_n \quad (i = 1, \ldots, n).$$

In other words, we have  $\Omega' = \Omega \cdot C$ , where  $C = (c_{ij}) \in \mathbb{Z}^{n \times n}$ . Similarly,  $\Omega = \Omega' \cdot D$  for some matrix  $D \in \mathbb{Z}^{n \times n}$ . Therefore,

$$\Omega = \Omega \cdot C \cdot D \implies C \cdot D = I \implies \det C = \det D = \pm 1,$$

The volume of the fundamental parallelotope is independent of the choice of the basis.

## Proof.

Let  $\omega_1, \ldots, \omega_n$  and  $\omega'_1, \ldots, \omega'_n$  be two bases of with parallelotopes P and P'. Since  $\omega_1, \ldots, \omega_n$  is a basis, each  $\omega'_j$  can be obtained as a linear combination of  $\omega_1, \ldots, \omega_n$  with integer coefficients:

$$\omega'_i = c_{1i}\omega_1 + \cdots + c_{ni}\omega_n \quad (i = 1, \ldots, n).$$

In other words, we have  $\Omega' = \Omega \cdot C$ , where  $C = (c_{ij}) \in \mathbb{Z}^{n \times n}$ . Similarly,  $\Omega = \Omega' \cdot D$  for some matrix  $D \in \mathbb{Z}^{n \times n}$ . Therefore,

$$\Omega = \Omega \cdot C \cdot D \implies C \cdot D = I \implies \det C = \det D = \pm 1,$$

and this proves the proposition:

$$\operatorname{vol}(P') = |\det \Omega'| = |\det \Omega| \cdot |\det C| = |\det \Omega| = \operatorname{vol}(P).$$

The volume of the fundamental parallelotope is independent of the choice of the basis.

## Proof.

Let  $\omega_1, \ldots, \omega_n$  and  $\omega'_1, \ldots, \omega'_n$  be two bases of with parallelotopes P and P'. Since  $\omega_1, \ldots, \omega_n$  is a basis, each  $\omega'_j$  can be obtained as a linear combination of  $\omega_1, \ldots, \omega_n$  with integer coefficients:

$$\omega'_i = c_{1i}\omega_1 + \cdots + c_{ni}\omega_n \quad (i = 1, \ldots, n).$$

In other words, we have  $\Omega' = \Omega \cdot C$ , where  $C = (c_{ij}) \in \mathbb{Z}^{n \times n}$ . Similarly,  $\Omega = \Omega' \cdot D$  for some matrix  $D \in \mathbb{Z}^{n \times n}$ . Therefore,

$$\Omega = \Omega \cdot C \cdot D \implies C \cdot D = I \implies \det C = \det D = \pm 1,$$

and this proves the proposition:

$$\operatorname{vol}(P') = |\operatorname{det} \Omega'| = |\operatorname{det} \Omega| \cdot |\operatorname{det} C| = |\operatorname{det} \Omega| = \operatorname{vol}(P).$$

#### Remark

By the above proposition, it makes sense to denote the volume of any/the fundamental parallelotope of  $\Gamma$  by vol ( $\Gamma$ ).

Let  $\Gamma_1 \leq \Gamma \leq \mathbb{R}^d$  be full-rank lattices with fundamental parallelotopes P and  $P_1$ . Then  $\Gamma_1$  is of finite index in  $\Gamma$ , and we have

$$[\Gamma:\Gamma_1] = |P_1 \cap \Gamma| = \frac{\operatorname{vol}(P_1)}{\operatorname{vol}(P)}.$$

Let  $\Gamma_1 \leq \Gamma \leq \mathbb{R}^d$  be full-rank lattices with fundamental parallelotopes P and  $P_1$ . Then  $\Gamma_1$  is of finite index in  $\Gamma$ , and we have

$$[\Gamma:\Gamma_1] = |P_1 \cap \Gamma| = \frac{\operatorname{vol}(P_1)}{\operatorname{vol}(P)}.$$

### Proof.

The set  $P_1 \cap \Gamma$  is finite (it is a compact discrete set), and it is a complete system of representatives of the cosets of  $\Gamma_1$ , hence  $[\Gamma : \Gamma_1] = |P_1 \cap \Gamma| < \infty$ .



The union of the translates of P by the elements of  $n \cdot P_1 \cap \Gamma$  provides an approximation for  $n \cdot P_1$ :

$$\operatorname{vol}(n \cdot P_1) \approx |n \cdot P_1 \cap \Gamma| \cdot \operatorname{vol}(P).$$

(Note that  $n \cdot P_1$  is the union of  $n^d$  copies of  $P_1$ .)



The error in this approximation is caused by the translates of P protruding and receding around the boundary of  $n \cdot P_1$ . Therefore, we can give the following estimate:

$$\operatorname{vol}(n \cdot P_1) = |n \cdot P_1 \cap \Gamma| \cdot \operatorname{vol}(P) + O(n^{d-1}).$$

The error in this approximation is caused by the translates of P protruding and receding around the boundary of  $n \cdot P_1$ . Therefore, we can give the following estimate:

$$\operatorname{vol}(n \cdot P_1) = |n \cdot P_1 \cap \Gamma| \cdot \operatorname{vol}(P) + O(n^{d-1}).$$

Observe that vol  $(n \cdot P_1) = n^d \cdot \text{vol}(P_1)$  and  $|n \cdot P_1 \cap \Gamma| = n^d \cdot |P_1 \cap \Gamma|$ . Therefore, after dividing by  $n^d$ , we get

$$\operatorname{vol}(P_1) = |P_1 \cap \Gamma| \cdot \operatorname{vol}(P) + O\left(\frac{1}{n}\right).$$

The error in this approximation is caused by the translates of P protruding and receding around the boundary of  $n \cdot P_1$ . Therefore, we can give the following estimate:

$$\operatorname{vol}(n \cdot P_1) = |n \cdot P_1 \cap \Gamma| \cdot \operatorname{vol}(P) + O(n^{d-1}).$$

Observe that vol  $(n \cdot P_1) = n^d \cdot \text{vol}(P_1)$  and  $|n \cdot P_1 \cap \Gamma| = n^d \cdot |P_1 \cap \Gamma|$ . Therefore, after dividing by  $n^d$ , we get

$$\mathsf{vol}\left(\mathsf{P}_{1}
ight)=|\mathsf{P}_{1}\cap\mathsf{\Gamma}|\cdot\mathsf{vol}\left(\mathsf{P}
ight)+\mathcal{O}\Big(rac{1}{n}\Big).$$

Taking the limit as  $n \to \infty$  we obtain the desired equality:

$$\operatorname{vol}(P_1) = |P_1 \cap \Gamma| \cdot \operatorname{vol}(P).$$

The error in this approximation is caused by the translates of P protruding and receding around the boundary of  $n \cdot P_1$ . Therefore, we can give the following estimate:

$$\operatorname{vol}(n \cdot P_1) = |n \cdot P_1 \cap \Gamma| \cdot \operatorname{vol}(P) + O(n^{d-1}).$$

Observe that vol  $(n \cdot P_1) = n^d \cdot \text{vol}(P_1)$  and  $|n \cdot P_1 \cap \Gamma| = n^d \cdot |P_1 \cap \Gamma|$ . Therefore, after dividing by  $n^d$ , we get

$$\mathsf{vol}\left(\mathsf{P}_{1}
ight)=|\mathsf{P}_{1}\cap\mathsf{\Gamma}|\cdot\mathsf{vol}\left(\mathsf{P}
ight)+\mathcal{O}\Big(rac{1}{n}\Big).$$

Taking the limit as  $n \to \infty$  we obtain the desired equality:

$$\operatorname{\mathsf{vol}}\left( P_{1}
ight) =\left| P_{1}\cap\Gamma
ight|\cdot\operatorname{\mathsf{vol}}\left( P
ight) .$$

#### Corollary

If  $\Gamma_1$  is a sublattice of  $\Gamma$ , then vol  $(\Gamma_1)$  is a multiple of vol  $(\Gamma)$ , and

$$\Gamma_1 = \Gamma \iff \operatorname{vol}(\Gamma_1) = \operatorname{vol}(\Gamma)$$
.

A set  $S \subseteq \mathbb{R}^n$  is discrete if every element  $s \in S$  has a neighborhood that contains no other elements from s. Formally:

$$orall s\in S\;\existsarepsilon>0:\;B_arepsilon\left(s
ight)\cap S=\left\{s
ight\}$$
 ,

where  $B_{\varepsilon}(s) = \{x \in \mathbb{R}^n : |x - s| < \varepsilon\}$  is the open ball of radius  $\varepsilon$  centered at s.

A set  $S \subseteq \mathbb{R}^n$  is discrete if every element  $s \in S$  has a neighborhood that contains no other elements from s. Formally:

$$orall s\in S\;\existsarepsilon>0:\;B_arepsilon\left(s
ight)\cap S=\left\{s
ight\}$$
 ,

where  $B_{\varepsilon}(s) = \{x \in \mathbb{R}^n : |x - s| < \varepsilon\}$  is the open ball of radius  $\varepsilon$  centered at s.

### Proposition

If  $G \leq \mathbb{R}^n$  is a discrete group, then G is uniformly discrete, i.e., there exists  $\varepsilon > 0$  such that  $B_{\varepsilon}(g) \cap S = \{g\}$  for every  $g \in G$ .

A set  $S \subseteq \mathbb{R}^n$  is discrete if every element  $s \in S$  has a neighborhood that contains no other elements from s. Formally:

$$orall s\in S\;\existsarepsilon>0:\;B_arepsilon\left(s
ight)\cap S=\left\{s
ight\}$$
 ,

where  $B_{\varepsilon}(s) = \{x \in \mathbb{R}^n : |x - s| < \varepsilon\}$  is the open ball of radius  $\varepsilon$  centered at s.

### Proposition

If  $G \leq \mathbb{R}^n$  is a discrete group, then G is uniformly discrete, i.e., there exists  $\varepsilon > 0$  such that  $B_{\varepsilon}(g) \cap S = \{g\}$  for every  $g \in G$ .

#### Proof.

Since G is discrete,  $B_{\varepsilon}(0) \cap G = \{0\}$  for some  $\varepsilon$ . We claim that  $B_{\varepsilon}(g) \cap G = \{g\}$  for every  $g \in G$ .

A set  $S \subseteq \mathbb{R}^n$  is discrete if every element  $s \in S$  has a neighborhood that contains no other elements from s. Formally:

 $orall s\in S\,\,\existsarepsilon>0:\,\,B_arepsilon\left(s
ight)\cap S=\left\{s
ight\}$  ,

where  $B_{\varepsilon}(s) = \{x \in \mathbb{R}^n : |x - s| < \varepsilon\}$  is the open ball of radius  $\varepsilon$  centered at s.

### Proposition

If  $G \leq \mathbb{R}^n$  is a discrete group, then G is uniformly discrete, i.e., there exists  $\varepsilon > 0$  such that  $B_{\varepsilon}(g) \cap S = \{g\}$  for every  $g \in G$ .

#### Proof.

Since G is discrete,  $B_{\varepsilon}(0) \cap G = \{0\}$  for some  $\varepsilon$ . We claim that  $B_{\varepsilon}(g) \cap G = \{g\}$  for every  $g \in G$ . Assume that  $g' \in B_{\varepsilon}(g) \cap G$ . Then  $g' - g \in G$  and  $|g' - g| < \varepsilon$ , thus  $g' - g \in B_{\varepsilon}(0) \cap G$ , and this implies that g' - g = 0, i.e., g' = g.

A set  $S \subseteq \mathbb{R}^n$  is discrete if every element  $s \in S$  has a neighborhood that contains no other elements from s. Formally:

$$orall s\in S\;\existsarepsilon>0:\;B_arepsilon\left(s
ight)\cap S=\left\{s
ight\}$$
 ,

where  $B_{\varepsilon}(s) = \{x \in \mathbb{R}^n : |x - s| < \varepsilon\}$  is the open ball of radius  $\varepsilon$  centered at s.

### Proposition

If  $G \leq \mathbb{R}^n$  is a discrete group, then G is uniformly discrete, i.e., there exists  $\varepsilon > 0$  such that  $B_{\varepsilon}(g) \cap S = \{g\}$  for every  $g \in G$ .

#### Proof.

Since G is discrete,  $B_{\varepsilon}(0) \cap G = \{0\}$  for some  $\varepsilon$ . We claim that  $B_{\varepsilon}(g) \cap G = \{g\}$  for every  $g \in G$ . Assume that  $g' \in B_{\varepsilon}(g) \cap G$ . Then  $g' - g \in G$  and  $|g' - g| < \varepsilon$ , thus  $g' - g \in B_{\varepsilon}(0) \cap G$ , and this implies that g' - g = 0, i.e., g' = g.

### Corollary

If  $G \leq \mathbb{R}^n$  is a discrete group, then every bounded subset of  $\mathbb{R}^n$  contains only finitely many elements of G.

A subgroup of  $\mathbb{R}^n$  is a lattice if and only if it is discrete.

A subgroup of  $\mathbb{R}^n$  is a lattice if and only if it is discrete.

## Proof.

It is clear (?) that lattices are discrete subgroups.

A subgroup of  $\mathbb{R}^n$  is a lattice if and only if it is discrete.

## Proof.

It is clear (?) that lattices are discrete subgroups.

Conversely, let  $G \leq \mathbb{R}^n$  be a discrete subgroup. We can assume without loss of generality that G contains n linearly independent vectors, i.e., G spans  $\mathbb{R}^n$  (otherwise we can replace  $\mathbb{R}^n$  by the subspace spanned by G).

A subgroup of  $\mathbb{R}^n$  is a lattice if and only if it is discrete.

## Proof.

It is clear (?) that lattices are discrete subgroups.

Conversely, let  $G \leq \mathbb{R}^n$  be a discrete subgroup. We can assume without loss of generality that G contains n linearly independent vectors, i.e., G spans  $\mathbb{R}^n$  (otherwise we can replace  $\mathbb{R}^n$  by the subspace spanned by G).

Let us choose linearly independent vectors  $\omega_1, \ldots, \omega_n \in G$  with  $|\det(\omega_1, \ldots, \omega_n)|$ minimal. Let  $\Gamma = \mathbb{Z}\omega_1 + \cdots + \mathbb{Z}\omega_n$  and let P be the fundamental parallelotope of the lattice  $\Gamma$ .

In other words,  $\Gamma \leq G$  is a sublattice of minimal volume. We claim that  $\Gamma = G$ .

Assume, on the contrary, that  $\exists g \in G \setminus \Gamma$ . Since the translates  $\gamma + P$  ( $\gamma \in \Gamma$ ) cover  $\mathbb{R}^n$ , there exists  $\gamma \in \Gamma$  such that  $g \in \gamma + P$ .



Assume, on the contrary, that  $\exists g \in G \setminus \Gamma$ . Since the translates  $\gamma + P$  ( $\gamma \in \Gamma$ ) cover  $\mathbb{R}^n$ , there exists  $\gamma \in \Gamma$  such that  $g \in \gamma + P$ . From  $g \notin \Gamma$  it follows that  $g \neq \gamma$ , thus  $0 \neq g - \gamma \in P$ .



Assume, on the contrary, that  $\exists g \in G \setminus \Gamma$ . Since the translates  $\gamma + P$  ( $\gamma \in \Gamma$ ) cover  $\mathbb{R}^n$ , there exists  $\gamma \in \Gamma$  such that  $g \in \gamma + P$ . From  $g \notin \Gamma$  it follows that  $g \neq \gamma$ , thus  $0 \neq g - \gamma \in P$ . Therefore,  $g - \gamma$  can be written as

$$g-\gamma = x_1\omega_1 + \cdots + x_n\omega_n \ (0 \le x_i < 1),$$

where at least one of the  $x_i$  is nonzero, say (wlog)  $x_1 \neq 0$ .



Let  $\Gamma_1$  be the lattice obtained by replacing  $\omega_1$  by  $g - \gamma$  in the basis:  $\Gamma_1 = \mathbb{Z}(g - \gamma) + \mathbb{Z}\omega_2 + \cdots + \mathbb{Z}\omega_n$ . We will prove that vol ( $\Gamma_1$ ) < vol ( $\Gamma$ ).



Let  $\Gamma_1$  be the lattice obtained by replacing  $\omega_1$  by  $g - \gamma$  in the basis:  $\Gamma_1 = \mathbb{Z} (g - \gamma) + \mathbb{Z} \omega_2 + \cdots + \mathbb{Z} \omega_n$ . We will prove that vol  $(\Gamma_1) < \text{vol} (\Gamma)$ .

$$\operatorname{vol}(\Gamma_1) = \left|\operatorname{det}(g - \gamma, \omega_2, \dots, \omega_n)\right| = \left|\operatorname{det}\left(\sum_{i=1}^n x_i \omega_i, \omega_2, \dots, \omega_n\right)\right|$$

$$= \left|\sum_{i=1}^{n} x_i \det (\omega_i, \omega_2, \dots, \omega_n)\right| = |x_1 \cdot \det (\omega_1, \omega_2, \dots, \omega_n)| = x_1 \cdot \operatorname{vol} (\Gamma).$$

Hence  $\operatorname{vol}(\Gamma_1) = x_1 \cdot \operatorname{vol}(\Gamma) < \operatorname{vol}(\Gamma)$ , contradicting the minimality of  $\operatorname{vol}(\Gamma)$ .  $\Box$ 



## Question

Where is the mistake in this proof?

## Question

Where is the mistake in this proof?

## Answer

We did not prove that there is a sublattice of minimal volume.

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

## Proof.

If P is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since G is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

## Proof.

If *P* is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since *G* is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

By Lagrange's theorem, the *h*-th power of any element of  $G/\Delta$  is the identity,

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

### Proof.

If P is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since G is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

By Lagrange's theorem, the *h*-th power of any element of  $G/\Delta$  is the identity, i.e.,  $h \cdot g \in \Delta$  for all  $g \in G$ . This shows that  $G \leq \frac{1}{h} \cdot \Delta$ .

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

## Proof.

If P is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since G is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

By Lagrange's theorem, the *h*-th power of any element of  $G/\Delta$  is the identity, i.e.,  $h \cdot g \in \Delta$  for all  $g \in G$ . This shows that  $G \leq \frac{1}{h} \cdot \Delta$ .

Now we can fix our proof:

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

### Proof.

If *P* is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since *G* is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

By Lagrange's theorem, the *h*-th power of any element of  $G/\Delta$  is the identity, i.e.,  $h \cdot g \in \Delta$  for all  $g \in G$ . This shows that  $G \leq \frac{1}{h} \cdot \Delta$ .

Now we can fix our proof: Let  $\Delta \leq G$  be any sublattice of G. Then the lemma shows that  $G \leq \frac{1}{h} \cdot \Delta$ . Therefore, for every sublattice  $\Gamma \leq G$ , we have  $\Gamma \leq \frac{1}{h} \cdot \Delta$ .

Let  $G \leq \mathbb{R}^n$  be a discrete group and let  $\Delta \leq G$  be a sublattice of G. Then there exists a positive integer h such that  $G \leq \frac{1}{h} \cdot \Delta$ .

### Proof.

If *P* is the fundamental parallelotope of  $\Delta$ , then every coset of  $\Delta$  has a representative in  $P \cap G$ . Since *G* is discrete, this is a finite set, hence  $h := [G : \Delta] < \infty$ .

By Lagrange's theorem, the *h*-th power of any element of  $G/\Delta$  is the identity, i.e.,  $h \cdot g \in \Delta$  for all  $g \in G$ . This shows that  $G \leq \frac{1}{h} \cdot \Delta$ .

Now we can fix our proof: Let  $\Delta \leq G$  be any sublattice of G. Then the lemma shows that  $G \leq \frac{1}{h} \cdot \Delta$ . Therefore, for every sublattice  $\Gamma \leq G$ , we have  $\Gamma \leq \frac{1}{h} \cdot \Delta$ . This implies that vol ( $\Gamma$ ) is a multiple of  $v := \text{vol}(\frac{1}{h} \cdot \Delta)$ . Thus the possible volumes of sublattices come from the set  $\{v, 2v, 3v, \dots\}$ , and now it is clear that there is a sublattice of minimal volume.

## Theorem (Minkowski)

Let  $\Gamma \leq \mathbb{R}^n$  be a full-rank lattice, and let  $S \subseteq \mathbb{R}^n$  be a set such that

- 1. S is convex,
- 2. S is centrally symmetric with respect to the origin  $(x \in S \implies -x \in S)$ ,
- 3.  $\operatorname{vol}(S) > 2^n \cdot \operatorname{vol}(\Gamma)$ .

Then  $S \cap \Gamma \neq \{0\}$ , i.e., S contains at least one lattice point other than the origin.





Let us pick one of the parallelotopes of  $2\Gamma$  (its volume is  $2^n \cdot \text{vol}(\Gamma)$ ),











Let us pick one of the parallelotopes of  $2\Gamma$  (its volume is  $2^n \cdot \text{vol}(\Gamma)$ ), and translate here all parallelotopes that intersect *S*.

Since vol  $(S) > 2^n \cdot \text{vol}(\Gamma)$ , there will be a point that is covered at least twice.



Let us pick one of the parallelotopes of  $2\Gamma$  (its volume is  $2^n \cdot \text{vol}(\Gamma)$ ), and translate here all parallelotopes that intersect *S*.

Since vol  $(S) > 2^n \cdot \text{vol}(\Gamma)$ , there will be a point that is covered at least twice.

Let u and v denote two different preimages of such a doubly covered point.



Let us pick one of the parallelotopes of  $2\Gamma$  (its volume is  $2^n \cdot \text{vol}(\Gamma)$ ), and translate here all parallelotopes that intersect *S*.

Since vol  $(S) > 2^n \cdot \text{vol}(\Gamma)$ , there will be a point that is covered at least twice.

Let u and v denote two different preimages of such a doubly covered point.

Then u and v are in the same coset of  $2\Gamma$ , i.e.,  $u - v \in 2\Gamma$ .



$$u, v \in S, \quad u - v \in 2\Gamma$$



$$u, v \in S, \quad u - v \in 2\Gamma$$

S is symmetric 
$$\implies -v \in K$$



 $u, v \in S, \quad u - v \in 2\Gamma$ 

S is symmetric  $\implies -v \in K$ 

$$S ext{ is convex } \implies \frac{u-v}{2} \in S$$



 $u, v \in S, \quad u - v \in 2\Gamma$ 

S is symmetric  $\implies -v \in K$ 

$$S ext{ is convex } \implies \frac{u-v}{2} \in S$$

$$u-v\in 2\Gamma \implies \frac{u-v}{2}\in \Gamma$$



$$u, v \in S, \quad u - v \in 2\Gamma$$

S is symmetric  $\implies -v \in K$ 

$$S ext{ is convex } \implies \frac{u-v}{2} \in S$$

$$u - v \in 2\Gamma \implies \frac{u - v}{2} \in \Gamma$$

Conclusion: 
$$\frac{u-v}{2} \in S \cap \Gamma$$
.