
Lattices



Definition
A lattice (of rank d) is a subgroup Γ of (Rn; +) generated by d linearly independent
vectors ω1, . . . , ωd :

Γ = Zω1 + · · ·+ Zωd = {c1ω1 + · · ·+ cdωd : ci ∈ Z} .

If d = n, then we say that Γ is a full-rank lattice.



Definition
Let Γ be a full-rank lattice in Rn with basis ω1, . . . , ωn. The set

P = {x1ω1 + · · ·+ xnωn : 0 ≤ xi < 1} ⊆ Rn

is the fundamental parallelotope of L.



Fact
Translates of P cover Rn without overlaps:

Rn =
•⋃
γ∈Γ

(γ + P) .

In other words, each coset of Γ (as a subgroup of Rn) has a unique representative
in P.

Let Ω be the n × n matrix obtained by writing ω1, . . . , ωn next to each other as
column vectors. Then the volume of P is

vol (P) = |det Ω| = |det (ω1, . . . , ωn)| .
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Proposition
The volume of the fundamental parallelotope is independent of the choice of the
basis.

Proof.
Let ω1, . . . , ωn and ω′1, . . . , ω

′
n be two bases of with parallelotopes P and P ′.

Since ω1, . . . , ωn is a basis, each ω′j can be obtained as a linear combination of
ω1, . . . , ωn with integer coefficients:

ω′i = c1iω1 + · · ·+ cniωn (i = 1, . . . , n) .

In other words, we have Ω′ = Ω · C , where C = (cij) ∈ Zn×n.
Similarly, Ω = Ω′ · D for some matrix D ∈ Zn×n. Therefore,

Ω = Ω · C · D =⇒ C · D = I =⇒ detC = detD = ±1,

and this proves the proposition:

vol (P ′) = |det Ω′| = |det Ω| · |detC | = |det Ω| = vol (P) .

Remark
By the above proposition, it makes sense to denote the volume of any/the
fundamental parallelotope of Γ by vol (Γ).
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Theorem
Let Γ1 ≤ Γ ≤ Rd be full-rank lattices with fundamental parallelotopes P and P1.
Then Γ1 is of finite index in Γ, and we have

[Γ : Γ1] = |P1 ∩ Γ| =
vol (P1)

vol (P)
.

Proof.
The set P1 ∩ Γ is finite (it is a compact discrete set), and it is a complete system of
representatives of the cosets of Γ1, hence [Γ : Γ1] = |P1 ∩ Γ| <∞.
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Proof. (cont.)
The union of the translates of P by the elements of n · P1 ∩ Γ provides an
approximation for n · P1:

vol (n · P1) ≈ |n · P1 ∩ Γ| · vol (P) .

(Note that n · P1 is the union of nd copies of P1.)



Proof. (cont.)
The error in this approximation is caused by the translates of P protruding and
receding around the boundary of n · P1. Therefore, we can give the following
estimate:

vol (n · P1) = |n · P1 ∩ Γ| · vol (P) + O
(
nd−1

)
.

Observe that vol (n · P1) = nd · vol (P1) and |n · P1 ∩ Γ| = nd · |P1 ∩ Γ|. Therefore,
after dividing by nd , we get

vol (P1) = |P1 ∩ Γ| · vol (P) + O
(1

n

)
.

Taking the limit as n→∞ we obtain the desired equality:

vol (P1) = |P1 ∩ Γ| · vol (P) .

Corollary
If Γ1 is a sublattice of Γ, then vol (Γ1) is a multiple of vol (Γ), and

Γ1 = Γ ⇐⇒ vol (Γ1) = vol (Γ) .
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Definition
A set S ⊆ Rn is discrete if every element s ∈ S has a neighborhood that contains
no other elements from s. Formally:

∀s ∈ S ∃ε > 0 : Bε (s) ∩ S = {s} ,

where Bε (s) = {x ∈ Rn : |x − s| < ε} is the open ball of radius ε centered at s.

Proposition
If G ≤ Rn is a discrete group, then G is uniformly discrete, i.e., there exists ε > 0
such that Bε (g) ∩ S = {g} for every g ∈ G .

Proof.
Since G is discrete, Bε (0) ∩ G = {0} for some ε. We claim that Bε (g) ∩ G = {g}
for every g ∈ G . Assume that g ′ ∈ Bε (g) ∩ G . Then g ′ − g ∈ G and |g ′ − g | < ε,
thus g ′ − g ∈ Bε (0) ∩ G , and this implies that g ′ − g = 0, i.e., g ′ = g .

Corollary
If G ≤ Rn is a discrete group, then every bounded subset of Rn contains only
finitely many elements of G .
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Theorem
A subgroup of Rn is a lattice if and only if it is discrete.

Proof.
It is clear (?) that lattices are discrete subgroups.

Conversely, let G ≤ Rn be a discrete subgroup. We can assume without loss of
generality that G contains n linearly independent vectors, i.e., G spans Rn

(otherwise we can replace Rn by the subspace spanned by G ).

Let us choose linearly independent vectors ω1, . . . , ωn ∈ G with |det (ω1, . . . , ωn)|
minimal. Let Γ = Zω1 + · · ·+ Zωn and let P be the fundamental parallelotope of
the lattice Γ.

In other words, Γ ≤ G is a sublattice of minimal volume. We claim that Γ = G .
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Proof. (cont.)
Assume, on the contrary, that ∃g ∈ G \ Γ. Since the translates γ + P (γ ∈ Γ)
cover Rn, there exists γ ∈ Γ such that g ∈ γ + P.

From g /∈ Γ it follows that
g 6= γ, thus 0 6= g − γ ∈ P. Therefore, g − γ can be written as

g − γ = x1ω1 + · · ·+ xnωn (0 ≤ xi < 1) ,

where at least one of the xi is nonzero, say (wlog) x1 6= 0.
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Proof. (cont.)
Let Γ1 be the lattice obtained by replacing ω1 by g − γ in the basis:
Γ1 = Z (g − γ) + Zω2 + · · ·+ Zωn. We will prove that vol (Γ1) < vol (Γ).

vol (Γ1) = |det (g − γ, ω2, . . . , ωn)| =

∣∣∣∣det

( n∑
i=1

xiωi , ω2, . . . , ωn

)∣∣∣∣
=

∣∣∣∣ n∑
i=1

xi det (ωi , ω2, . . . , ωn)

∣∣∣∣ = |x1 · det (ω1, ω2, . . . , ωn)| = x1 · vol (Γ) .

Hence vol (Γ1) = x1 · vol (Γ) < vol (Γ), contradicting the minimality of vol (Γ). �
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Question
Where is the mistake in this proof?

Answer
We did not prove that there is a sublattice of minimal volume.
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Lemma
Let G ≤ Rn be a discrete group and let ∆ ≤ G be a sublattice of G . Then there
exists a positive integer h such that G ≤ 1

h ·∆.

Proof.
If P is the fundamental parallelotope of ∆, then every coset of ∆ has a represen-
tative in P ∩ G . Since G is discrete, this is a finite set, hence h := [G : ∆] <∞.

By Lagrange’s theorem, the h-th power of any element of G/∆ is the identity, i.e.,
h · g ∈ ∆ for all g ∈ G . This shows that G ≤ 1

h ·∆.

Now we can fix our proof: Let ∆ ≤ G be any sublattice of G . Then the lemma
shows that G ≤ 1

h ·∆. Therefore, for every sublattice Γ ≤ G , we have Γ ≤ 1
h ·∆.

This implies that vol (Γ) is a multiple of v := vol
(

1
h ·∆

)
. Thus the possible

volumes of sublattices come from the set {v , 2v , 3v , . . . }, and now it is clear that
there is a sublattice of minimal volume.
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By Lagrange’s theorem, the h-th power of any element of G/∆ is the identity, i.e.,
h · g ∈ ∆ for all g ∈ G . This shows that G ≤ 1

h ·∆.

Now we can fix our proof:

Let ∆ ≤ G be any sublattice of G . Then the lemma
shows that G ≤ 1

h ·∆. Therefore, for every sublattice Γ ≤ G , we have Γ ≤ 1
h ·∆.

This implies that vol (Γ) is a multiple of v := vol
(

1
h ·∆

)
. Thus the possible

volumes of sublattices come from the set {v , 2v , 3v , . . . }, and now it is clear that
there is a sublattice of minimal volume.
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Theorem (Minkowski)
Let Γ ≤ Rn be a full-rank lattice, and let S ⊆ Rn be a set such that

1. S is convex,

2. S is centrally symmetric with respect to the origin (x ∈ S =⇒ −x ∈ S),

3. vol (S) > 2n · vol (Γ).

Then S ∩ Γ 6= {0}, i.e., S contains at least one lattice point other than the origin.



Proof of Minkowski’s theorem

Let us pick one of the parallelotopes
of 2Γ (its volume is 2n · vol (Γ)),and
translate here all parallelotopes that
intersect S .

Since vol (S) > 2n · vol (Γ), there will
be a point that is covered at least
twice.

Let u and v denote two different
preimages of such a doubly covered
point.

Then u and v are in the same coset
of 2Γ, i.e., u − v ∈ 2Γ.
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Proof of Minkowski’s theorem

u, v ∈ S , u − v ∈ 2Γ

S is symmetric =⇒ −v ∈ K

S is convex =⇒ u − v

2
∈ S

u − v ∈ 2Γ =⇒ u − v

2
∈ Γ

Conclusion:
u − v

2
∈ S ∩ Γ.
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