Lattices



Definition
A lattice (of rank d) is a subgroup I of (R"; +) generated by d linearly independent

vectors wi,...,wq:

N=Zwi+ - +2Zwg ={crw1 + -+ cqwq : ¢; € Z}.

If d = n, then we say that I is a full-rank lattice.




Definition
Let I be a full-rank lattice in R” with basis w1, ...,w,. The set

P={xwi+  +xw,:0<x <1} CR"

is the fundamental parallelotope of L.




Fact
Translates of P cover R" without overlaps:

R" = U(v—l—P).
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In other words, each coset of I' (as a subgroup of R") has a unique representative
in P.
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Translates of P cover R" without overlaps:

R" = U(v—l—P).

yer

In other words, each coset of I' (as a subgroup of R") has a unique representative
in P.

Let Q be the n x n matrix obtained by writing w1, ...,w, next to each other as
column vectors. Then the volume of P is

vol (P) = |det Q| = |det (w1, ..., wy)|-
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Proposition

The volume of the fundamental parallelotope is independent of the choice of the
basis.

Proof.

Let wi,...,w, and wi,...,w), be two bases of with parallelotopes P and P’.
Since wy, ... ,w, is a basis, each wJ’- can be obtained as a linear combination of
w1, ... ,wpy With integer coefficients:

, .
wj=ciwr -+ cwn (I=1,...,n).

In other words, we have Q' = Q- C, where C = (¢;) € Z™*".
Similarly, Q = Q' - D for some matrix D € Z"*". Therefore,

O=Q.-C-D = C-D=] = detC=detD = +1,
and this proves the proposition:
vol (P') = |det Q| = |det Q| - |det C| = |det Q| = vol (P).

Remark
By the above proposition, it makes sense to denote the volume of any/the
fundamental parallelotope of I by vol ().

]
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Theorem
Let [; <T < RY be full-rank lattices with fundamental parallelotopes P and P;.
Then I is of finite index in ', and we have

vol (Pl)
vol (P)

[F:Fl]:|P10F|:

Proof.

The set P, NT is finite (it is a compact discrete set), and it is a complete system of
representatives of the cosets of ', hence [ : T1] = |P1 NT| < 0.

A

Y




Proof. (cont.)
The union of the translates of P by the elements of n- Py N[ provides an

approximation for n- Py:

vol(n-Py) = |n- P NT|-vol(P).

(Note that n- Py is the union of n? copies of P;.)




Proof. (cont.)
The error in this approximation is caused by the translates of P protruding and
receding around the boundary of n- P;. Therefore, we can give the following

estimate:
vol(n-P1)=|n-PiNT|-vol(P)+ O (n1).
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Proof. (cont.)

The error in this approximation is caused by the translates of P protruding and
receding around the boundary of n- P;. Therefore, we can give the following
estimate:

vol(n-P1)=|n-PiNT|-vol(P)+ O (n1).

Observe that vol (n- P1) = n? -vol (P1) and |n- Py NT| = n?-|P;NT|. Therefore,
after dividing by n?, we get

vol (P1) = |P1 N T -vol (P) + o(%).

Taking the limit as n — oo we obtain the desired equality:

]

vol (P1) = |PLNT|-vol(P).

Corollary
If Ty is a sublattice of I', then vol (I'1) is a multiple of vol (I'), and

M =r <= vol(l'y) =vol(IN.
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A set S C R" is discrete if every element s € S has a neighborhood that contains
no other elements from s. Formally:
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where B. (s) = {x € R" : |[x — s| < €} is the open ball of radius € centered at s.
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Corollary

If G <R"is a discrete group, then every bounded subset of R” contains only
finitely many elements of G.
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Theorem
A subgroup of R” is a lattice if and only if it is discrete.

Proof.

It is clear (?) that lattices are discrete subgroups.

Conversely, let G < R” be a discrete subgroup. We can assume without loss of
generality that G contains n linearly independent vectors, i.e., G spans R”
(otherwise we can replace R” by the subspace spanned by G).

Let us choose linearly independent vectors wy, . ..,w, € G with |det (w1, ...,wy)]
minimal. Let [ = Zwy + - -+ + Zw, and let P be the fundamental parallelotope of
the lattice I'.

In other words, ' < G is a sublattice of minimal volume. We claim that I = G.



Proof. (cont.)

Assume, on the contrary, that 3g € G \ . Since the translates v+ P (y €T)
cover R”, there exists v € [ such that g € v+ P.




Proof. (cont.)
Assume, on the contrary, that 3g € G \ T'. Since the translates y + P (y €T)
cover R", there exists v € ' such that g € v + P. From g ¢ T it follows that

g# 7 thus0#g—~vye€P.

A



Proof. (cont.)

Assume, on the contrary, that 3g € G \ T'. Since the translates y + P (y €T)
cover R", there exists v € ' such that g € v + P. From g ¢ T it follows that
g # 7, thus 0 # g — v € P. Therefore, g — 7 can be written as

g—7=xwi+ +xw, (0<x<1),

where at least one of the x; is nonzero, say (wlog) x; # 0.




Proof. (cont.)

Let ['; be the lattice obtained by replacing w; by g — 7y in the basis:
M=72(g-—")+Zwy+ -+ Zw,. We will prove that vol (I';) < vol (I').




Proof. (cont.)

Let ['; be the lattice obtained by replacing w; by g — 7y in the basis:
M=72(g-—")+Zwy+ -+ Zw,. We will prove that vol (I';) < vol (I').

n
det( E XiWiy Wy e e 7w,,> ’
i=1

= |xy - det (w1, w2, ..., wp)| = x1 - vol (IN).

vol (T1) = |det (g — v, w2, ..., wy)| =

n
ZX,‘ det (w,',CUQ, . ,w,,)
i=1

Hence vol (T'1) = x; - vol (I') < vol ('), contradicting the minimality of vol (I'). O
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Where is the mistake in this proof?



Question
Where is the mistake in this proof?

Answer
We did not prove that there is a sublattice of minimal volume.
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If P is the fundamental parallelotope of A, then every coset of A has a represen-
tative in PN G. Since G is discrete, this is a finite set, hence h:=[G : A] < co.
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Now we can fix our proof: Let A < G be any sublattice of G. Then the lemma
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Lemma
Let G < R" be a discrete group and let A < G be a sublattice of G. Then there
exists a positive integer h such that G < % - A

Proof.
If P is the fundamental parallelotope of A, then every coset of A has a represen-
tative in PN G. Since G is discrete, this is a finite set, hence h:=[G : A] < co.

By Lagrange's theorem, the h-th power of any element of G/A is the identity, i.e.,
h-g € Aforall g € G. This shows that G < § - A. O

Now we can fix our proof: Let A < G be any sublattice of G. Then the lemma
shows that G < % - A. Therefore, for every sublattice [ < G, we have [ < % -A.
This implies that vol (I') is a multiple of v := vol (% . A). Thus the possible
volumes of sublattices come from the set {v,2v,3v,...}, and now it is clear that
there is a sublattice of minimal volume.



Theorem (Minkowski)
Let ' < RR" be a full-rank lattice, and let S C R” be a set such that

1. S is convex,
2. S is centrally symmetric with respect to the origin (x € S = —x € 5),

3. vol (§) > 2" - vol (I).
Then SNT # {0}, i.e., S contains at least one lattice point other than the origin.
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Proof of Minkowski's theorem

Let us pick one of the parallelotopes
of 2I" (its volume is 2" - vol (T')), and
translate here all parallelotopes that
intersect S.

Since vol (§) > 2" - vol ('), there will
be a point that is covered at least

u twice.
\ Let u and v denote two different

\ preimages of such a doubly covered
J point.

Then v and v are in the same coset
of 2I', i.e., u—v € 2l.
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Proof of Minkowski's theorem

uveS, u—vell

S is symmetric —= —v e K

u—v

265

S is convex —>

u—ve2l = %Er

u—v

Conclusion: esSnr'.




