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We propose a notion of functional equation for functions of a fixed arity,
which is based on a pair of clones. We present necessary conditions for
a class of functions to be definable by such equations, and show that for
certain choices of clones these conditions are also sufficient.

1 INTRODUCTION AND MOTIVATIONS

This paper is a study of definability of properties of functions by functional
equations. We propose an equational framework which differs from those
presented in [5,7,12-14, 23] in that here the properties to be defined con-
cern functions of a given fixed arity rather than functions of different arities.
(This distinction is made clear in Subsection 1.2.) The current approach is
thus rooted in the classical theory of functional equations, and it provides a
means to express natural properties of functions that are not definable in those
other equational frameworks. A classical example of such a property is sym-
metry. A preliminary version of the current paper was presented at the 41st
International Symposium on Multiple-Valued Logic (ISMVL 2011), see [9].

1.1 Basic notions

Throughout the paper let A, B and C be finite sets, and for each inte-
gern>1let [n]:={1,...,n}. We denote tuples by bold letters and their
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2 MIGUEL COUCEIRO et al.

components by corresponding indexed italic letters, e.g., a= (a1, ..., a,) €
A", By a function of several variables from A to B (or simply function, when
the sets A and B are clear from the context) we mean a map f : A" — B,
where n > 0 is called the arity of f. The set of all n-ary functions from A
to B is denoted by BA". For aclass K € (., B"", we set K™ = £ N BA".
Functions of several variables from the two-element set {0, 1} to {0, 1} are
usually called Boolean functions. The set of all functions of several vari-
ables from A to A is denoted by Oa. The kernel of a function f € BA" is
the equivalence relation ker f € A" x A" defined by (a, &) e ker f «<—
f(a) = f(@).

The composition of f : B" — C by g1,..., 0, : A" — B, denoted by
f(91, ..., 0n), is defined as the m-ary function from A to C given by

f(o1,...,00)@ = f(g1(), ..., 0n(a)), foreveryaec A™.

We say that f is the outer function of the composition, and g, . . ., g, are the
inner functions.

A clone on A is a class C € Oy of finitary functions on A that is closed
under composition and contains the projections

xMD A" > A (X X)X (NeN,1<i<n).

We will omit the upper index, when there is no risk of ambiguity. It is note-
worthy that the class Z of all projections is the smallest clone on A, whereas
Oy is the largest clone on A. Also, it is well known that the intersection of
any family of clones is itself a clone. Hence, for F € O,, there is a small-
est clone on A which contains F, namely, (F)a := (. C, where F is the
set of all clones on A which contain F; we may write simply (F) whenever
the underlying set A is clear from the context. We will denote the clone of
all constant functions and projections on A by Ca. For further background in
clone theory see, e.g., [19,24].

1.2 Functional equations

In [7], the authors worked on an equational framework for defining properties
of functions f: A" — B, n > 1, rooted in universal algebra and originally
proposed in [12] for the study of Boolean functions. Essentially, a functional
equation (for functions f: A" — B) was defined as a formal expression

uf(ge(Xas - -+ Xm)), -, F(Gr(Xe, - - -, Xm)))
= o(F( (X1, o X)), s F (s (Kt - X))y (1)
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wherer,s,m >1,u:B" — C,v:B® — C,eachgi and hj isamap A" —
A, the symbols X, ..., Xy are m distinct vector variable symbols, and f is a
distinct function symbol. A function f : A" — B is said to satisfy (1) if, for
allag, ..., an € A",

u(f(9u(a.....am)), ..., f(gr(ae, ..., an)))
=v(f(hi(as, ..., am)), .., f(hs(a, ..., am))).
In this way, a class of functions is defined by a set of such functional equa-
tions if it comprises exactly those functions which satisfy every equation in
the set.
This framework has been advantageously used to specify noteworthy

properties of functions in terms of functional equations. Classical examples
include

e linearity of functions f: F" — F, n > 1, on a field IF, which is defined by

fx+y) =) +f(y).

¢ nondecreasing and nonincreasing monotonicity of functions f: L" — L,
n > 1, on a lattice L, which are defined by

fO)=f(x) vi(xAYy) and fO)=f(x) vixvy),

respectively.

More contemporary examples, which have strong consequences in combina-
torial optimization, include

¢ submodularity of functions f: I" — R, where | is a chain, usually
expressed by the functional inequality

f() +f(y) = f(xAy) +f(xVvy)
or, equivalently, by the functional equation
f(x) + f(y) = max(f(x A y) + f(x v y), f(x) + f(y)),

e supermodularity of functions f: I" — R, where | is a chain, usually
expressed by the functional inequality

fO)+1(y) = fxAy) +f(xvy)
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or, equivalently, by the functional equation

f(x) + f(y) = min(f(x A y) + f(x v y), f(x) +f(y)),

e modularity of functions f: I" — R, where | is a chain, which is defined
by the functional equation

fX) +f(y) =f(xAy) +f(xVy).

Using this functional equation, it can be shown [26] that modular func-
tions are exactly those which are separable, i.e., of the form > fi(x;) +c,
where fi: | — R for each i € [n] and ¢ € R. For background on sub- and
supermodularity and their applications in combinatorial optimization, see,
e.g., [20,27].

Pippenger [23] considered somewhat different defining objects, so-called
relational constraints. An m-ary relational constraint from A to B is a pair
(R, S), where R is an m-ary relation on A and S is an m-ary relation on B. A
function f: A" — B preserves a relational constraint (R, S), if for all m-by-
n matrices A = [&;j]mxn With entries from A, it holds that

(f(an,...,aln), f(a21,...,a2n),..., f(aml,...,amn)) €S

whenever (ayj, ..., amj) € R forall j € [n] (in other words, if all columns of
A are tuples in the relation R, then application of f to the rows of A results
in a tuple in S). A class C of functions is defined by a set /C of relational
constraints if C is the set of all functions that preserve all relational constraints
in K.

As it turned out, relational constraints have the same expressive power as
functional equations in the sense that they define exactly the same function
classes. For example, let | be a chain and let

R={(a,b,c,d)el*:c=anb,d=avhb},
S. ={(p.q.r,s)eR*:p+q=>r+s},
S.={(p.q.r,s)eR*:p+q<r+s},
S_={(p.q.r,8)eR*:p+q=r—+s}.

It is not difficult to see that (R, S5), (R, S<), and (R, S_) define the classes
of submodular, supermodular, and modular functions, respectively.

Observe that a function f: A" — A preserves a relation R if and only if
f preserves the relational constraint (R, R). Since clones (on a finite set) are
exactly those classes which are defined by relations [3,15,19,24], every clone
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is definable by relational constraints or, equivalently, by functional equations.
For variants and extensions see, e.g., [5, 8,13, 14,22, 23].

Classes definable by functional equations of the form (1), or, equivalently,
by relational constraints, were completely characterized in terms of a quasi-
ordering of functions, the so-called simple minor relation. For a finite set A,
the equational classes of B-valued functions on A were shown to coincide
with the initial segments of this quasi-ordering [4, 11, 12, 23]. In the case
when A is arbitrary, possibly infinite, one additional “local closure” condition
is also required [6, 7].

Despite the fact that a wide variety of function classes can be defined
within this framework, it cannot express certain classical properties of func-
tions f: A" — B such as symmetry:

fa,....an) = @@, .- am)

for all a;,...,a, € A and any permutation o on [n]. This limitation may
be due to the fact that functional equations of the form (1) do not refer to
the arity of functions. This fact leads to the following notion of functional
equation, that is rooted in classical theory of functional equations.

Let A and B be clones on A and B, respectively. A (5, .A)-equation is a
functional equation of the form

u(f(gllv-~-sgln)v-~-9f(gl‘lv~--9gl‘n))
=v(f(hw,....h1), ... Fhsi ..o hsn)), ()

where r,s,n >0, u € B", v € B®, each gj; and hjj is a function in A™,
m > 0, and f is an n-ary function symbol. Observe that if we interpret the
function symbol f by a function f: A" — B, then each side of (2) becomes
an m-ary function from A to B. For this reason we will sometimes refer to (2)
as an m-ary (13, A)-equation.

We say that f : A" — B satisfies (2) if for every a € A"

u(f (9, ---.9m) -, T (91, ---. ) (@
=v(f(h11,-~-,h1n),--~, f(hsl,--whsn))(a)'

A set € of (B, A)-equations defines a class K of n-ary functions from A to B if
f e Kifandonly if f satisfies all members of £. A class K of n-ary functions
from A to B is (finitely) definable by (53, .4)-equations if there is a (finite) set £
of (B, A)-equations that defines K. In the sequel, unless otherwise specified,
B and A always denote arbitrary clones on B and A.
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Example 1. The class of n-ary symmetric functions is definable by (Za, Za)-
equations. Indeed, f e Og‘) is symmetric if and only if it satisfies the
(Za, Zp)-equation

f (Xl, ey Xn) = f (Xa(l)’ ey X(,(n)) y

for every permutation o on [n]. In fact, two of these n! equations suffice,
since the symmetric group S, can be generated by two permutations (e.g., an
n-cycle and a transposition).

Example 2. Let (A; Aa, Va) and (B; Ag, V) be lattices. The class of n-
ary order-preserving functions from A to B is defined by the ({(Ag), (AA))-
equation

f(X1AA YL o, Xn AaYn) A T (X, ..., Xn) =F (X1 Aa Y1, ..., Xn Aa Yn),

while the class of n-ary order-reversing functions from A to B is defined by
the ((Ag), {(Aa))-equation

f(Xa Aa Y1, .., Xn AaYn) A F(Xe, .o X)) =F (X1, ..., Xn).

Similarly, these classes are definable by (B, .A)-equations for any choice of
clones B € {{Ag), (Vg)} and A € {{Aa), (Va)}. Clearly, all of these equa-
tions are (Mg, Ma)-equations, where M and Mg denote the clones of
monotone (order-preserving) functions on A and B, respectively. In general,
the larger the clones B and A are, the larger the expressive power of (B, A)-
equations is: if B C B’ and A C A, then every class definable by (B, A)-
equations is definable by (8', A")-equations.

Example 3. If (A;-) and (B; ) are groupoids, with clones of term functions
A and B, respectively, then the set of homomorphisms from A" to B is defined
by the (B, .A)-equation

f(Xe Vi, Xn-Yn) =F(Xe, oo, X)) *F (Y1, ..., Yn) - 3)

This is a generalization of the classical Cauchy equation f (x 4+vYy) =
f (x)+ f(y) (see, e.g., [2]) whose solutions f: | — R, for | € R con-
taining the origin 0, are of the form f(x) = cx, for some c € R, or the
graph of f is everywhere dense in | x R (for a recent reference, see also
[10]). Another particular instance of (3) is the so-called Jensen’s equa-
tion f(X5Y) = fLT) \whose most general solutions are of the form f (x)
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= fo(x) + a for an arbitrary a € R and an arbitrary function fq satisfying
Cauchy’s equation (see, e.g., [1]).

Example 4. Several other examples of functional equations, involving not
only unary functions, can be found in classical theory of functional equa-
tions. A noteworthy example is the so-called Sincov’s functional equation
f (X1, X2) + f(X2, x3) = f (X1, x3). The general solutions for this (Lo, Zr)-
equation are known to be of the form f(x1, X2) = g(X2) — g(x1). (Here Lo
denotes the clone of 0-preserving linear functions over the field R.) For gen-
eral background and further examples in classical theory of functional equa-
tions see, e.g., [1,2,17].

Example5. Forany f € BA", the singleton { f} can be defined by (Cg, Ca)-
equations as follows. Let a be an arbitrary element of A", and letb = f (a).

The functional equation f (a;, ..., a,) = b is a (Cg, Ca)-equation: on the left
side the outer function is the identity function, and the inner functions are
the constants ay, .. ., a,, while on the right side we have only the constant

function b as outer function. These equations, for all a € A", constitute a
system of equations that is satisfied only by f, since these equations specify
the value of the function at every a € A".

Example 6. Let A be a finite field, and let £, be the clone of 0-preserving
linear functions on A, i.e., functions of the form u(xy, ..., X;) = ai1Xs +
-+t arX (@ € A). Let us examine which classes I C 0&? are definable by
(Lo, Cp)-equations. Let N = |A|",and let {ay, ..., an} = A". We will regard
a function f € Og‘) as a vector f in the N-dimensional vector space AN
whose i-th coordinate is f (a). Any (Lo, Ca)-equation (for f = f) translates
into a system of homogeneous linear equations involving the components
of T (namely, one equation corresponding to each assignment of values to
the variables). Conversely, every homogeneous linear equation involving the
components of T is equivalent to an (Lo, Ca)-equation. Therefore, a function
class KC is definable by (Lo, Ca)-equations if and only if the corresponding set
X = {? . f e K} of vectors is the solution set of a system of homogeneous
linear equations. It is a well-known fact from linear algebra that such sets
can be characterized as subspaces of the vector space AN. Thus, a class K of
functions is definable by (Lo, Ca)-equations if and only if it is closed under
linear combinations.

In the next section we make some general observations about equational
definability, and in the last two sections we consider the problem of charac-
terizing function classes definable by (3, .A)-equations by means of closure
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conditions, much in the spirit of Example 6. We present a necessary condition
in Section 3, and we prove in Section 4 that this necessary condition is also
sufficient in the four cases when B and A contain either only projections or
all functions.

2 PRELIMINARY RESULTS

From the fact that A and B are finite it follows that definability by (5, A)-
equations can be always achieved by means of finite sets of (3, .4)-equations.

Proposition 1. Aclass K € BA" is definable by (B, .A)-equations if and only
if it is finitely definable by (B, .4)-equations.

Proof. Clearly, the condition is sufficient. To show that it is also necessary,
suppose that KC is defined by a (possibly infinite) set £ of (B, .A)-equations.
For every f € BA"\ K we can find an equation in £ that is not satisfied by
f. Choosing one such equation for each f € BA" \ K, we get a finite subset
of & that defines K, since BA" \ K is finite. ]

This result can be strengthened for sufficiently large clones B. Indeed,
as our next result indicates, if the clone B contains certain functions, then a
single (5, A)-equation suffices. To this extent, let 0 and 1 be two arbitrary
distinct elements of B, and consider analogues of the Boolean conjunction A
and equivalence <>, defined as follows: fora, b € A let

anb— 1, ifa=1landb=1;
10, otherwise;
aobo 1, ifa=b;
“P= 0, otherwise.

Proposition 2. If clone B contains the operations A and <>, then a class
K < BA" is definable by (B, .A)-equations if and only if it can be defined by
a single (B, .A)-equation.

Proof. The sufficiency is obvious; for the necessity let us suppose that K is
definable by (B, A)-equations. By Proposition 1, we may assume that X is
defined by a finite set {Eq, ..., E;} of (8, .A)-equations, say, each E; being
of the form Tj; = Tj,. Consider the (B, .4)-equation

A o To)=1

ieft]
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(Note that since clone B contains <>, it also contains the operation 1 = x; <>
X1 occurring on the right side of the above equation.) Obviously, this equation
alone defines K. ]

The next proposition shows that the set of classes X € BA" definable by
(B, A)-equations constitutes a lattice under union and intersection, provided
that the clone 5 is sufficiently large.

Proposition 3. If clone B contains the operations A and <>, and I, K’ C
BA" are definable by (1, A)-equations, then so are X N K and K U K.

Proof. Clearly, £ N K’ is definable by (B, .A)-equations, whenever both K
and K’ are definable by (B, .A)-equations.

For the second claim, observe that by Proposition 2 there are two (B, A)-
equations Ty = T, and T, = T, defining & and X', respectively. Let us define
a binary operation v on B by the formula x vy = (X AYy) <& (X < y). It
is easy to see that the restriction of this operation to {0, 1} coincides with
the Boolean disjunction operation, moreover v € 5 by our assumption on B.
Consider the (B, .A)-equation

(Tl <> Tz) \ (Tll <> TZ/) =1.

(Note that since clone B contains <>, it also contains the operation 1 = x; <
X1 occurring on the right side of the above equation.) It is straightforward to
verify that a function f satisfies this equation ifandonly if f e CUK'. m

Remark 1. Let us note that in Propositions 2 and 3, the operation A can be
replaced by any binary operation whose restriction to {0, 1} coincides with
the Boolean conjunction.

Proposition 4. A class K € B" is definable by (B, ©)-equations if and
only if it is definable by (B, Ca)-equations.

Proof. Sufficiency is obvious. To show necessity, let us assume that K is
defined by a set £ of (B, Oa)-equations. For any m-ary equation E € &, let
us evaluate E at every tuple a € A™. This way we get |A|™ equalities, each
of which can be regarded as a (3, Ca)-equation (the inner functions are the
constants obtained by evaluating the inner functions of E at a). A function
f satisfies these equations if and only if it satisfies the original equation E.
Unfolding each equation of £ in this manner, we end up with a (large) set of
(B, Ca)-equations that defines K. ]

D212i-MVLSC'V2 9
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Remark 2. In equation (2), only the arity of f is fixed; the arities of the
inner and outer functions are arbitrary. However, by making use of the fact
that the underlying set A is finite, we can actually restrict these arities. To see
this, let us consider a functional equation E of the form (2). Let us choose a
map p: [m] — A, and let us replace the variables x; in E by new variables
Yoy for all i € [m]. We denote the resulting |Al-ary equation by E”. If a
function f satisfies E, then it also satisfies E*, since every evaluation of E*
is also an evaluation of E. Conversely, if f satisfies E for all p € AlM then
it also satisfies E, since every evaluation of E is an evaluation of some E”.
Thus every equation E can be translated to a set of |Al-ary equations, i.e.,
we can always assume m = |A| in (2). As an illustration, let E be the ternary
equation

u(f (91 (X1, X2, x3)), (92 (X1, X2, X3))) = v (f (h (X1, X2, X3)))

with A = {0, 1}. The above procedure would translate E to a set of 8 equa-
tions, but actually the three equations

u(f (91 (Yo, Yo. ¥1)) . T (92 (Yo, Yo. ¥1))) = v (f (h (Yo. Yo. y1))) .
u(f (91 (y1, Yo, ¥0))» f (92 (y1. Yo. ¥0))) = v (f (h (y1. Yo, Yo))) .
u (f (91 (Yo, Y1, ¥0))» (92 (Yo Y1, Yo))) = v (f (h (Yo, Y1, ¥0)))

are sufficient, since for any a € A® at least one of a; = a,, a, = azora; = as
holds.

In a similar manner, we can also restrict the arities of the outer functions.
Indeed, once we have fixed the arities of the inner functions to be m = |A|
as above, we have only (JA|"A")" possibilities for the n-tuples of inner func-
tions (gi1, - - ., Gin) appearing in E, and we can identify those variables of u
that carry the same n-tuple of inner functions. This way we can replace u
(and similarly v) by a function of arity at most (JA]A")" = |A"'A™ "and by
adding fictitious variables if necessary, we can actually assume that the arity
of u and v is exactly |A|"A"™. Observe that clones are closed under form-
ing substitution instances of its members where variables are substituted for
variables; hence the equations we obtain by performing the replacements of
inner and outer functions as described above are still (B, .A)-equations. Thus,
a class is definable by arbitrary (B, A)-equations if and only if it is definable
by (B, A)-equations of the form (2) withm = |A] and r = s = |A["A™.
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3 ANECESSARY CONDITION FOR EQUATIONAL
DEFINABILITY

In this section we address the question: Which classes of functions are defin-
able by (B, A)-equations? In other words, we consider the following prob-
lem:

Problem 1. Given two clones A and B, determine necessary and sufficient
closure conditions on a class X which guarantee the existence of a defining
set of (B, A)-equations.

The general solution to this problem eludes us. However, we provide par-
tial results towards a general solution of this problem. To this extent we need
to recall some notions concerning certain special clones.

Two functions f: A" — Aandg: A™ — A are said to commute, denoted
by f L g, ifforallajj € A(i €[n], j € [m]), we have

f(9(aw1, a1z, ..., @), - .., 9(@n1, @nz, - .., @nm))
= g(f(alla azla L) an1)7 ooy f(alﬁh aZm, ce ey anm))~

The above definition of commutation is illustrated as follows: given any n x
m matrix

over A, first applying g to the rows of M and then applying f to the resulting
column vector yields the same result as first applying f to the columns of M
and then applying g to the resulting row vector.

Let A € Op beaclass of functions on A. The centralizer of .4, denoted by
A*, is defined as the set of all functions which commute with every member
of A, i.e,

A ={geOa:gL fforevery f e A}.
It is not difficult to verify that A™ is a clone for any class A (see, e.g., [16,

18, 25]). The clones O, and Z are centralizers of each other: (9’; = Za and
I, = Oa.

D212i-MVLSC'V2 11
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The following proposition establishes necessary conditions for a class X
to be definable by (B, .A)-equations.

Proposition 5. If a class K € B*" is definable by (5, .A)-equations, then

(A) forevery f e K and ¢ € (A*)D we have f (¢ (X1),...,¢ (X)) € K,
and

(B) for every ¢>0,fy,...,f,e K and & e (B*)Y we have
D (fy,..., fp) ek,

Proof. Assume that /C is definable by (B, .A)-equations, and let E be one of
the defining equations of /C, given in the form (2). For any function f: A" —
B and any tuple a € A™, let LHS(f, @) and RHS(f, a) denote the left-hand
side and the right-hand side of E, respectively, when evaluated for f = f at a.

For the first claim, let f € K, ¢ € (A*)®, and let ' : A" — B be defined

by
LI CST Xn) = fo(x), ..., @(Xn)).

For ae A" let ¢(a) :=(¢(ai),...,¢(am)). Since ¢ L gjj, it holds
that gij(¢(a) = ¢(gij(@) (i €[r], j € [n]). Therefore, LHS(f, ¢(a)) =
LHS(f’,a). A similar argument shows that RHS(f, ¢(a)) = RHS(f’, a).
Since f € K, the equality LHS(f, ¢(a)) = RHS(f, ¢(a)) holds for all a €
A™. From this it follows that LHS(f’, a) = RHS(f’, a) for all a € A™. This
means that f’ satisfies E, and we conclude that ' € K.

For the second claim, let ® e (B*)([), fi,..., f, € K. We need to prove
that f':= @ (fy,..., f,) satisfies E, i.e., that LHS(f’, a) = RHS(f’, a) for
allae A™. Since fq, ..., f, € IC, we have LHS( fj, @) = RHS(f;, a) fori =
1,..., £; therefore

®(LHS(fy1, @), ..., LHS(f,, @) = ®(RHS(f1, a), ..., RHS(f,,a) (4)
for all a € A™. Let us consider the following ¢ x r matrix over B:
f1(011, .., 9wm)@ -+ fi(9r1, ..., Grn)(@)

f(Ome o 0@ - FGrne e O)(@)

Applying @ to the columns and u to the resulting row vector, we obtain
LHS(f’, a), whereas applying u to the rows and ® to the resulting column
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vector, we obtain ®(LHS(fy, a), ..., LHS(f,, a)). Since ® L u, we have
LHS(f’, a) = ®(LHS(f1, @), ..., LHS(f,, a)). (5)
A similar argument shows that
RHS(f', a) = ®(RHS(fy, @), ..., RHS(f,, a)). (6)

From (4), (5), (6) it follows that LHS(f’, a) = RHS(f’, a) for all a € A™.
Thus f’ satisfies E. ]

Let us note that Example 6 illustrates that the above conditions are also
sufficient when B = A is a finite field, and B = Ly, A = Ca. Indeed, in this
case A™ is the clone of idempotent functions on A, thus (A*)(l) contains
only the identity function, hence f(¢(x1),...,@(Xy)) = f in condition (A)
of Proposition 5; this condition holds trivially for any class K. The ¢-ary
elements of B* are just the linear functionals on the vector space A‘, and
these are all of the form a;x; + - -- + a,x, (@ € A), hence B* = B = Ly.
Therefore, condition (B) of the above proposition expresses the fact that
is closed under linear combinations. As we have seen in Example 6, this
condition is necessary and sufficient for definability by (Lo, Ca)-equations.

The next example shows that the two necessary conditions given in Propo-
sition 5 are not always sufficient.

Example 7. Let B = A ={0,1, 2, 3}, and let v be the unary function on
A defined by v (0) = v (1) = v (2) =0, v (3) = 1. Let B be the clone gener-
ated by v, let A be any clone on A, and let X C (’)Sf) consist of the constants 0
and 1. We claim that /C satisfies the two conditions of Proposition 5. Indeed,
Condition (A) is trivial, as IC contains only constants. Condition (B) states
that every function ® € B* preserves the set {0, 1} € B. This is clear, since
{0, 1} is exactly the range of v.

Now let us suppose that K is defined by a set £ of (B, A)-equations. Since
v (v (x)) is constant 0, every function u € B is of the form u (x) = xj, u (x) =
v (xj) or u (x) = 0. As K contains only nullary functions, inner functions do
not appear at all in our (B, A)-equations, therefore, £ consists of some of the
equations v (f) = f,f = 0 and v (f) = 0. However, the equations v (f) = f
and f = 0 both define the set {0}, while v (f) = 0 defines the set {0, 1, 2},
hence no combination of these equations can define IC = {0, 1}. This shows
that KC is not definable by (B, .A)-equations.

In order to construct an example where the inner functions play a cru-
cial role, let us consider classes K € B” of unary functions definable by
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(Zs, A)-equations, where A is the clone generated by a given permuta-
tion group G < Sa. Such an equation is of the form f (g (x)) = f (h (x)) or
f (g (x)) =1 (h(y)), where g, h € G. Clearly, the latter equation is satisfied
only by constant functions. The solutions of f (g (x)) = f (h (x)) are described
in the next lemma, for which we need to introduce the following notation. For
any permutation g € Sa, let g be the equivalence relation on A whose blocks
are the cycles of g (in other words: the orbits of the group generated by g).

Lemma 1. A function f: A — B satisfies the equation f (g (x)) = f (h (x))
for given g, h € S, if and only if

Thg-t S ker f.

Proof. Let us assume that f satisfies f (g (x)) = f (h (x)), and let q = hg~?.
Evaluating the equation at x = g~* (a) for an arbitrary a € A, we obtain
f (@) = f (q(a)). By iteration, we get f (a) = f (qk (a)) forany a € A and
k e N.If (a,a’) € mpg1 = 7q, then there exists k € N such thata’ = g* (a),
hence we have f (a) = f (a'), i.e., (a.a’) € ker f.

Assume now that 74 C ker f, and leta € A. Since q (g (a)) =h(a), we
have (g (a), h (a)) € mq, hence (g (a), h(a)) € ker f, and this means that
f (g (a)) = f (h(a)) holds for all a € A. Therefore f satisfies the equation

f(g (x)) =f(h(x)). "

If a class I € B” is defined by a system of equations f (g; (X)) =
f (hi (x)) (i € [t]), then, according to the above lemma, the members of I
are exactly those functions f that satisfy each of the conditions Thgt €
ker f (i € [t]). These can be translated into a single condition \/; Mgt €
ker f, where v denotes the join operation in the lattice of equivalence rela-
tions (transitive closure of the union). Also, taking into account equations of
the form f (g (x)) = f (h (y)), we obtain the following description of classes
of unary functions definable by (Zg, .A)-equations.

Proposition 6. Let A be the clone generated by a given permutation group
G < Sa. Then aclass k£ € B” is definable by (Zg, .A)-equations if and only
if either K is the class of all constant functions or there exists a subset Q C G
such that

K={feB":\/m Ckerf}.
qeQ

With the help of Proposition 6, we can give another example showing
that the conditions of Proposition 5 do not always guarantee definability by
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(B, A)-equations. In contrast to Example 7, here the key role is played by the
inner functions.

Example 8. Let A be the clone generated by the alternating group on
A=1{0,1,2,3}, and let B = Zg, where B is an arbitrary set with at least
two elements. Then the class K = {f € BA: f (0) = f (1)} satisfies the two
conditions of Proposition 5, but it is not definable by (3, .A)-equations. To
see this, let us observe that IC = {f € BA : 9 C ker f}, where 9 denotes the
equivalence relation on A whose blocks are {0, 1}, {2}, {3}. From Proposi-
tion 6 it follows that K is definable by (B, A)-equations if and only if ¢ is the
join of some equivalences rq with each g being an even permutation. How-
ever, ¥ is an atom in the lattice of equivalence relations on A, hence it is join
irreducible. Therefore, if IC was definable by (B, .A)-equations, then © would
be equal to 7 for some even permutation g. This is clearly not the case, as
the only permutation g with 77y = & is the transposition (01), which is an odd
permutation. This shows that X is not definable by (3, .A)-equations.

To verify that K satisfies the conditions of Proposition 5, let us observe that
(A*)D contains only the identity function*, hence condition (A) is trivially
satisfied. As I; = Og, condition (B) is equivalent to condition (7) below,
and we will see in Remark 4 that it is satisfied if and only if /C is of the form
K ={f e BA: 9 C ker f} for some equivalence relation #, which is indeed
the case in our example.

Remark 3. In light of Remark 2, the conditions of Proposition 5 can be
slightly strengthened. Namely, condition (A) must hold for every unary func-
tion ¢ that commutes with all | A|-ary members of A, and similarly, in condi-
tion (B) it suffices to require that & commutes with the |A|"'A'" -ary part of
B. However, as Examples 7 and 8 show, these stronger necessary conditions
are still not sufficient for definability by (B, A)-equations.

4 CHARACTERIZATIONS OF CLASSES DEFINABLE
BY EQUATIONSINDUCED BY THE SMALLEST AND
LARGEST CLONES

In the rest of the paper we show that the necessary conditions presented in
Proposition 5 are sufficient when B € {Zg, Og} and A € {Za, Oa}. As O;
= Tg, in the case B = Og condition (B) is satisfied by every class, while for

* Itis straightforward to check that the only unary function commuting with all even permutations is the
identity, whenever the underlying set has at least 4 elements. Alternatively, one can use the description
of the centralizers of alternating groups given by Machida and Rosenberg [21].
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B = 1y it takes the form
Vi,....fiekKvoecOY: ®(f,.... f) ek, @)

since I; = (0. Similarly, condition (A) is trivial for A = O, and for A =
ZIa it reads as

VEeKVpeOP: f(p(x),....0(x)) € K. (8)

Lemma2. Aclass K € B*" is definable by (B, Za)-equations if and only if
it is definable by (B, Oa)-equations and satisfies condition (8).

Proof. The necessity of the conditions follows from Proposition 5. To
prove the sufficiency, let us suppose that £ € BA" is definable by (B, O)-
equations and satisfies (8). By Proposition 4, there exists a system & of
(B, Ca)-equations that defines XC, moreover, we may assume that only con-
stant functions appear as inner functions in every equation of £. To sim-
plify notation, in the following we will assume that A = {1, 2, ..., k}. Let
us replace every occurrence of every constant i € A by the i-th k-ary pro-
jection xi(k) in every equation of £. This way we obtain a system &’ of k-ary
(B, Za)-equations. We will prove that £’ defines .

Assume first that a function f satisfies £’. Then the two sides of each
equation of £ evaluate to the same value for f = f atevery a € AX. Choosing
a=(1,2,...,k), we get exactly the original equations in £. Therefore f
satisfies £, and this implies that f € K.

Now let us assume that f € &, and let us evaluate the two sides of an
equation in & forf = f atan arbitrary tuple a € AX. Then we obtain the same
values as if we evaluated the two sides of the corresponding equation of £ for
the functionf = f (¢ (X1), ..., ¢ (Xn)), where ¢ is the unary map defined by
@ (i) = a; forevery i € A. Since K has property (8), f (¢ (X1),..., ¢ (Xn)) €
IC, hence it satisfies every equation of £. This shows that f satisfies every
equation of &'. [ ]

Theorem 1. Every class K € BA" is definable by (Og, Oa)-equations.

Proof. We have seen in Example 5 that { f} is definable for any given f €
BA". Since A and B are finite sets, any class & € BA" is a finite union of
singletons, hence the theorem follows by Proposition 3. [
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Theorem 2. Aclass K € B" is definable by (Og, Za)-equations if and only
if it satisfies condition (8).

Proof. Follows from Lemma 2 and Theorem 1. [ ]

Theorem 3. Aclass K € B*" is definable by (Zg, ©a)-equations if and only
if it satisfies condition (7).

Proof. The necessity of the condition follows from Proposition 5. For the
sufficiency, let us assume that X € BA" satisfies (7), and let f € BA" be an
arbitrary function that satisfies every (Zg, Oa)-equation that is satisfied by
all members of IC. We will prove that f € .

Let us choose ¢ = |K|, let K = {fy,..., f¢}, and for any a € A" let us
write F (a) for the ¢-tuple (fy (@), ..., f, (a)). Let O be an arbitrary element
of A, and for any b € B let

f(a). ifb=F();
CD(b):{Q iffac A":b=F (a).

We claim that this formula gives rise to a well-defined function ® e O(Ef).
Suppose that b =F(a) = F(a) for some tuples a, & € A". Let us consider
the functional equation

f(as,....,an)="f(a;,....a}). 9)

This is an (Zg, Oa)-equation, since the outer function on both sides is the
identity function (i.e., the first unary projection), and the inner functions are
constants. The equality F(a) = F (&) implies that every element of C satis-
fies (9). Therefore, according to our assumption, f satisfies (9) as well. This
means that f (a) = f (&), hence ® (b) = f(a) = f (&) is well defined.

Since K satisfies condition (7), in order to prove that f € IC, it suffices to
verify that f = & (fy, ..., f;). Indeed, for all a € A" we have

O (fr,.... f)@=2(F@)="f(a
by the definition of ®. ]
Remark 4. As the proof of Theorem 3 shows, a class K € BA" satisfies

condition (7) if and only if it can be defined by equations of the form (9),
i.e., by equations that involve only constants as inner functions (cf. also
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Proposition 4). A function f satisfies equation (9) ifand only if f(a) = f (&),
which is equivalent to (a, &) € ker f. Therefore, the assertion that a given set
£ of equations of this form is satisfied by a function f is equivalent to the
condition R C ker f, where R is a binary relation on A" (consisting of all
pairs (a, &) that appear in £). If ¢ is the least equivalence relation containing
R, then clearly R C ker f if and only if 9 < ker f. Thus a class K < BA"
satisfies (7) if and only if there exists an equivalence relation ¢+ on A" such
that

K={feB" 9 Ckerf}.

Theorem 4. Aclass K € BA" is definable by (Zs, Za)-equations if and only
if conditions (7) and (8) hold.

Proof. Follows from Lemma 2 and Theorem 3. [

ACKNOWLEDGMENT

The authors would like to thank Eszter K. Horvath for helpful discussions.

The first named author is supported by the internal research project F1R-
MTH-PUL-09MRDO of the University of Luxembourg. The third nhamed
author acknowledges that the present project is supported by the TAMOP-
4.2.1/B-09/1/KONV-2010-0005 program of National Development Agency
of Hungary, by the Hungarian National Foundation for Scientific Research
under grants no. K77409 and K83219, by the National Research Fund of
Luxembourg, and cofunded under the Marie Curie Actions of the European
Commission (FP7-COFUND).

REFERENCES

[1] J. Aczél, Lectures on Functional Equations and Their Applications, Dover Publications
Inc., New York, 1986.

[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of
Mathematics and Its Applications, vol. 31, Cambridge University Press, Cambridge, 1989.

[3] V. G. Bodnar€uk, L. A. Kaluznin, V. N. Kotov and B. A. Romov, Galois theory for Post
algebras. I, Il Kibernetika 3 (1969) 1-10, 5 (1969) 1-9 (in Russian). English translation:
Cybernetics 5 (1969) 243-252, 531-539.

[4] M. Couceiro, On the lattice of equational classes of Boolean functions and its closed inter-
vals, J. Mult.-Valued Logic Soft Comput. 18 (2008) 81-104.

[5] M. Couceiro and S. Foldes, Definability of Boolean function classes by linear equations
over GF(2), Discrete Appl. Math. 142 (2004) 29-34.

D212i-MVLSC'V2 18



[6]

[71

(8]

[]

[20]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

ON EQUATIONAL DEFINABILITY OF FUNCTION CLASSES 19

M. Couceiro and S. Foldes, On closed sets of relational constraints and classes of functions
closed under variable substitutions, Algebra Universalis 54 (2005) 149-165.

M. Couceiro and S. Foldes, Functional equations, constraints, definability of function
classes, and functions of Boolean variables, Acta Cybernet. 18 (2007) 61-75.

M. Couceiro and S. Foldes, Function classes and relational constraints stable under com-
positions with clones, Discuss. Math. Gen. Algebra Appl. 29 (2009) 109-121.

M. Couceiro, E. Lehtonen, and T. Waldhauser, On equational definability of function
classes, 41st IEEE International Symposium on Multiple-Valued Logic (ISMVL 2011),
IEEE Computer Society, 2011, pp. 182-186.

M. Couceiro and J.-L. Marichal, Axiomatizations of Lovasz extensions of pseudo-Boolean
functions, Fuzzy Sets and Systems 181 (2011) 28-38.

M. Couceiro and M. Pouzet, On a quasi-ordering on Boolean functions, Theoret. Comput.
Sci. 396 (2008) 71-87.

O. Ekin, S. Foldes, P. Hammer, and L. Hellerstein, Equational characterizations of
Boolean function classes, Discrete Math. 211 (2000) 27-51.

S. Foldes, Equational classes of Boolean functions via the HSP theorem, Algebra Univer-
salis 44 (2000) 309-324.

S. Foldes and G. R. Pogosyan, Post classes characterized by functional terms, Discrete
Appl. Math. 142 (2004) 35-51.

D. Geiger, Closed systems of functions and predicates, Pacific J. Math. 27 (1968) 95-100.
M. Hermann, On Boolean primitive positive clones, Discrete Math. 308 (2008) 3151-3162.

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities.
Cauchy’s Equation and Jensen’s Inequality, (2nd ed.) Birkhauser Verlag, Basel, 2009.

A. V. Kuznecov, On detecting non-deducibility and non-expressibility, Logical deduction,
Nauka, Moscow, 1979, pp. 5-33 (in Russian).

D. Lau, Function Algebras on Finite Sets, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2006.

L. Lovasz, Submodular functions and convexity, Mathematical Programming: The state of
the art (Bonn, 1982), Springer, Berlin, 1983, pp. 235-257.

H. Machida and 1. G. Rosenberg, On the centralizers of monoids in clone theory, 33rd
IEEE International Symposium on Multiple-Valued Logic (ISMVL 2003), IEEE Computer
Society, 2003, pp. 303-308.

S. S. Marchenkov and V. S. Fedorova, Solutions of systems of functional equations of
many-valued logic, Moscow Univ. Comput. Math. Cybernet. 33 (2009) 197-201.

N. Pippenger, Galois theory for minors of finite functions, Discrete Math. 254 (2002) 405—
419.

R. Pdschel and L. A. Kaluznin, Funktionen- und Relationenalgebren, Mathematische
Monographien, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.

L. Szabd, On the lattice of clones acting bicentrally, Acta Cybernet. 6 (1984) 381-388.

D. M. Topkis, Minimizing a submodular function on a lattice, Operations Res. 26 (1978)
305-321.

D. J. A. Welsh, Matroid Theory, L. M. S. Monographs, No. 8., Academic Press, London,
New York, 1976.

D212i-MVLSC'V2 19




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSOutlook
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [4000 4000]
  /PageSize [504.000 720.000]
>> setpagedevice


