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Abstract. We reduce the problem of categorical equivalence for finite
rings to the case of rings of prime power characteristics. It is proved
that categorically equivalent rings of coprime characteristics must be
semisimple. The categorical equivalence problem for finite semisimple
rings is completely solved.

1. Introduction

In the following we assume that all rings are with unity. This means, in
particular, that the unity element 1 of a ring R is contained in every subring
of R.

A variety of algebras can be considered as a category in a natural way;
the objects are the algebras in the variety and the morphisms are the homo-
morphisms between them. Because of universal algebraic background of this
research, we use the standard universal algebraic notation. That is, the alge-
braic structures are denoted by capital boldface letters and their underlying
sets (universes) by corresponding usual capital letters. Thus, in particular,
a ring R has the universe R.

Definition 1. Two algebras A and B are called categorically equivalent,
denoted A ≡c B, if there is a categorical equivalence between the varieties
they generate that sends A to B.

Recall that the equivalence of categories was first used in algebra by
K. Morita who in 1958 introduced the equivalence relation on the class of
rings that now is known as Morita equivalence. By definition, two rings R
and S are right Morita equivalent, if the categories of right modules over R
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and S are equivalent. We emphasize that the Morita equivalence of rings
and the categorical equivalence of rings are incomparable notions. Indeed,
it is well known that any field K is Morita equivalent to all rings Matn(K)
but in view of our Theorem 18, if K is finite then K ≡c Matn(K) holds only
if n = 1. On the other hand, a result by C. Bergman and J. Berman (see
Theorem 2) provides examples of categorically equivalent rings that are not
Morita equivalent.

A special case of categorical equivalence is weak isomorphism. Recall
that two algebras A and B are called weakly isomorphic if there exists a
third algebra C that is isomorphic to A and term equivalent to B. Clearly,
weakly isomorphic algebras have the same cardinality. For example, every
group (semigroup, ring) is accompanied by its anti-isomorphic copy which,
as easily seen, is weakly isomorphic to the original group (semigroup, ring).
Similarly, every lattice is weakly isomorphic to its dual.

All algebraic notions and properties that can be expressed in the language
of category theory are preserved under categorical equivalence. The next
theorem lists some of these properties specialized to rings, that we shall
need in the sequel. Their proofs can be found in [3], Section 3.

Theorem 1. Let R and S be categorically equivalent rings. Then:

(1) the automorphism groups of R and S are isomorphic;
(2) the subring lattices of R and S are isomorphic;
(3) the (two-sided) ideal lattices of R and S are isomorphic;
(4) for every positive integer n, Rn ≡c Sn;
(5) R is finite if and only if S is finite.

The first studies on categorical equivalence in algebra involved general
algebraic structures that did not belong to any well-known class. The fun-
damental example of this sort is the theorem of Hu ([6]) claiming that every
two primal algebras are categorically equivalent to each other. Recall that
a finite algebra is called primal if all finitary operations on its universe are
term operations. It is easy to see that all prime fields Zp are primal. Thus,
Zp ≡c Zq for any primes p and q. This result was generalized by C. Bergman
and J. Berman:

Theorem 2. ([2], Example 5.10) For any primes p and q and positive in-
tegers m and n, the finite fields Fpm and Fqn are categorically equivalent if
and only if m = n.

This fact is somewhat intriguing because in other well studied varieties
the finite categorically equivalent members have been proved to be weakly
isomorphic, hence of the same size. For finite groups this fact was obtained
by L. Zádori [12]. Recently M. Behrisch and T. Waldhauser announced that
the similar result is true in case of finite semigroups [1]. Even stronger result
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holds in case of lattices. O. Košik [10] proved that two lattices (not neces-
sarily finite) are categorically equivalent if and only if they are isomorphic
or dually isomorphic.

In the present paper an attempt is made to study categorical equivalence
of finite rings, in general. We first reduce the general problem to the case
of rings of prime power characteristic. We observe that semisimplicity is
a categorical property and completely solve the problem when two finite
semisimple rings are categorically equivalent. We also show that the rings
of coprime characteristics can be categorically equivalent only if they are
semisimple. The case of rings of the same characteristic remains open. Our
conjecture is that if this happens then the rings are isomorphic or anti-
isomorphic.

2. Reduction to p-rings

A ring whose additive group is a p-group will be called a p-ring 1. It is well
known that every finite ring R can be represented as a direct product of non-
zero p-rings, for different primes p. We shall call this decomposition of a ring
R a canonical one. The factors of the canonical decomposition of R are called
p-components of R. We are going to show that every categorical equivalence
between finite rings is actually induced by categorical equivalences between
their p-components, possibly for different primes p.

The characteristic of a finite ring R, denoted by char(R), is the exponent
of the additive group of R, that is, a smallest positive integer n such that
nR = 0. Obviously, the characteristic of a p-ring is a power of p.

We shall make use of the notion of independence introduced by Foster
in [5] and developed further by Hu and Kelenson in [7]. The algebras
A1, . . . ,An of the same type are called independent if there exists an n-ary
term t(x1, . . . , xn) such that in the algebra Ai the identity t(x1, . . . , xn) ≈ xi
holds, i = 1, . . . , n. Corollary 2.9 of [7] essentially states that algebras
A1, . . . ,An of a congruence permutable variety are independent if and only
if, for any two of them, the intersection of the varieties they generate is triv-
ial. Since the congruences of any ring permute, it follows that in the variety
of rings the independence can be easily characterized, as mentioned in [7].

Proposition 3. Finite rings R1, . . . ,Rn are independent in the category of
rings with unity if and only if their characteristics are pairwise coprime.

Corollary 2.9 of [7] also implies that in case of rings the independence is a
categorical property in the following sense. If the variety V is generated by
an independent system of rings R1, . . . ,Rn and F : V →W is an equivalence

1The notion of p-ring has been used earlier for the rings defined by the identities px ≈ 0
and xp ≈ x where p is a prime number.
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functor where W is some variety of rings then the system F (R1), . . . , F (Rn)
is independent, too.

Corollary 4. The property to be a finite p-ring for some prime p is cate-
gorical.

Proof. Assume that R is a finite p-ring and S is a ring categorically equiva-
lent to R. Then S is finite by Theorem 1 (5). Suppose that S is not a q-ring
for some prime q. Then it is a direct product of two independent rings. Since
R ≡c S, the same must hold for R, a contradiction. �

Theorem 5. Finite rings R and S are categorically equivalent if and only if
there is a one-to-one correspondence between their p-components such that
the corresponding p-components are categorically equivalent.

Proof. Assume first that R and S are categorically equivalent finite rings and
let F be a functor that establishes this equivalence. Now, if R = R1×· · ·×Rn

where Ri, i = 1, . . . , n, are the p-components of R, then S is the direct
product of F (R1), . . . , F (Rn). Obviously, Ri ≡c F (Ri), i = 1, . . . , n. Thus,
we have to show that F (R1), . . . , F (Rn) are the p-components of S. By
Corollary 4, there exist primes qi such that the characteristic of F (Ri) is a
power of qi, i = 1, . . . , n. It remains to show that qi 6= qj if i 6= j. But this
easily follows from Proposition 3.

Let now R and S be finite rings with canonical decompositions R =
R1 × · · · ×Rn and S = S1 × · · · × Sn. Assume that a functor Fi establishes
categorical equivalence between Ri and Si, i = 1, . . . , n. Then Fi induces
an isomorphism between skeletons of the categories Var(Ri) and Var(Si),
i = 1, . . . , n. By Theorem 2.6 of [7], every ring T ∈ Var(R) admits a
decomposition T = T1× · · ·×Tn where the direct factors Ti ∈ Var(Ri) are
unique, up to isomorphism, and the similar statement holds for every member
of Var(S). This allows us to conclude that the formula F (T) = F1(T1) ×
· · ·×Fn(Tn) determines an isomorphism between skeletons of the categories
Var(R) and Var(S). Since obviously F (R) = S, we get R ≡c S. �

In view of Theorem 5, our main problem splits in two:

(1) Describe when a finite p-ring and a finite q-ring with p 6= q can be
categorically equivalent.

(2) Describe when two finite p-rings can be categorically equivalent.

In this paper we solve the first problem. The second problem remains
open. We are not aware of any pair of finite categorically equivalent p-rings
that would be neither isomorphic nor anti-isomorphic. Our conjecture is
that there is no such pair.
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3. Rings Zn
Obviously the rings Zn are, up to isomorphism, the only rings with no

proper subrings. Therefore, if Zn is categorically equivalent to a ring R, the
latter must be isomorphic to some ring Zm. In this section we are going to
establish when exactly two rings Zm and Zn are categorically equivalent. We
first sharpen Theorem 2 by showing that a finite field Fpk can be categorically
equivalent only to Fqk .

Theorem 6. If the finite field Fpk is categorically equivalent to some ring
R then there exists a prime q such that R ' Fqk .

Proof. Since by Theorem 1 finiteness and simplicity are preserved by cate-
gorical equivalence, R must be a finite simple ring. Thus, R is isomorphic
to some ring Matn(F) where F is a finite field and n is a positive integer.
Assume that n > 2 and consider the automorphism groups of Fpk and R. It
is well known that the first of them is cyclic while the other is non-abelian.
Thus, n = 1, that is, R ' F. Now our claim follows from Theorem 2. �

Corollary 7. A ring categorically equivalent to the ring Zp with a prime p
is isomorphic to some ring Zq with a prime q.

In order to prove the main result of the present section, we need the
following lemma.

Lemma 8. For any primes p and q and positive integers k and l, the rings
Zpk and Zql are categorically equivalent if and only if: 1) k = l = 1 or 2)
p = q and k = l.

Proof. The sufficiency is obvious since, as we mentioned in the introduction,
Zp ≡c Zq for all primes p and q. For necessity, assume that Zpk ≡c Zql . Since
categorically equivalent algebras have isomorphic congruence lattices, we im-
mediately have k = l. Assume k > 2. Then the ring Zp2 , being a homomor-
phic image of Zpk , is categorically equivalent to some of the homomorphic
images of Zqk . Counting the congruences, we conclude Zp2 ≡c Zq2 which

implies Z2
p2 ≡c Z

2
q2 . Consequently, there is a one-to-one correspondence be-

tween subrings of Z2
p2 and Z2

q2 under which the corresponding subrings are
categorically equivalent.

We claim that both Z2
p2 and Z2

q2 have precisely three subrings. It is easy
to check this directly but we prefer the universal algebraic approach. Since
1 is a nullary basic operation and every Zn is generated by 1, it follows that
every subuniverse of Z2

n, is reflexive, that is, contains the diagonal relation
{(x, x) |x ∈ Zn}. It is well known that the only reflexive subuniverses of the
direct square of an algebra A in a congruence permutable variety are the
congruences of A ([8], Theorem 1.2.13). Now our claim becomes obvious
because Zp2 has precisely three ideals: {0}, pZp2 and Zp2 .
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Let Ap be the subring of Z2
p2 whose universe Ap is the congruence of Zp2

that corresponds to the ideal pZp2 . Note that

Ap = {(x, y) ∈ Z2
p2 | px = py}

and |Ap| = p3. By what we mentioned above, we have Ap ≡c Aq, hence the
congruence lattices of Ap and Aq are isomorphic. We are going to show that
Ap has exactly p+ 1 minimal ideals which will yield p = q.

Let Ik = {(px, kpx) |x ∈ Zp2}, k = 0, 1, . . . , p − 1 and I = {(0, px) |x ∈
Zp2}. It is easy to check that I, I0, . . . , Ip−1 are pairwise different ideals of
the ring Ap. Moreover, they all are of order p, thus they are minimal ideals
Ap. We show that every non-zero ideal J of Ap contains one of the selected
p+ 1 ideals proving so that Ap has no other minimal ideals. Indeed, if (x, y)
is a non-zero element of J then either (x, y) or (px, py) is a non-zero element
of one of the ideals I, I0, . . . , Ip−1. �

Now we are ready to formulate and prove the general result. For any
positive integer n, we denote q(n) = n/r where r is the squarefree part of n,
that is, the product of all prime divisors p of n such that p2 does not divide
n.

Theorem 9. The rings Zn1 and Zn2 are categorically equivalent if and only
if n1 and n2 have the same number of (different) prime divisors, and q(n1) =
q(n2).

Proof. This is a straightforward consequence of Theorem 5 and Lemma 8.
�

Every finite ring R has a unique minimal subring. This is the subring
generated by 1 ∈ R and obviously it is isomorphic to Zn where n = char(R).
Clearly, if two finite rings are categorically equivalent then so are their min-
imal subrings. Hence we have the following corollary from Theorem 9.

Corollary 10. Let R and S be a finite p-ring and a finite q-ring, respectively.
If R ≡c S then either char(R) = char(S) or char(R) = p and char(S) = q.

4. Rings of order p2

Since all rings of prime order are categorically equivalent to each other
(they all are isomorphic to the rings Zp), it is natural to consider, as the

next step, the rings of order p2, for a prime p. Theorem 13, the main result
of this section shows that a ring categorically equivalent to a ring of order
p2 is of order q2 for some prime q. Moreover, we show exactly how this can
happen. This result has several applications; see the proofs of Theorems 14
and 18.

From [4] it follows that for a prime p, there are up to isomorphism exactly
four different rings of order p2:
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(1) Fp2 ;
(2) Zp × Zp;
(3) Zp2 ;

(4) Zp[x]/(x2) ' {a+ bε | a, b ∈ Zp}, ε2 = 0.

We already know that Fp2 ≡c Fq2 and Zp×Zp ≡c Zq ×Zq for any primes
p and q. As we shall see soon, these are the only non-trivial occurences of
categorical equivalence involving a ring of order p2. To prove this, we need
another simple lemma.

Lemma 11. If a finite semisimple ring R is categorically equivalent to a
ring S, then S is finite semisimple, too.

Proof. Let F be the equivalence functor from Var(R) to Var(S) such that
F (R) = S. Since R is finite and semisimple, we have R ' R1 × · · · ×Rn

where R1, . . . ,Rn are simple rings. Since direct products and simplicity are
preserved by equivalence functors, we see that S is isomorphic to the direct
product of simple rings F (R1), . . . , F (Rn). Hence, S is semisimple. �

Corollary 12. Assume that finite rings R and S are categorically equivalent
and this equivalence induces the lattice isomorphism Φ : Con (R)→ Con (S).
Then Φ maps the radical of R to the radical of S.

Theorem 13. Let R and S be categorically equivalent non-isomorphic rings
and |R| = p2 where p is a prime. Then either R is of Type (1) and S ' Fq2

for some prime q 6= p, or R is of Type (2) and S ' Zq × Zq for some prime
q 6= p.

Proof. We consider separately four cases depending in which type the ring
R falls. Let F be a functor that establishes categorical equivalence between
R and S, F (R) = S.

If R = Fp2 then by Theorem 6 we have S ' Fq2 for some prime q. Since
R 6' S, the p and q are not equal.

Let R = Zp × Zp. Since F preserves products, S = F (Zp) × F (Zp) but
then by Corollary 7 there is a prime q such that F (Zp) ' Zq. Clearly, p 6= q
because otherwise R and S would be isomorphic.

Let now R = Zp2 . Since the rings Zn are, up to isomorphism, exactly the
rings with no proper subrings, there exists an integer n such that S ' Zn.
But then Theorem 9 yields n = q2 for some prime q.

It remains to consider the case when R is of Type (4). Thus, assume
that R = {a + bε | a, b ∈ Zp} where ε2 = 0. We know that S must be finite
(Theorem 1 (5)) and by Corollary 10 it must have prime characteristic, say
q. Thus, S can be considered as a vector space over Zq. Obviously the only
proper non-zero ideal of R is I = {aε | a ∈ Zp}. Now, if J is the ideal of S
corresponding under F to I then R/I ≡c S/J which by Corollary 7 implies
that S/J is isomorphic to Zq. Corollary 12 gives that J is the radical of S
and J 6= 0 because by Lemma 11 semisimplicity is a categorical property.



8 KALLE KAARLI, OLEG KOŠIK, TAMÁS WALDHAUSER

We next show that |J | = q. It is well known that a radical of a finite ring S,
if non-zero, contains a non-zero ideal K of S with K2 = 0. Since J is the only
proper non-zero ideal of S, we have K = J . We pick an arbitrary non-zero
element t ∈ J and consider the Zq-subspace L of S generated by t. Clearly,
|L| = q. Since S/J ' Zq, every element s ∈ S has the form s = a · 1 + u
where a ∈ Zq and u ∈ J . It follows that st = (a · 1 + u)t = at+ ut = at ∈ L
and similarly ts = at ∈ L. Thus, L is an ideal of S. As above, J must be the
only proper non-zero ideal of S, so we conclude L = J and |S| = q2. Since
t2 = 0, the ring S is of Type (4), indeed.

It remains to notice that the rings of Type (4) corresponding to differ-
ent primes cannot be categorically equivalent because their automorphism
groups are of different size. Indeed, it is easy to see that the automorphisms
of R are precisely the mappings of the form a + bε 7→ a + bλε where λ is a
non-zero element of Zp. Thus, |Aut R| = p− 1. �

Now we derive an important consequence of Theorem 13 and Corollary 10.
It shows, in essence, that a finite non-semisimple p-ring can be categorically
equivalent only to a ring of the same characteristic.

Theorem 14. Let R be a finite non-semisimple p-ring for some prime p. If
R is categorically equivalent to a ring S then char(R) = char(S).

Proof. Assume that char(R) 6= char(S). Then by Corollary 10 char(R) =
p and char(S) = q where q is a prime different from p. Since R is not
semisimple, there exists a non-zero nilpotent element a ∈ R, say an = 0 but
an−1 6= 0. Let e = an−1, then we have e2 = 0 and e 6= 0.

Now consider the subring R1 of R consisting of all elements of the form
a + be where a, b ∈ Zp. It is categorically eqivalent to a subring S1 of S.

However, it is easily seen that R1 is a Type (4) ring of order p2. Thus, by
Theorem 13, we have R1 ' S1, implying p = q. This contradiction proves
the theorem. �

Corollary 15. Finite categorically equivalent rings of coprime characteris-
tics are semisimple.

Proof. Let R and S be finite rings of coprime characteristics, R ≡c S, and
let R1, . . . ,Rn be the factors of the canonical decomposition for R. Then,
by Theorem 5 there is the same number of factors in the canonical decom-
position for S; let them be S1, . . . ,Sn. Without loss of generality, we have
Ri ≡c Si, i = 1, . . . , n. Since obviously char(Ri) and char(Si) are coprime,
Theorem 14 implies that Ri and Si are semisimple for i = 1, . . . , n. Hence
also R and S as direct products of semisimple rings are semisimple. �

5. Semisimple rings

In this section we consider categorical equivalence of semisimple rings.
Since finite semisimple rings are direct products of finitely many simple rings,
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as a first step, we consider the case of finite simple rings, which, as well
known, are full matrix rings over finite fields (in particular, they are p-rings
for some prime p). Our approach is based on the fact that categorically
equivalent algebras must have isomorphic automorphism groups. In order
to prove the main result, we need two lemmas.

Lemma 16. Let K be a finite field and n > 2 an integer. The group
Aut Matn(K) is solvable if and only if n = 2 and K is isomorphic either to Z2

or Z3. In all other cases Aut Matn(K) has a single non-abelian composition
factor which is isomorphic to the projective special linear group PSL(n,K).

Proof. It is well known (see, for example, Part II, Chapter I, Theorem 3.1
of [9]), that every automorphism of the full matrix ring Matn(K) over a
field K is a composition of an outer automorphism (a fixed automorphism
of K is applied to all entries of all matrices) and an inner automorphism
(mapping of the form X 7→ C−1XC where C is a fixed non-singular matrix).
It is easily seen that all inner automorphisms of the ring Matn(K) form a
normal subgroup (denoted by Inn Matn(K)) of the full automorphism group
Aut Matn(K) while the outer automorphisms of Matn(K) form just a sub-
group of Aut Matn(K), isomorphic to Aut (K). Moreover, obviously

(1) Aut Matn(K) ' Inn Matn(K) o Aut K

where o denotes semidirect product of groups. Therefore, since the auto-
morphism group of a finite field is cyclic, the solvability of Aut Matn(K) is
equivalent to that of Inn Matn(K). Further, since Inn Matn(K) is isomor-
phic to the quotient group of GL(n,K) over its center, the solvability of
Inn Matn(K) is equivalent to that of GL(n,K). Now our claim follows from
a classical fact of group theory: the group GL(n,K) with n > 2 is solvable if
and only if n = 2 and |K| is 2 or 3, and in all other cases the only non-abelian
composition factor of GL(n,K) is PSL(n,K). �

Lemma 17. Every atom in the lattice of subrings of Mat2(Zp) has cardi-

nality p2.

Proof. Since Zp is a prime field, every subring of Mat2(Zp) is a vector space
over Zp. The proper non-trivial subrings of this ring have dimension 2 or 3,
hence it is sufficient to prove that no subring of dimension 3 is an atom. If
S 6 Mat2(Zp) is a 3-dimensional subring, then it can be defined by a single
homogeneous linear equation, i.e., there exist coefficients α, β, γ, δ ∈ Zp (not
all zero) such that

S =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Zp, αa+ βb+ γc+ δd = 0

}
.
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Since the identity matrix belongs to S, we must have α+ δ = 0. If γ 6= 0,
then S contains the p2-element subring{(

a b
λb a

) ∣∣∣∣ a, b ∈ Zp
}

with λ = −βγ−1, therefore S is not an atom. If β 6= 0, then a similar
argument works, so in the remaining cases we can assume that β = γ = 0
and δ = −α 6= 0. Then we have

S =

{(
a b
c a

) ∣∣∣∣ a, b, c ∈ Zp
}

;

however, this set is not closed under multiplication. �

We know that if a finite simple ring R is categorically equivalent to a ring
S then S is finite simple, too. We also know that if R is a finite field then so
is S. Moreover, we know that then there exist primes p and q and a positive
integer k such that one of the two rings is isomorphic to Fpk and the other
to Fqk . The following theorem shows that in all other cases categorically
equivalent finite simple rings are isomorphic.

Theorem 18. Let K1 and K2 be finite fields and n1, n2 > 2 positive integers.
Matn1(K1) ≡c Matn2(K2) if and only if n1 = n2 and K1 ' K2.

Proof. The sufficiency is obvious. For necessity, assume that Matn1(K1) ≡c
Matn2(K2). Then Aut Matn1(K1) ' Aut Matn2(K2).

Let first Aut Matn1(K1) be non-solvable. Then, by Lemma 16, PSL(n1,K1) '
PSL(n2,K2). The only non-trivial possibilities for that are the exceptional
isomorphisms PSL(2,F7) ' PSL(3,F2) and PSL(2,F4) ' PSL(2,F5) (see
[11], Setion 1.2) which leaves the possibility that Mat2(F7) ≡c Mat3(F2)
and/or Mat2(F4) ≡c Mat2(F5). The first of them can be excluded by
comparision of the automorphism groups. Elementary calculations give
|GL2(F7)| = 48·42. Since the center of this group is of size 6 and |Aut (F7)| =
1, the formula (1) gives |Aut Mat2(F7)| = (48 · 42)/6 = 336. On the other
hand, |GL3(F2)| = 7 · 6 · 4 = 168, the center of this group is trivial and
|Aut (F2)| = 1, so the formula (1) gives |Aut Mat3(F2)| = 168. Hence,
Aut Mat2(F7) 6' Aut Mat3(F2) and, consequently, Mat2(F7) 6≡c Mat3(F2).

Now consider the rings Mat2(F4) and Mat2(F5). We shall show that there
is an atom A in the subring lattice of Mat2(F4) which is not categorically
equivalent to any atom of the subring lattice of Mat2(F5), thus Mat2(F4)
and Mat2(F5) cannot be categorically equivalent. The ring A consists of all

matrices in Mat2(F4) having the form

(
a b
0 a

)
with a, b ∈ {0, 1}. Clearly,

the size of A is 22, it is a ring of Type (4) in Theorem 13 and its only
proper subring is the smallest subring of Mat2(F4). On the other hand, by
Lemma 17, every atom in the lattice of subrings of Mat2(F5) has cardinality



ON CATEGORICAL EQUIVALENCE OF FINITE RINGS 11

52. Hence, by Theorem 13, none of the latter is categorically equivalent to
A.

It remains to consider the case when the group Aut Matn1(K1) is solvable.
In view of Lemma 16, this leaves the possibility that Mat2(Z2) ≡c Mat2(Z3).
However, this is not the case because the automorphism groups of these two
rings have different sizes: 6 and 24, respectively. �

Now we are ready to describe categorical equivalences between finite semisim-
ple rings. This result shows that our conjecture that all categorical equiva-
lences between finite rings are consequences of Theorem 2 holds for semisim-
ple rings.

Theorem 19. Let R and S be semisimple rings with p-components R1, . . . ,Rn

and S1, . . . ,Sn, respectively. Then R and S are categorically equivalent if
and only if there is a permutation π ∈ Sn, such that for every i ∈ {1, . . . , n},
one of the following two conditions holds:

(a) Ri and Sπ(i) are isomorphic, or
(b) Ri ' Fpk1 ×· · ·×Fpkt and Sπ(i) ' Fqk1 ×· · ·×Fqkt for some primes

p and q and positive integers k1, . . . , kt.

Proof. First, to prove the “only if” part, let us suppose that R and S are
categorically equivalent. By Theorem 5, there is a permutation π ∈ Sn, such
that Ri ≡c Sπ(i) for every i. Assume that Ri is a p-ring and Si is a q-ring;
then Ri is of the form Ri ' Matn1(Fpk1 )×· · ·×Matnt(Fpkt ). If F is a cate-

gorical equivalence that maps Ri to Si, then we have Si ' F (Matn1(Fpk1 ))×
· · · × F (Matnt(Fpkt )). Clearly, these direct factors are simple rings, hence
they are also matrix rings over finite fields: F (Matnj (Fpkj

)) ' Matmj (Fqlj
)

for j = 1, . . . , t. By Theorems 6 and 18, we have nj = mj and kj = lj for
every j. If nj ≥ 2 for some j, then, again by Theorem 18, we have also p = q,
and then Ri ' Sπ(i) follows, i.e., (a) holds. If n1 = · · · = nt = 1, then p and
q may be different, and in this case condition (b) is satisfied.

Now, for the “if” part, assume that there is a permutation π as stated in
the theorem. According to Theorem 5, it suffices to verify that Ri ≡c Sπ(i)

for every i. This is clear if (a) holds, so let us suppose (b), and let us set
k = k1 · . . . · kn. By Theorem 2, there is a categorical equivalence functor
F between Var(Fpk) and Var(Fqk), such that F (Fpk) = Fqk . Observe that
Fpki is (isomorphic to) a subfield of Fpk , and Theorem 2 shows that Fqki is
the only subfield of Fqk that is categorically equivalent to Fpki . Thus, we

must have F (Fpki ) ' Fqki for i = 1, . . . , t, and this implies

F (Ri) ' F (Fpk1 × · · · × Fpkt ) ' Fqk1 × · · · × Fqkt ' Sπ(i).

�
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