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The arity gap of a function of several variables is defined as the mini-
mum decrease in the number of essential variables when essential vari-
ables of the function are identified. We present a brief survey on the
research done on the arity gap, from the first studies of this notion up to
recent developments, and discuss some natural extensions and related
problems.

1 INTRODUCTION

Let A and B be arbitrary nonempty sets. A function of several variables from
A to B is a map f : An → B for some integer n ≥ 1 called the arity of f. If
A = B, then we speak of operations on A. Operations on the two-element set
{0, 1} are called Boolean functions. We denote the set of all finitary functions
from A to B by

FAB :=
⋃
n≥1

B An
.

We say that the i-th variable of f : An → B (1 ≤ i ≤ n) is essential, if there
exist n-tuples

(a1, . . . , ai−1, ai , ai+1, . . . , an), (a1, . . . , ai−1, a′
i , ai+1, . . . , an) ∈ An (1)

1
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that only differ in the i-th position, such that

f (a1, . . . , ai−1, ai , ai+1, . . . , an) �= f (a1, . . . , ai−1, a′
i , ai+1, . . . , an).

We refer to the pair of n-tuples in (1) as a witness of essentiality of the i-
th variable. If the i-th variable of f is not essential, then we say that it is
inessential. The number of essential variables of f is called the essential arity
of f and it is denoted by ess f . If ess f = m, then we say that f is essentially
m-ary.

For i, j ∈ {1, . . . , n}, i �= j , the function fi← j : An → B given by the rule

fi← j (a1, . . . , an) = f (a1, . . . , ai−1, a j , ai+1, . . . , an),

for all a1, . . . , an ∈ A, is called a variable identification minor of f, obtained
by identifying the i-th variable with the j-th variable. Note that the i-th vari-
able of fi← j is necessarily inessential.

Let f : An → B be a function with at least two essential variables. The
arity gap of f is the quantity

gap f := min
i �= j

(ess f − ess fi← j ),

where i and j range over the set of indices of essential variables of f. Note
that, by definition, 1 ≤ gap f ≤ ess f .

We say that f and g are equivalent if each one can be obtained from the
other by permutation of variables and addition or deletion of inessential vari-
ables. Whenever we consider the arity gap of a function, we can assume that
all of its variables are essential. This is not a significant restriction, because
every nonconstant function is equivalent to a function with no inessential
variables, and equivalent functions have the same arity gap.

Example 1. Let F be an arbitrary field. Consider the polynomial function
f : F3 → F induced by x1x3 − x2x3. It is clear that all variables of f are
essential, i.e., ess f = 3. Let us consider the various variable identification
minors of f:

f1←2 = 0, f2←1 = 0,

f1←3 = x2
3 − x2x3, f3←1 = x2

1 − x1x2,

f2←3 = x1x3 − x2
3 , f3←2 = x1x2 − x2

2 .
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We have that

ess f1←2 = ess f2←1 = 0,

ess f1←3 = ess f3←1 = ess f2←3 = ess f3←2 = 2.

Hence gap f = 1.

Example 2. Let f : {0, 1}n → {0, 1} be the Boolean function induced by
the polynomial x1 + x2 + · · · + xn over the two-element field. Then for each
i �= j we have that fi← j is induced by the polynomial∑

�∈{1,...,n}\{i, j}
x�.

Thus ess f = n and ess fi← j = n − 2 for all i �= j ; hence gap f = 2.

Example 3. Let A be a finite set with k ≥ 2 elements, say, A =
{0, 1, . . . , k − 1}. Let f : An → A, 2 ≤ n ≤ k, be given by the rule

f (a1, . . . , an) :=
{

1 if (a1, . . . , an) = (0, 1, . . . , n − 1),

0 otherwise.

It is easy to see that all variables of f are essential, and for all i �= j , the
function fi← j is identically 0. Hence gap f = n.

As shown by the examples above, every positive integer is the arity gap
of some function of several variables. Are all positive integers possible as the
arity gaps of functions of several variables from A to B for a fixed domain
A and codomain B? Does the size of the domain or the codomain have any
influence on the set of possible arity gaps? Or even, could one hope to clas-
sify functions according to their arity gap? These questions have been raised
and studied by several authors. In this paper, we survey the research work
done on this topic over the years. In the bibliography, we indicate literature
relevant to the topics of essential variables (see [3,4,15,16,22,24,27]), vari-
able identification minors and variants (see [2, 5, 14, 17–20, 23, 28, 31]) and
arity gap and its variants (see [6–11, 13, 24–26, 30]).

This survey is organized as follows. We start in Section 2 with basic
notions and classifications of special types of functions (namely, Boolean and
pseudo-Boolean functions) according to their arity gap; we also give a general
description of arity gap, which serves as a basis for the later sections. Sec-
tion 3 reports on natural decomposition schemes which arise from arity gap
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and which are then used in Section 4 to enumerate functions with prescribed
arity and arity gap. In Section 5, we make the description of arity gap more
explicit for some special classes of functions (namely, order-preserving func-
tions and polynomial functions over fields). Then, in Section 6, we briefly
discuss the order which naturally arises from variable identification (namely,
simple minor relation) and some parametrized variants of the arity gap. We
conclude this survey by mentioning some open problems and proposing new
directions for future research in Section 7.

2 FROM THE BEGINNINGS TO A COMPLETE
CLASSIFICATION

To the best of our knowledge, the first study of arity gap appeared in print
in the 1963 paper by Salomaa [24]. In that paper, he addressed the question
how the number of essential variables of a function is affected by substitu-
tion of constants for variables or by identification of variables. Concerning
identification of variables, his main result was the following.

Theorem 1 (Salomaa [24]). Let f : {0, 1}n → {0, 1} be a Boolean function
with at least two essential variables. Then gap f ≤ 2.

As illustrated by Example 2, this upper bound is attained. On the other
hand, Example 1 provides a Boolean function of arity gap 1. Since the arity
gap is always at least 1, there are no other possible values for the arity gap of
Boolean functions. This calls for a complete classification of Boolean func-
tions into those with arity gap 1 and those with arity gap 2. Such a strength-
ening of Salomaa’s result was obtained in [6].

Theorem 2 ([6]). Let f : {0, 1}n → {0, 1} be a Boolean function with at least
two essential variables. Then gap f = 2 if and only if f is equivalent to one
of the following functions:

1. x1 + x2 + · · · + xm + c for some m ≥ 2,
2. x1x2 + x1 + c,
3. x1x2 + x1x3 + x2x3 + c,
4. x1x2 + x1x3 + x2x3 + x1 + x2 + c,

where c ∈ {0, 1}. Otherwise gap f = 1.

The number of n-ary Boolean functions f with ess f = n and gap f =
2 can be straightforwardly read off from the list of functions given in
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Theorem 2. Since the number of functions f : An → B (|A| = k, |B| = �)
with ess f = m (0 ≤ m ≤ n) is

(
n

m

) m∑
i=0

(−1)i

(
m

i

)
�km−i

(2)

(see Wernick [29]), the number of n-ary Boolean functions with ess f = n
and gap f = 1 can be easily obtained.

Theorem 2 was later reproved using different techniques by Shtrakov
in [25], where he also addressed the problem of counting the number of
Boolean functions with a given arity gap.

We call functions of several variables from {0, 1} to an arbitrary nonempty
set B pseudo-Boolean functions. Theorem 2 was extended for pseudo-
Boolean functions in [7].

Theorem 3 ([7]). Let f : {0, 1}n → B (n ≥ 2) be a pseudo-Boolean function
all of whose variables are essential. Then gap f = 2 if and only if f satisfies
one of the following conditions:

1. n = 2 and f is a nonconstant function satisfying f (0, 0) = f (1, 1),
2. f = g ◦ h, where g : {0, 1} → B is injective and h : {0, 1}n → {0, 1} is

a Boolean function with gap h = 2, as given by Theorem 2.

Otherwise gap f = 1.

A partial function of several variables from A to B is a map f : S → B
where S ⊆ An for some integer n ≥ 1, called the arity of f. If S = An , we
speak of total functions. Essential variables are defined for partial functions in
the same way as for total functions, but the n-tuples of (1) forming a witness
of essentiality are required to be in S. In this way, the notions of essential
arity and arity gap can be naturally extended to partial functions.

The following notions were introduced by Berman and Kisielewicz [1].
Denote by P(A) the power set of A, and define the function
oddsupp:

⋃
n≥1 An → P(A) by

oddsupp(a1, . . . , an) :=
{

a ∈ A :
∣∣{ j ∈ {1, . . . , n} : a j = a

}∣∣ is odd
}
.

We say that a partial function f : S → B (S ⊆ An) is determined by oddsupp
if there exists a function f ∗ : P(A) → B such that

f = f ∗ ◦ oddsupp|S.
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Willard showed that if f : An → B, where A is finite, ess f = n >

max(|A|, 3) and gap f ≥ 2, then f is determined by oddsupp. It is easy to
verify that if f is determined by oddsupp and ess f ≥ 2, then gap f = 2.

Theorem 4 (Willard [30]). Let A and B be finite nonempty sets, and let
k := |A|. Suppose that f : An → B depends on all of its variables. If n > k,
then gap f ≤ 2. Moreover, if n > max(k, 3), then gap f = 2 if and only if f is
determined by oddsupp.

This theorem deals only with functions over finite domains with suffi-
ciently large essential arities; if A and B are finite, then gap f ≤ 2 for almost
all functions. The condition on essential arity was removed in [7], where a
full classification of finite functions according to their arity gap was given in
terms of so-called quasi-arity. As pointed out in [9], this classification theo-
rem holds more generally – with no change needed in its proof – for functions
with arbitrary domains. Thus, the study of arity gap culminated in Theorem 5,
which will be presented below, after introducing some terminology.

For n ≥ 2, let

An
= := {(a1, . . . , an) ∈ An : ai = a j for some i �= j}.

Let f : An → B. Any function g : An → B satisfying f |An= = g|An= is called
a support of f. The quasi-arity of f, denoted qa f , is defined as the minimum
of the essential arities of all supports of f, i.e., qa f := ming ess g where g
ranges over all supports of f. If qa f = m, then we say that f is quasi-m-ary.
Note that if A is finite, then An

= = An whenever n > |A|. Hence qa f = ess f
whenever n > |A|. Moreover, qa f = ess f |An= whenever n �= 2.

Theorem 5 ([7,9]). Let A and B be arbitrary sets with at least two elements.
Suppose that f : An → B, n ≥ 2, depends on all of its variables.

1. For 3 ≤ p ≤ n, gap f = p if and only if qa f = n − p.
2. For n �= 3, gap f = 2 if and only if qa f = n − 2 or qa f = n and f |An=

is determined by oddsupp.
3. For n = 3, gap f = 2 if and only if there is a nonconstant unary function

h : A → B and i1, i2, i3 ∈ {0, 1} such that

f (x1, x0, x0) = h(xi1 ),

f (x0, x1, x0) = h(xi2 ),

f (x0, x0, x1) = h(xi3 ).

4. Otherwise gap f = 1.
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Theorem 5 gives answers to the questions posed at the end of Section 1.
The set of possible arity gaps of functions of several variables from A to
B is {n ∈ N \ {0} : n ≤ |A|}. This does not depend on the cardinality of the
codomain B, as long as |B| ≥ 2 (otherwise, all functions are constant and
hence have no essential variables).

3 DECOMPOSITIONS OF FUNCTIONS BASED ON THE
ARITY GAP

Theorem 5 provides a complete classification of functions according to their
arity gap. Unfortunately, it is not as explicit as Theorems 2 and 3 that deal
with Boolean and pseudo-Boolean functions. The main reason for this is the
fact that no special structure was assumed on the sets A and B. By assuming
that the codomain B has a group structure, more explicit descriptions can be
obtained. In this direction, two cases are distinguished.

First, functions f : An → B with arity gap p ≥ 3 are shown to be decom-
posable into a sum of a quasi-nullary function and an essentially (n − p)-ary
function.

Theorem 6 ([9]). Assume that (B; +) is a group with neutral element 0. Let
f : An → B, n ≥ 3, and 3 ≤ p ≤ n. Then the following two conditions are
equivalent:

1. ess f = n and gap f = p.
2. There exist functions g, h : An → B such that f = h + g, h|An= ≡ 0, h �≡

0, and ess g = n − p.

The decomposition f = h + g given above is unique.

Similar decompositions were presented by Shtrakov and Koppitz [26],
without proving uniqueness.

Second, we deal with functions with arity gap 2. In this case we need to
further assume that B is a Boolean group (i.e., a group satisfying x + x = 0
for all x ∈ B). We also need to introduce some notation. Let ϕ : An−2 → B
be a function that is determined by oddsupp, i.e., ϕ = ϕ* ◦ oddsupp |An−2 , for
some function ϕ* : P(A) → B. Let ϕ̃ be the n-ary function defined by

ϕ̃(x1, . . . , xn) :=
∑
k<n

2|n−k

∑
1≤i1<···<ik≤n

ϕ*(oddsupp(xi1 , . . . , xik )). (3)
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Observe that each summand is a variable identification minor of ϕ, namely

ϕ*(oddsupp(xi1 , . . . , xik )) = ϕ(xi1 , . . . , xik , y, . . . , y),

where the number of y’s is n − 2 − k, which is an even number; therefore
y is indeed an inessential variable of the function on the right-hand side;
moreover, the order of the variables is irrelevant. The function ϕ̃ is obviously
totally symmetric, and it can be shown that ϕ̃|An= is determined by oddsupp;
from these facts it follows that ϕ̃ is determined by oddsupp as well (see [9]
for details).

Theorem 7 ([9]). Assume that (B; +) is a Boolean group with neutral ele-
ment 0. Let f : An → B, n ≥ 4. Then the following two conditions are equiv-
alent:

1. ess f = n and gap f = 2.
2. There exist functions g, h : An → B such that f = h + g, h|An= ≡ 0, and

either

(a) ess g = n − 2 and h �≡ 0, or
(b) g = ϕ̃ for some nonconstant (n − 2)-ary function ϕ that is deter-

mined by oddsupp.

The decomposition f = h + g given above is unique.

Theorem 2 shows that for all but finitely many Boolean functions, gap f =
2 implies that f is a sum of unary functions. The following theorem provides
an analogous result for functions f : An → B, where A is a finite set and B
is a Boolean group.

Theorem 8 ([12]). Let A be a finite set, B a Boolean group, and let
f : An → B be a function such that ess f > max(|A|, 3). Then gap f ≤ 2,
and if gap f = 2, then f is a sum of functions of essential arity at most
|A| − 1.

Let f be a polynomial function over GF(q), the q-element finite field, with
ess f = n > max(q, 3) and gap f = 2. By the above theorem, if q is even,
then f is a sum of functions of arity at most q − 1. Since finite fields are func-
tionally complete, we can represent each summand by a polynomial. This
implies that f is a sum of monomials, where each monomial involves at most
q − 1 variables. If q = 2, then we can conclude that every Boolean function
f with ess f ≥ 4 and gap f = 2 is linear, in accordance with Theorem 2.

D213i-MVLSC˙V2 8



A SURVEY ON THE ARITY GAP 9

The next example shows that Theorem 7 and Theorem 8 do not hold for
arbitrary groups B.

Example 4 ([11]). Let q be an odd prime power, and let f be the following
polynomial function over GF(q):

f (x1, . . . , xn) =
n∏

i=1

(
xq−1

i − 1

2

)
,

Here 1
2 stands for the multiplicative inverse of 2 = 1 + 1 (it exists, since

GF(q) is of odd characteristic). Let us identify the first two variables of f:

f (x1, x1, x3, . . . , xn) =
(

xq−1
1 − 1

2

)2

·
n∏

i=3

(
xq−1

i − 1

2

)

=
(

x2q−2
1 − xq−1

1 + 1

4

)
·

n∏
i=3

(
xq−1

i − 1

2

)

= 1

4
·

n∏
i=3

(
xq−1

i − 1

2

)
,

since xq
1 = x1 holds identically in GF(q). We see that x1 becomes an inessen-

tial variable, and this together with the symmetry of f shows that f is deter-
mined by oddsupp, hence gap f = 2.

If f were a sum of at most (n − 1)-ary functions, then every monomial of f
would involve at most n − 1 variables. However, this is clearly not the case,
as the expansion of f involves the monomial xq−1

1 · · · xq−1
n , which will not be

cancelled by any other monomial. Thus f cannot be expressed as a sum of
functions of arity smaller than the arity of f. If n > q, then the only support
of f is itself, thus a support g satisfying condition 2a) or 2b) of Theorem 7
cannot exist.

Theorem 8 and Example 4 ask for a characterization of those groups B for
which Theorem 8 still holds. This question was partially answered in [12],
where abelian groups B were classified according to whether every function
f : An → B with gap f = 2 can be decomposed into a sum of functions with
a smaller number of essential variables. This result followed from a study
of a hierarchy of function classes based on decomposability, which we now
describe.

Let (B; +) be an abelian group with neutral element 0. Recall that the
order of a group element b ∈ B is the smallest positive integer n such that

D213i-MVLSC˙V2 9
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b + · · · + b︸ ︷︷ ︸
n times

= 0. If such a number does not exist, the order of b is ∞. If

the orders of the elements of B have a finite common upper bound, then the
exponent of B is defined as the least upper bound (or, equivalently, the least
common multiple) of the orders of its members; otherwise the exponent of B
is ∞. For example, the exponent of a Boolean group is 2.

A function f : An → B is said to be k-decomposable, if it has an additive
decomposition f = f1 + · · · + fs , where each fi : An → B (1 ≤ i ≤ s) has
essential arity at most k. If f is (n − 1)-decomposable, we simply say that it
is decomposable.

The following result provides a characterization of k-decomposable func-
tions. For I ⊆ [n] and a = (a1, . . . , an) ∈ An , let xa

I denote the n-tuple which
is obtained from x = (x1, . . . , xn) ∈ An by replacing its i-th component by ai ,
for each i ∈ I .

Proposition 1 ([12]). Let (B; +) be an abelian group, and let c ∈ A. A func-
tion f : An → B is k-decomposable if and only if for all a ∈ An and I ⊆ [n]
with |I | > k, we have

∑
J⊆I

(−1)|I\J | f (ca
J ) = 0,

where c := (c, . . . , c).

Proposition 1 gave rise to the following result which reveals a dichotomy
of abelian groups with respect the decomposability of functions determined
by oddsupp.

Theorem 9 ([12]). Let A be an arbitrary set with at least two elements, and
let B be an abelian group. Then every function f : An → B that is determined
by oddsupp is decomposable if and only if A is finite and the exponent of B is
a power of 2. Moreover, if A is finite and the exponent of B is 2e, then every
function determined by oddsupp is (|A| + e − 2)-decomposable.

The following example shows that the bound (|A| + e − 2) in Theorem 9
cannot be improved.

Example 5. Let A = {0, 1, . . . , k − 1}, and let B be an arbitrary abelian
group of exponent 2e. Fix an element b ∈ B of order 2e. Let ϕ : P(A) → B

D213i-MVLSC˙V2 10
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be defined by

ϕ(T ) =
{

b, if T ⊇ A \ {0},
0, otherwise,

let n ≥ k + e − 2, and let f : An → B be given by f (x) = ϕ(oddsupp(x)).
Theorem 9 asserts that f is (k + e − 2)-decomposable; however, it can be
shown that f is not (k + e − 3)-decomposable (see [12]).

4 THE NUMBER OF FUNCTIONS WITH A GIVEN ARITY GAP

The unique decompositions provided by Theorems 6 and 7 enable us to actu-
ally count the number of functions f : An → B with ess f = n ≥ 2 and
gap f = p for every 1 ≤ p ≤ n. The problem of determining these num-
bers for operations on finite sets was raised by Shtrakov and Koppitz in [26],
where upper bounds were provided. An answer to the counting problem with
exact numbers was given in [9].

Let A and B be finite sets with |A| = k, |B| = �. Let us denote by Gk�
np

the number of functions f : An → B with ess f = n and gap f = p. It is
well known (see Wernick [29]) that the number of functions g : An → B that
depend on exactly r variables (0 ≤ r ≤ n) is

U k�
nr :=

(
n

r

) r∑
i=0

(−1)i

(
r

i

)
�kr−i

.

Let (m)i denote the falling factorial (m)i := m(m − 1) · · · (m − (i − 1)). The
number of functions h : An → B such that h|An= ≡ 0, h �≡ 0 is then given by

V k�
n := �(k)n − 1.

Let us denote by Ok�
n the number of functions f : An → B such that

ess f = n, qa f = n and f |An= is determined by oddsupp. It can be shown
(see [9]) that for k ≥ 2, � ≥ 2, n ≥ 2,

Ok�
n =

{
�2k−1 − �, if n > k,

�(k)n (�Sk
n − �), if n ≤ k,

where

Sk
n =

{∑ n
2 −1
i=0

( k
2i

)
, if n is even,∑ n−1

2 −1
i=0

( k
2i+1

)
, if n is odd.

D213i-MVLSC˙V2 11



12 MIGUEL COUCEIRO et al.

With the notation and facts given above, we can now provide the number
Gk�

np of functions f : An → B with ess f = n and gap f = p.

Theorem 10 ([9]). Let k ≥ 2, � ≥ 2, n ≥ 2.

1. If n > k and 3 ≤ p ≤ n, then Gk�
np = 0.

2. If n > k and n ≥ 4, then

Gk�
n2 = Ok�

n = �2k−1 − �, Gk�
n1 = U k�

nn − Gk�
n2.

3. If 3 ≤ n ≤ k and 3 ≤ p ≤ n, then Gk�
np = U k�

n(n−p)V
k�

n .
4. If 4 ≤ n ≤ k, then

Gk�
n2 = U k�

n(n−2)V
k�

n + Ok�
n , Gk�

n1 = U k�
n(n−1)V

k�
n + U k�

nn�(k)n − V k�
n �kn − Ok�

n

5. Gk�
32 = (8�(k)3 − 3)(�k − �), Gk�

31 = U k�
33 − Gk�

33 − Gk�
32.

6. Gk�
22 = �(k)2+1 − �, Gk�

21 = U k�
22 − Gk�

22.

5 SPECIAL CLASSES OF FUNCTIONS

Theorems 5, 6 and 7 lack the explicitness that is enjoyed by Theorems 2 and 3
in the sense that in the former ones the arity gap of each function is described
in terms of the essential arity of some related function. However, for some
special classes of functions, our results become explicit. Examples include
pseudo-Boolean functions (see Theorem 3), Lovász extensions (in particular,
the so-called Choquet integrals), multilinear polynomial functions and lattice
polynomial functions (in particular, the so-called Sugeno integrals). In this
section we extend these results to other classes of functions, namely of order-
preserving functions (Subsection 5.1) and of polynomial functions over fields
(Subsection 5.2), and provide rather explicit descriptions of arity gap within
these classes.

5.1 Order-preserving functions
Let (A; ≤A) and (B; ≤B) be partially ordered sets. A function f : An → B
is said to be order-preserving (with respect to the partial orders ≤A and ≤B)
if for all a, b ∈ An , f (a) ≤B f (b) whenever a ≤A b, where a ≤A b denotes
the componentwise ordering of tuples, i.e., a ≤A b if and only if ai ≤A bi for
all i ∈ {1, . . . , n}. We say that (A; ≤A) is bidirected if every pair of elements
of A has both an upper bound and a lower bound.

D213i-MVLSC˙V2 12



A SURVEY ON THE ARITY GAP 13

Theorem 11 ([10]). Let (A; ≤A) be a bidirected poset, let (B; ≤B) be any
poset, and let f : An → B (n ≥ 2) be an order-preserving function such that
ess f = n. Then gap f = 2 if and only if n = 3 and there is a nonconstant
order-preserving unary function h : A → B such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

Otherwise, gap f = 1.

By imposing stronger assumptions on the underlying posets, we obtain
more stringent descriptions of order-preserving functions with arity gap 2.
For example, if (A; ≤A) and (B; ≤B) are lattices and the function h occur-
ring in Theorem 11 is a lattice homomorphism whose image is a distributive
sublattice of B, then it can be shown that

f = med
(
h(x1), h(x2), h(x3)

)
,

where med denotes the ternary median function on Im h, given by

med(a, b, c) := (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)

= (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c).

From this observation and Theorem 11, we obtain the following explicit clas-
sification of order-preserving functions defined on chains.

Corollary 1 ([10]). Let (A; ≤A) be a chain and let (B; ≤B) be any lattice.
Let f : An → B be an order-preserving function. Then gap f = 2 if and
only if n = 3 and f = med

(
h(x1), h(x2), h(x3)

)
for some nonconstant order-

preserving unary function h : A → B (here med denotes the median function
on Im h). Otherwise gap f = 1.

5.2 Polynomial functions over fields
As in the case of order-preserving functions, Theorem 5 can be refined for
polynomial functions over fields. We summarize in this section the results
obtained in [11] in this direction.

Polynomials over infinite fields are in one-to-one correspondence with
polynomial functions. It is well known that every function over a finite
field is a polynomial function, but the correspondence between polynomi-
als and functions is not injective. This correspondence can be made bijective
by assuming that, for a finite field GF(q), we only consider polynomials in
which the exponent of each variable in every monomial is at most q − 1; we
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14 MIGUEL COUCEIRO et al.

call such polynomials canonical. Every polynomial over an infinite field is
canonical.

Given a polynomial function f : Fn → F , we denote by Pf the
unique canonical polynomial which induces f, and given a polynomial p ∈
F[x1, . . . , xn], we denote by p the function f : Fn → F induced by p. Note
that p + q = p + q for all p, q ∈ F[x1, . . . , xn].

Lemma 1 ([11]). If f is a polynomial function over a field F, then the func-
tions g and h in the decomposition f = h + g given in Theorem 6 are also
polynomial functions.

Lemma 2 ([11]). If h is an n-ary polynomial function over a field F, then
h|Fn= ≡ 0 if and only if h is induced by a multiple of the polynomial

�n =
∏

1≤i< j≤n

(xi − x j ) ∈ F[x1, . . . , xn].

With an application of the two lemmas above, Theorem 6 about functions
with arity gap at least 3 particularizes for polynomial functions as follows.

Theorem 12 ([11]). Let F be a field and let f : Fn → F be a polynomial
function of arity at least 4. Then gap f = p ≥ 3 if and only if there exist
polynomials P, Q ∈ F[x1, . . . , xn] such that f = P + Q, P is canonical,
exactly n − p variables occur in P, and Q is a multiple of the polynomial
�n such that Q is not identically 0. Moreover, if f = P ′ + Q′, where P ′ is
canonical, n − p variables occur in P ′ and Q′ is a multiple of �n such that
Q′ is not identically 0, then P ′ = P and Q′ = Q.

Theorem 12 only deals with polynomial functions with arity gap at least
3, which thus asks for the study of the polynomial functions with arity gap
at most 2. In particular, we consider polynomial functions determined by
oddsupp, and we will see that the characteristic of the underlying field plays
a crucial role here. We first introduce some notation that will be needed to
state the subsequent results. Let F be an arbitrary field.

� If F is infinite, then NF denotes the set of nonnegative integers, and ⊕F

denotes the usual addition of nonnegative integers.
� If F has finite order q , then NF denotes the set {0, 1, . . . , q − 1}, and ⊕F

is the operation on NF given by the following rules:
� 0 ⊕F 0 = 0.
� If a �= 0 or b �= 0, then a ⊕F b = c, where c is the unique number in

{1, . . . , q − 1} such that c ≡ a + b (mod q − 1).
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A SURVEY ON THE ARITY GAP 15

Proposition 2 ([11]). Let F be a field, and let f : Fn → F be a polynomial
function with

Pf =
∑

k=(k1,...,kn )∈N n
F

ckxk1
1 xk2

2 · · · xkn
n .

Then f is determined by oddsupp if and only if

(A) f is symmetric, i.e., c(k1,...,kn ) = c(l1,...,ln ) whenever there exists a permu-
tation π ∈ Sn such that ki = lπ(i) for all i ∈ [n], and

(B) for all (k, k3, . . . , kn) ∈ N n−1
F with k �= 0,∑

(a1,a2)∈N 2
F

a1⊕F a2=k

c(a1,a2,k3,...,kn ) = 0.

In particular, if the characteristic of F is 2, then f is determined by oddsupp
if and only if condition (A) above holds together with

(B2) c(k,k,k3,...,kn ) = 0 for all (k, k, k3, . . . , kn) ∈ N n
F with k �= 0.

In order to obtain more explicit descriptions of polynomial functions
determined by oddsupp, we need to take into account the characteristic of
the underlying field. We start with finite fields and fields of characteristic 2.

Proposition 3 ([11]). Let F be a field, and let f : Fn → F be a polynomial
function. If F is finite or the characteristic of F is 2, then f |Fn= is determined
by oddsupp if and only if there exist polynomials P, Q ∈ F[x1, . . . , xn] such
that f = P + Q, P is determined by oddsupp, and Q is a multiple of the
polynomial �n.

Theorem 13 ([11]). Let F be a field of characteristic 2, possibly infinite, and
let f : Fn → F be a polynomial function of arity at least 4 which depends on
all of its variables. Then gap f = p ≥ 2 if and only if there exist polynomials
P, Q ∈ F[x1, . . . , xn] such that f = P + Q, P is canonical, Q is a multiple
of the polynomial �n, and either

1. exactly n − p variables occur in P and Q �= 0, or
2. P is not a constant polynomial and P satisfies conditions (A) and (B2)

of Proposition 2.

Otherwise gap f = 1.
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16 MIGUEL COUCEIRO et al.

Corollary 2 ([11]). Let F = GF(q), where q is a power of 2, and let
f : Fn → F be a polynomial function of essential arity n > max(q, 3). If
gap f = 2, then f can be decomposed into a sum of functions of essential
arity at most q − 1.

We now consider the case of fields of characteristic 0.

Lemma 3 ([11]). Let F be a field of characteristic 0, let n ≥ 2, and let
f : Fn → F be a polynomial function. If f |Fn= is determined by oddsupp,
then f |Fn= is constant, i.e., qa f = 0.

Theorem 14 ([11]). Let F be a field of characteristic 0, let n ≥ 2, and let
P ∈ F[x1, . . . , xn] be a polynomial such that all n variables occur in P. Then
gap P = p ≥ 2 if and only if there exist polynomials Q, R ∈ F[x1, . . . , xn]
such that P = Q + R, exactly n − p variables occur in Q, and R is a
nonzero multiple of the polynomial �n. Otherwise gap P = 1. Moreover, the
decomposition P = Q + R, when it exists, is unique.

As the following example illustrates, Proposition 3 and Lemma 3 do not
extend to (infinite) fields of odd characteristic.

Example 6. Let F be an arbitrary field of characteristic 3, and let f : F3 →
F be the polynomial function induced by

2x3 + 2y3 + 2z3 + yz2 − xy2 − xz2 + y2z + 2xyz. (4)

It is straightforward to verify that

f (x, x, y) = f (x, y, x) = f (y, x, x) = 2y3.

Hence f |F3= is determined by oddsupp but f |F3= is not constant. This shows
that Lemma 3 does not hold if F has characteristic 3.

Next we show that Proposition 3 does not hold for infinite fields of charac-
teristic 3. Assume now that F is infinite, and let f be induced by (4). Suppose
that g : F3 → F is a polynomial function determined by oddsupp induced by
the canonical polynomial

∑
(k1,k2,k3)∈N3

c(k1,k2,k3)x
k1
1 xk2

2 xk3
3 .
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Condition (B) of Proposition 2 yields the following equalities:

c(3,0,0) + c(2,1,0) + c(1,2,0) + c(0,3,0) = 0,

c(2,0,1) + c(1,1,1) + c(0,2,1) = 0,

c(1,0,2) + c(0,1,2) = 0.

Taking into account the total symmetry of g (condition (A)) and the fact that
the characteristic of F is not 2, the only solution to this system of equations
is c(k1,k2,k3) = 0 for all (k1, k2, k3) ∈ N

3 such that k1 + k2 + k3 = 3. Thus, the
canonical polynomial of g(x, x, x) does not contain any cubic term; therefore
it cannot coincide with f (x, x, x) = 2x3, and we conclude that f |F3= �= g|F3= .

6 FURTHER DIRECTIONS

In this section, we briefly discuss two further research directions: the study of
an order which naturally arises from variable identification (Subsection 6.1)
and the consideration of extensions to the notion of arity gap (Subsection 6.2).

6.1 The simple minor order and its respective covering relation
Let f : Am → B and g : An → B. We say that f is a simple minor of g and
we write f ≤ g, if there exists a function σ : {1, . . . , n} → {1, . . . , m} such
that

f (a1, . . . , am) = g(aσ (1), . . . , aσ (n)),

for all a1, . . . , am ∈ A. Loosely speaking, f is a simple minor of g, if f can be
obtained from g by permutation of variables, identification of variables, and
addition and deletion of inessential variables.

The simple minor relation ≤ on FAB is both reflexive and transitive, and
thus it constitutes a quasiordering of FAB . As for quasiorders, ≤ induces an
equivalence relation ≡ on FAB : for f, g ∈ FAB , we set f ≡ g if f ≤ g and
g ≤ f , and in this case we say that f and g are equivalent. As observed in the
introduction, f and g are equivalent if each of f and g can be obtained from
the other by permutation of variables, addition of inessential variables, and
deletion of inessential variables. Note that ess f = ess g whenever f ≡ g,
and that every nonconstant function is equivalent to a function that depends
on all of its variables.

Remark 1. These and other observations were made made for the case
A = B = {0, 1} in the paper [14], in which it was shown that the poset of
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18 MIGUEL COUCEIRO et al.

equivalence classes of functions induced by simple minor order is equimor-
phic (i.e., equivalent w.r.t. embeddings) to the poset made of finite subsets
of positive integers ordered by inclusion. This result was later extended in
various ways in [21], in particular to arbitrary sets A and B.

We say that g is a strict minor of f, denoted by g < f , if g ≤ f but f �≡ g.
If g < f but there is no h such that g < h < f , then we say that g is a lower
cover of f and we denote this fact by g ≺ f .

Remark 2. It was shown in [2] that the lower covers of any function
f : An → B have the same essential arity when A = B = {0, 1}. The proof
of this fact given in [2] actually shows that this claim is true whenever |A| = 2
and |B| ≥ 2. However, as the following example shows, this is not the case
when |A| > 2.

Example 7. Let A be the 5-element field and consider the polynomial func-
tion f : A6 → A defined by:

f (x1, x2, x3, x4, x5, x6) := (x1 − x2)(x5 − x6) +
∏

1≤i< j≤6
(i, j)�=(5,6)

(xi − x j ).

It is easy to verify that ess f = 6, f1←2 ≡ 0, and that f has, up to equivalence,
two lower covers, namely,

f1←3 = (x1 − x2) · (x5 − x6),

f5←6 =
∏

1≤i< j≤4

(xi − x j ) ·
∏

1≤i≤4

(xi − x5)2.

Figure 1 presents the Hasse diagram of the principal ideal generated by the
equivalence class of f in the simple minor poset. The label of each edge g ≺ h
is the number ess h − ess g. We use the following notation for simple minors
of f:

q1 =
∏

1≤i< j≤4

(xi − x j ) ·
∏

1≤i≤4

(xi − x5)2, q2 = (x1 − x2) · (x3 − x4),

q3 = (x1 − x2) · (x1 − x3), q4 = (x1 − x2) · (x2 − x3),

q5 = (x1 − x2)2, q6 = −(x1 − x2)2.

Remark 3. Even though not every identification minor fi← j is a lower cover
of f, every lower cover of f is of the form fi← j . Therefore, we can alternatively
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q1

f

1

5

2
q2

1 1

1 1

2 2

q3 q4

q5 q6

0

FIGURE 1
The simple minors of the function f given in Example 7.

define the arity gap of f as

gap f := min
g≺ f

(ess f − ess g).

We say that f is totally symmetric, if for all permutations π of [n]
the identity f (a1, . . . , an) = f (aπ(1), . . . , aπ(n)) holds for all a1, . . . , an ∈ A.
Observe that a totally symmetric function depends either on all of its vari-
ables or on none of them.

Fact 1. If f : An → B is totally symmetric, then for all i, j, i ′, j ′ ∈ [n] (i �=
j , i ′ �= j ′), fi← j ≡ fi ′← j ′ . Therefore, if f is nonconstant, then for all distinct
i, j ∈ [n], fi← j is, up to equivalence, the unique lower cover of f.

Berman and Kisielewicz [1] also introduced the following analogue of
oddsupp. Let supp:

⋃
n≥1 An → P(A) be the mapping defined by

supp(a1, . . . , an) := {a1, . . . , an}.

A function f : An → B is determined by supp, if there exists a function
ϕ : P(A) → B such that f = ϕ ◦ supp |An . As for oddsupp, every function
determined by supp is totally symmetric, and such a function either depends
on all of its variables or on none of them.

In [13] it was observed that there exist functions that are determined both
by supp and oddsupp. For instance, every constant function and every unary
function is determined by both supp and oddsupp. In fact, for each 2 ≤ n ≤
|A| we can construct functions f : An → B determined by both supp and
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20 MIGUEL COUCEIRO et al.

oddsupp; see [13]. However, such nontrivial examples cannot be found when
n > |A|.

Proposition 4 ([13]). If n > |A|, then f : An → B is determined by both
supp and oddsupp if and only if f is a constant function.

Now it is natural to ask how the properties of being determined by supp
and oddsupp are affected when taking strict minors. The answer is given by
the following result.

Proposition 5 ([13]). Let A and B be finite nonempty sets, let k := |A|, and
let f : An → B be a nonconstant function.

1. If f is determined by oddsupp, then the simple minors of f form a chain

f = fn � fn−2 � · · · � fn−2t−2 � fn−2t

of length t such that ess fn−2i = n − 2i for all i < t; in this case, we
either have ess fn−2t = 1 and t = n−1

2 or ess fn−2t = 0 and
⌈

n−k
2

⌉
< t ≤⌊

n
2

⌋
.

2. If f is determined by supp, then the simple minors of f form a chain

f = fn � fn−1 � · · · � fn−t+1 � fn−t

of length t such that ess fn−i = n − i for all i < t; in this case, we either
have ess fn−t = 1 and t = n − 1, or ess fn−t = 0 and n − k < t < n.

As made apparent by Willard [30], the notion of arity gap is tightly related
to determinability by supp and oddsupp. The following corollary is an imme-
diate consequence of Proposition 5.

Corollary 3. Let A and B be finite nonempty sets, let k := |A|, and let
f : An → B be a nonconstant function.

1. If f is determined by oddsupp with n > k, then gap f = 2.
2. If f is determined by supp with n > k, then gap f = 1.

We now recall a noteworthy result about the arity gap.

Lemma 4 (Willard [30]). Let A and B be finite nonempty sets, and let k :=
|A|. Suppose that f : An → B depends on all of its variables.
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A SURVEY ON THE ARITY GAP 21

1. If n > 2, gap f = 1, f is totally symmetric, and for any distinct i, j ∈ [n],
fi← j is equivalent to a totally symmetric function, then f is determined
by supp.

2. If f is determined by supp, then fi← j is equivalent to a function deter-
mined by supp for any distinct i, j ∈ [n]. Moreover, if n > k, then fi← j

is nonconstant.
3. If n ≥ max(k, 3) + 2 and f is not totally symmetric, then there exist dis-

tinct i, j ∈ [n] such that fi← j depends on n − 1 variables and is not
equivalent to a totally symmetric function.

From Proposition 5, Theorem 4 and Lemma 4, we can obtain the following
theorem whose importance is made apparent in the next subsection.

Theorem 15 ([13]). Let A and B be finite nonempty sets, and let k := |A|.
Suppose that f : An → B depends on all of its variables.

1. If n ≥ max(k, 3) + 1 and gap f = 2, then for all g < f with ess g > k,
it holds that gap g = 2.

2. If n ≥ max(k, 3) + 2 and gap f = 1, then there exists a g ≺ f such that
gap g = 1 and ess g = n − 1.

6.2 Parametrized variants of arity gap
So far we have considered the effect that the identification of two essential
variables has on the essential arity of functions. Indeed, the arity gap of a
function measures the minimum decrease in the essential arity when two
essential variables are identified. We shall now discuss the minimum decrease
in the essential arity when we identify an arbitrarily large number of essen-
tial variables. There are two ways of formalizing such a measure: by sequen-
tially identifying pairs of variables or by simultaneously identifying “blocks”
of variables. Despite being related, as we will see these two approaches are
rather different.

Sequential identification

One approach to formalizing the minimum decrease in the essential arity
when several essential variables are identified is to consider the following
parametrized version of arity gap which measures the minimum decrease in
the essential arity when we take � ≥ 0 steps downwards in the simple minor
quasiorder:

gap( f, �) := min
g∈↓� f

(ess f − ess g), (5)
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where

↓� f := {g ∈ FAB | ∃ f1, . . . , f�−1 : f � f1 � · · · � f�−1 � g}.

Note that gap( f, �) is defined only if there exists a chain of length � below f,
and in this case � ≤ gap( f, �) ≤ ess f . In fact, it is not difficult to verify that:

gap( f, �) = min
g≺ f

(ess f − ess g + gap(g, � − 1)). (6)

Thus for every function f, we have gap( f, 1) = gap f and gap( f, 0) = 0.

Remark 4. We saw in the previous subsection that taking a strict minor of
a function f requires the identification of at least one pair of essential vari-
ables of f; otherwise, the minors we obtain are equivalent to f. This means
that gap( f, �) can be computed by sequentially identifying a pair of essential
variables � times in all possible ways, starting from f, and then determining
the sequence of � identifications which results in the minimum loss of essen-
tial variables.

It is worth stressing the fact that the identification of variables is performed
sequentially, and at each step only one pair of essential variables is identi-
fied; otherwise, ambiguities could occur since a priori we do not know which
essential variables become inessential after a pair is identified.

We have also observed in Remark 3 that not every identification minor
fi← j is a lower cover of f and, by the alternative definition of arity gap, if
fi← j is not a lower cover of f, then gap f < ess f − ess fi← j . Moreover,
as observed in Remark 2 it can be the case that f has two lower covers f1

and f2 such that ess f1 < ess f2, and again we would conclude that gap f <

ess f − ess f1. Hence, one might be led to thinking that in order to compute
gap( f, �) it suffices to choose at each recursion step an identification which
results in the minimum loss of essential variables. However, this is not true.

Example 8. Consider function f in Example 7. If we choose as our first iden-
tification the pair {5, 6}, then any other identification of essential variables
results in the loss of all the remaining essential variables. In other words, any
downward path in Figure 1 which starts from f and passes through q1 has
length 2, and along it we first lose 1 and then 5 essential variables. How-
ever, the downward paths that start from f and pass through q2 have length
4, and along them we lose 2, 1, 1, and then 2 essential variables. This shows
that, in order to compute gap( f, 1) as in (5), the minimum value is attained
at the lower cover q1, whereas, for 2 ≤ � ≤ 4, we need to pass through q2
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for computing gap( f, �). Hence, gap( f, 0) = 0, gap( f, 1) = 1, gap( f, 2) = 3,
gap( f, 3) = 4, and gap( f, 4) = 6.

The following result can be obtained inductively by making use of equa-
tion (6) and Theorem 15. Essentially, it asserts that, if � is not too large, then
we can walk from f down � steps in the simple minor quasiorder in such a way
that in each step we lose only one essential variable (resp. only two essential
variables) if gap f = 1 (resp. gap f = 2).

Theorem 16 ([13]). Let A and B be finite nonempty sets, and let k := |A|.
Let f : An → B, ess f = n.

1. If gap f = 1 and 1 ≤ � ≤ n − max(k, 3), then gap( f, �) = �.
2. If gap f = 2 and 1 ≤ � ≤ ⌈

n−k
2

⌉
, then gap( f, �) = 2�.

Surprisingly, it turns out that for almost every integer sequence 0 = n0 <

n1 < n2 < · · · < nr ≤ n, we can construct a function f : An → B whose
parametrized arity gap meets every member of the sequence. This statement
is made precise in the following theorem.

Theorem 17 ([13]). Let A be a finite set with k elements and let B be a set
with at least two elements. Let 2 ≤ n ≤ k, 1 ≤ r ≤ n − 1, 0 = n0 < n1 <

n2 < · · · < nr ≤ n such that n − 1 ≤ nr ≤ n and nr−1 �= n − 1. Then there
exists a function f : An → B such that gap( f, �) = n� for every 0 ≤ � ≤ r .

This parametrized version of arity gap constitutes a tool for tackling yet
another natural problem pertaining to the effect of variable identification on
the number of essential variables of a function. Given a function f : An →
B and an integer p ≥ 1, what is the smallest number m such that any m
successive identifications of essential variables result in the loss of at least
p essential variables? Denoting this smallest number by pag( f, p), we can
easily see that pag( f, p) is the smallest � for which gap( f, �) ≥ p.

Example 9. Consider the 6-ary function f of Example 7. We can read off of
Figure 1 that

pag( f, 1) = 1, pag( f, 2) = 2, pag( f, 3) = 2,

pag( f, 4) = 3, pag( f, 5) = 4, pag( f, 6) = 4.
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Block identification

Instead of taking successive identifications of pairs of variables, another
approach to measuring the minimum decrease in the essential arity when
several essential variables are identified is to consider simultaneous iden-
tifications of “blocks” of variables. To formalize this measure we follow
Willard’s [30] framework and view functions of several variables as maps
f : AV → B, where V ⊆ {xi : i ∈ N}. The cardinality of V is called the
arity of f. In this framework, a function g : AW → B is a simple minor of
f : AV → B, if there exists a map α : V → W such that g(a) = f (a ◦ α) for
all a ∈ AW .

Let Eq(V ) denote the set of all equivalence relations on V . Given an equiv-
alence relation θ ∈ Eq(V ), denote the canonical surjection by vθ : V → V/θ .
For a function f : AV → B, we define the function f θ : AV/θ → B by
f θ (a) = f (a ◦ vθ ), and we say that f θ is obtained from f by block identi-
fication of variables through θ . We informally identify V/θ with any one of
its distinct representatives so that f θ becomes a simple minor of f, and every
simple minor of f is then equivalent to f ψ for some ψ ∈ Eq(V ). The number
of variables identified through θ is

e(θ ) :=
∑

X∈V/θ

(|X | − 1) = |V | − |V/θ |.

Assuming that f depends on all of its variables, i.e., ess f = |V |, we have that
ess f θ ≤ |V/θ | = |V | − e(θ ) = ess f − e(θ ).

Now we can define the analogue of the parametrized arity gap for block
identification of variables. For a function f : AV → B with ess f = |V | = n
and for an integer � such that 0 ≤ � ≤ n − 1, we define

b-gap( f, �) := min
θ∈Eq(V )
e(θ)=�

(ess f − ess f θ ).

Note that b-gap( f, 0) = 0 and b-gap( f, 1) = gap f for every function f.
It is also clear that � ≤ b-gap( f, �) ≤ n for every 0 ≤ � ≤ n − 1, and
b-gap( f, �) ≤ gap( f, �) for every � for which gap( f, �) is defined.

Let H ( f ) := {ess f − ess g : g ≤ f }. It is clear that

{b-gap( f, �) : 0 ≤ � ≤ n − 1} ⊆ H ( f ).

Proposition 6 ([13]). Let f : AV → B be a function such that ess f = |V | =
n. Then b-gap( f, �) = min{m ∈ H ( f ) : m ≥ �}, for all 0 ≤ � ≤ n − 1.
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Example 10. Consider the 6-ary function f of Example 7. We can read off of
Figure 1 that H ( f ) = {0, 1, 2, 3, 4, 6} and

b-gap( f, 1) = 1, b-gap( f, 2) = 2, b-gap( f, 3) = 3,

b-gap( f, 4) = 4, b-gap( f, 5) = 6.

Following the same steps as in the sequential approach, we ended up con-
sidering the following problem: Given a function f : AV → B that depends
on all of its variables and an integer p ≥ 1, what is the smallest number m
such that block identification of variables of f through every equivalence
relation θ on V with e(θ ) = m results in the loss of at least p essential
variables? Let us denote this smallest number by b-pag( f, p). It is again
clear that b-pag( f, p) is the smallest � for which b-gap( f, �) ≥ p. In other
words, b-pag( f, 0) = 0 and b-pag( f, p) = max{m ∈ H ( f ) : m < p} + 1 for
1 ≤ p ≤ n.

Example 11. Consider the 6-ary function f of Example 7. We can determine
from the values of b-gap( f, �) listed in Example 10, or we can easily read off
of Figure 1 that

b-pag( f, 1) = 1, b-pag( f, 2) = 2, b-pag( f, 3) = 3,

b-pag( f, 4) = 4, b-pag( f, 5) = 5, b-pag( f, 6) = 5.

7 OPEN PROBLEMS AND FUTURE WORK

Looking ahead to possible future research topics related to arity gap, we are
naturally drawn to two rather distinct problems. On the one hand, the work
mentioned in Section 3 and Subsection 5.2 inevitably brings up the question
on whether a general classification of algebras can be attained in terms of
decomposability as in the case of abelian groups or fields of prescribed char-
acterictic. On the other hand, the work surveyed in Section 4 naturally asks
for similar enumeration results for the parametrized versions of arity gap dis-
cussed in Subsection 6.2.
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