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Abstract—We determine idempotent lazy operations and bi-
nary lazy operations, and apply the latter to characterize
groupoids with an essentially minimal clone of a certain type.

I. INTRODUCTION

The main goal of this paper is to describe certain classes
of lazy clones, and to apply this in the study of essentially
minimal clones.

A clone is a composition-closed set of operations that
contains the projections. On a finite set, every clone contains
a minimal clone, i.e., a clone whose only proper subclone
is the trivial clone (the clone of projections). Therefore,
understanding minimal clones is fundamental for the study of
clones, which is an important topic in multiple-valued logic
as well as in universal algebra. However, despite numerous
partial results, we are still very far from having a complete
description of minimal clones (see [1], [6]).

An analogous notion is obtained by considering not only
the clone of projections as a “trivial” clone, but all unary
clones: a clone is said to be essentially minimal if all of its
proper functions consist of operations that depend on only one
variable.

Lazy clones are also “small” clones in some sense: a clone
is lazy if there is an operation f such that every element of the
clone (except possibly the projections) can be obtained from
f by identifying and/or permuting variables. Laziness and
essential minimality are independent notions: neither of them
implies the other. However, as observed in [4], lazy clones
can be used to determine certain types of essentially minimal
clones, and this is our main motivation for investigating lazy
clones.

After recollecting the required preliminaries (Section II), we
determine lazy clones generated by an idempotent operation
(Section III); as it turns out, these are analogues of rectangular
bands in possibly more than two variables. In Section IV we
focus on lazy binary operations, and we describe them in terms
of identities. Finally, in Section V we use the latter result
together with a theorem from [4] to characterize certain types
of binary essentially minimal clones.

II. PRELIMINARIES

Throughout this paper, A denotes a nonempty set, O(n)
A

stands for the set of all n-ary operations on A, and OA is the
set of all operations on A. We say that the i-th variable of

f ∈ O(n)
A is essential (in other words, f depends on its i-th

variable) if there exist a1, . . . , ai, a′i, . . . , an ∈ A such that

f (a1, . . . , ai, . . . , an) 6= f (a1, . . . , a
′
i, . . . , an) .

If n ≥ 2 and f depends on at least two variables, then we
simply say that f is an essential operation, and the algebra
A = (A; f) is also said to be essential in this case.

For 1 ≤ i ≤ n ∈ N we define the i-th n-ary projection e(n)i

by e(n)i (x1, . . . , xn) = xi. The set of all projections on A is
denoted by JA. Observe that e(1)1 = id is the identity function
on A.

A clone is a set C ⊆ OA of operations that is closed
under composition and contains every projection. If C contains
at least one essential operation then C is an essential clone.
The clone generated by a given operation f is the clone [f ]
containing all operations that can be obtained from f and from
the projections by composition. Equivalently, [f ] is the clone
of term functions of the algebra A = (A; f). If f is a binary
operation, then we will use the notation f (x, y) = x ·y = xy,
and then the algebra A = (A; f) = (A; ·) is called a groupoid.

The smallest clone on A is JA, the clone of projections,
also called the trivial clone. If C 6= JA and C has no subclones
other than C and JA, then C is a minimal clone. Similarly, C is
an essentially minimal clone, if C is essential, but all subclones
of C are nonessential, and C is not a minimal clone. We also
use these terms for algebras: (A; f) is an (essentially) minimal
algebra if [f ] is an (essentially) minimal clone.

An important class of minimal groupoids is the variety
of rectangular bands: (A; ·) is a rectangular band if it is a
semigroup (i.e., the multiplication is associative) and satisfies
the identities xx = x (idempotence) and xyz = xz. It is
well known (and easy to prove) that every rectangular band is
isomorphic to a groupoid of the form (A1 ×A2; ·), where the
multiplication is defined by (a1, a2) · (b1, b2) = (a1, b2).

For f ∈ O(n)
A and g ∈ O(m)

A , we say that g is an
identification minor (or simply a minor) of f (notation: g � f ),
if there exists a map σ : {1, 2, . . . , n} → {1, 2, . . . ,m} such
that

g (x1, . . . , xm) = f
(
xσ(1), . . . , xσ(n)

)
.

The relation � gives rise to a quasiorder on OA. The corre-
sponding equivalence relation is defined by f ≡ g ⇐⇒ f �
g and g � f , and it is clear that f ≡ g if and only if they
differ only in inessential variables and/or in the order of their
variables. Note that for any f ∈ OA, we have f ≡ id if and



only if f ∈ JA. We use the notation ↓ f for the principal
ideal (downset) generated by f in the subfunction quasiorder:
↓f := {g ∈ OA : g � f}. Note that the set ↓f contains only
one unary operation, namely f∗ (x) = f (x, . . . , x).

Clearly, JA∪ ↓ f ⊆ [f ] holds for every operation f . If
[f ] = JA∪ ↓ f , i.e., f generates only minors of itself and
projections, then we say that f is a lazy operation and [f ] is
a lazy clone.

For f ∈ O(n)
A and k ∈ n := {1, 2, . . . , n}, let fk ∈ O(2n−1)

A

denote the function obtained from f by substituting f for its
k-th variable; more precisely,

fk (x1, . . . , x2n−1) :=

f (x1, . . . , xk−1, f (xk, . . . , xk+n−1) , xk+n, . . . , x2n−1) .

Clearly, if the operation f ∈ O(n)
A is lazy then fk � f or

fk ∈ JA for every k ∈ n.

III. LAZY IDEMPOTENT OPERATIONS

As a possible strengthening of the definition of laziness, one
could require [f ] =↓ f ; we may call such operations f very
lazy. Since the only unary operation in ↓ f is the diagonal
function f∗ (x) = f (x, . . . , x) and id ∈ [f ], we must have
f∗ ≡ id (i.e., f is idempotent) if f is very lazy. On the other
hand, if f is an idempotent lazy operation, then we have [f ] =
JA∪ ↓ f =↓ f , since id = f∗ ∈ [f ]. Thus, the very lazy
operations are just the idempotent lazy operations. Prototipical
examples of algebras with an idempotent lazy fundamental
operation are rectangular bands. A natural n-ary generalization
of this notion is the following. By an n-ary rectangular band
we mean an algebra of the form (A1 × · · · ×An; f), where
A1, . . . , An are nonempty sets and f is defined by

f
((
a11, . . . , a

1
n

)
, . . . , (an1 , . . . , a

n
n)
)

=
(
a11, . . . , a

n
n

)
for all aji ∈ Ai (i, j ∈ n). Note that this algebra is the direct
product of the algebras

(
Ai; e

(n)
i

)
(i ∈ n), and conversely,

such a direct product of algebras with projection operations is
always an n-ary rectangular band.

We prove in this section that up to isomorphism the idempo-
tent lazy algebras are the n-ary rectangular bands. This result
appears in [5]; here we give a more direct proof.

Lemma 1: If f ∈ O(n)
A is an idempotent lazy operation

depending on all of its variables, then f satisfies the following
identity for every k ∈ n :

fk (y1, . . . , yk−1, x1, . . . , xn, yk+1, . . . , yn) =

f (y1, . . . , yk−1, xk, yk+1, . . . , yn) . (1)

Proof: Laziness of f implies that f1 � f , i.e,
f1 (x1, . . . , xn, y2, . . . , yn) = f (z1, . . . , zn), where zi ∈
{x1, . . . , xn, y2, . . . , yn} for each i ∈ n. Since f is idem-
potent, we have

f1 (x, . . . , x, y2, . . . , yn) = f (f (x, . . . , x) , y2, . . . , yn)

= f (x, y2, . . . , yn) ,

and this operation depends on all of its variables. There-
fore, z1, . . . , zn must be pairwise distinct variables, and
at most one of x1, . . . , xn can appear among them:
{z1, . . . , zn} = {xi1 , y2, . . . , yn} for some i1 ∈ n. Thus
f1 (x1, . . . , xn, y2, . . . , yn) does not depend on xj whenever
j 6= i1, hence

f1 (x1, . . . , xn, y2, . . . , yn) = f1 (xi1 , . . . , xi1 , y2, . . . , yn)

= f (f (xi1 , . . . , xi1) , y2, . . . , yn)

= f (xi1 , y2, . . . , yn)

by the idempotence of f .
A similar argument shows that for every k ∈ n there is

ik ∈ n such that f satisfies the identity

f (y1, . . . , yk−1, f (x1, . . . , xn) , yk+1, . . . , yn) =

f (y1, . . . , yk−1, xik , yk+1, . . . , yn) . (2)

Repeatedly applying this identity with k = 1, . . . , n, we obtain

f
(
f
(
x11, . . . , x

1
n

)
, . . . , f (xn1 , . . . , x

n
n)
)

= f
(
x1i1 , . . . , x

n
in

)
.

Let us replace each xji by xi:

f (f (x1, . . . , xn) , . . . , f (x1, . . . , xn)) = f (xi1 , . . . , xin) .

The left hand side of the above identity equals f (x1, . . . , xn),
as f is idempotent. Therefore, we can conclude that
f (x1, . . . , xn) = f (xi1 , . . . , xin). This means that the map
k 7→ ik is a permutation of n and f is invariant under this
permutation. Permuting the variables of the inner function
f (x1, . . . , xn) on the left hand side of (2) by this permutation,
we get the identity

f (y1, . . . , yk−1, f (xi1 , . . . , xin) , yk+1, . . . , yn) =

f (y1, . . . , yk−1, xik , yk+1, . . . , yn) ,

which is equivalent to the statement of the lemma.
The identities (1) actually characterize idempotent lazy

operations, as we shall see in the following theorem. Let us
note that algebras corresponding to item (iii) below were called
diagonal algebras in [5], and the equivalence of (i) and (iii)
was proved in [5].

Theorem 2: For every idempotent operation f ∈ O(n)
A the

following three conditions are equivalent:
(i) f is lazy;

(ii) f satisfies the identities (1) for every k ∈ n;
(iii) f satisfies the following identity:

f
(
f
(
x11, . . . , x

1
n

)
, . . . , f (xn1 , . . . , x

n
n)
)

=

f
(
x11, . . . , x

n
n

)
. (3)

Proof: Lemma 1 shows (i) =⇒ (ii). For (ii) =⇒ (i),
let us consider an arbitrary operation g ∈ [f ]. Then g is a
term function of the algebra A = (A; f) corresponding to
a term t, and we may assume that t is of minimum length.
If t is just a variable, then g ≡ id, while if the operation
symbol f appears in t exactly once, then g � f . Now assume
that f appears at least twice in t. Then t is of the form



t = f (t1, . . . , tk−1, f (s1, . . . , sn) , tk+1, . . . , tn). Using (1),
we see that t is equivalent to f (t1, . . . , tk−1, sk, tk+1, . . . , tn),
which is shorter than t, contradicting the minimality of the
length of t.

To prove (ii) =⇒ (iii), one just needs to apply (1) repeatedly
for k = 1, . . . , n to the left hand side of (3). Finally, to verify
(iii) =⇒ (ii), we set yj = xj1 = · · · = xjn for every j ∈ n\{k}
and xi = xki for every i ∈ n in the left hand side of (3), and
then use idempotence of f to obtain (1).

Theorem 3 ([5]): An idempotent operation f ∈ O(n)
A is

lazy if and only if (A; f) is isomorphic to an n-ary rectangular
band.

Proof: It is easy to verify that n-ary rectangular bands
satisfy the identities (1), thus they are lazy by Theorem 2.
Now assume that f ∈ O(n)

A is an idempotent lazy opera-
tion. Let 0 denote an arbitrary fixed element of A, and let
Ak = {f (0, . . . 0, a, 0, . . . , 0) : a ∈ A} (with a appearing in
the k-th position) for every k ∈ n. From (3) it follows that
the restriction of f to Ak is (the restriction of) the k-th
projection, hence the direct product

∏
k∈n (Ak; f |Ak

) is an
n-ary rectangular band.

We prove that the map ϕ : (A; f) →
∏
k∈n (Ak; f |Ak

)
defined by

ϕ (a) =(
f (a, 0, . . . , 0, 0) , f (0, a, . . . , 0, 0) , . . . , f (0, 0, . . . , 0, a)

)
(4)

is an isomorphism. Using (1) one can verify that ϕ is indeed
a homomorphism:

ϕ (f (a1, . . . , an)) =(
f (a1, 0, . . . , 0, 0) , f (0, a2, . . . , 0, 0) , . . . , f (0, 0, . . . , 0, an)

)
= f (ϕ (a1) , . . . , ϕ (an)) .

It is also straightforward to verify with the help of (3) and
the idempotence of f that the inverse of ϕ is the map∏
k∈n (Ak; f |Ak

) → (A; f) , (a1, . . . , an) 7→ f (a1, . . . , an).

IV. LAZY BINARY OPERATIONS

Throughout this section, let f (x, y) = xy denote a binary
operation on the set A depending on both of its variables.
The dual of the groupoid A = (A; f) is Ad = (A; g),
where g (x, y) = yx, and the dual of a groupoid variety
V is V d =

{
Ad : A ∈ V

}
. Clearly, a groupoid is lazy if

and only if its dual is lazy. Now we have f1 (x, y, z) =
(xy) z and f2 (x, y, z) = x (yz). If f is a lazy operation
then f1, f2 ∈ JA∪ ↓ f , hence A satisfies the identities
(xy) z = t1 and x (yz) = t2 for some choice of the terms
t1, t2 ∈

{
x, y, z, x2, y2, z2, xy, yx, yz, zy, xz, zx

}
. This gives

us 144 possibilities; we will prove in this section that only 20
of these are possible. Examining these cases, we will find that
lazy groupoids belong to 13 varieties, each being defined by
two identities. To obtain a more concrete description of lazy
groupoids, we will also describe the free algebras in these

varieties; all lazy groupoids are quotients of these free lazy
groupoids.

Lemma 4: If the binary operation · satisfies the identity
(xy) z = t1 for some t1 ∈ {x, y, z, zy, zx, yx}, or it satisfies
x (yz) = t2 for some t2 ∈ {z, y, x, yx, zx, zy}, then · is
essentially at most unary.

Proof: The identity (xy) z = t1 (x, y, z) implies
t1 (xy, z, u) = ((xy) z)u = t1 (x, y, z) · u. If t1 = x, then
we obtain xy = xu, which shows that xy does not depend on
y. Similarly, for t1 = y we obtain z = yu, and for t1 = z we
get u = zu. If t1 = zy, then we get uz = (zy)u, which yields
uz = uy after applying (zy)u = t1 (z, y, u). For t1 = zx we
can argue similarly: u (xy) = (zx)u = t1 (z, x, u) = uz,
showing that uz does not depend on z.

Now let us consider the case t1 = yx. Then we have

z (xy) = t1 (xy, z, u) = ((xy) z)u

= t1 (x, y, z) · u = (yx)u = t1 (y, x, u) = xy,

which immediately implies (uv) (xy) = xy. On the other
hand, (uv) (xy) = t1 (u, v, xy) = vu. Thus, we have xy = vu,
i.e., f is a constant operation.

The identites x (yz) = t2 are the duals of the above ones.

Now we are left with 36 pairs (t1, t2); these possibilities are
summarized in Table I. The entries marked by ‘−’ contradict
the essentiality of f , while the other cases give rise to 7
varieties L1, . . . , L7 of lazy groupoids together with their duals
(note that L7 is selfdual).

Lemma 5: Let (A; f) = (A; ·) be a groupoid and assume
that the operation f depends on both of its variables. If (A; f)
is a lazy groupoid then it belongs to one of the 13 varieties
L1, . . . , L7, L

d
1, . . . , L

d
6, which are defined by the following

identities:
L1 : (xy) z = x2, x (yz) = x2;

L2 : (xy) z = x2, x (yz) = xy;

L3 : (xy) z = xy, x (yz) = x2;

L4 : (xy) z = xz, x (yz) = x2;

L5 : (xy) z = xy, x (yz) = xy;

L6 : (xy) z = xz, x (yz) = xy;

L7 : (xy) z = xz, x (yz) = xz.

Proof: We can derive the following three identites from
(xy) z = t1 and x (yz) = t2:

t1 (x, y, zu) = (xy) (zu) = t2 (xy, z, u) ; (5a)
t1 (x, yz, u) = (x (yz))u = t2 (x, y, z) · u; (5b)

x · t1 (y, z, u) = x ((yz)u) = t2 (x, yz, u) . (5c)

In all the 16 cases marked by ‘−’ in Table I, at least one
of the above three identities contradicts the essentiality of the
operation f . We work out the details only for t1 = y2, t2 = xy
(here we will need the identity (5c)); the other cases are similar
or even simpler:

xz2 = x·t1 (y, z, u) = x ((yz)u) = t2 (x, yz, u) = x (yz) = xy.



x2 y2 z2 xy yz xz t2

x2 L1 L1 ∩ Ld
1 L1 ∩ Ld

1 L2 − −

y2 L1 ∩ Ld
1 L1 ∩ Ld

1 L1 ∩ Ld
1 − − −

z2 L1 ∩ Ld
1 (!) L1 ∩ Ld

1 Ld
1 − Ld

3 Ld
4

xy L3 − − L5 − −

yz − − Ld
2 − Ld

5 Ld
6

xz L4 − − L6 − L7

t1

TABLE I

Now it only remains to verify the entries marked by L1∩Ld1
in Table I. These can be handled with the help of the identites
(5); again, we provide details only for one case, namely for
t1 = y2, t2 = x2. Note that the variety L1∩Ld1 is axiomatized
by the identites (xy) z = x (yz) = x2 = z2. This means that a
groupoid A belongs to L1∩Ld1 if and only if A is a semigroup
and there is a constant c ∈ A such that xyz = x2 = c. It is
clear that such semigroups satisfy (xy) z = y2 and x (yz) =
x2. Conversely, assume now that (xy) z = y2 and x (yz) = x2

hold in a groupoid A. Let us write out (5b):

(yz)
2

= t1 (x, yz, u) = (x (yz))u = t2 (x, y, z) · u = x2u.

We can conclude that (yz)
2 depends neither on y nor on z,

hence there is a constant c ∈ A such that (yz)
2

= c. Now let
us use (5a):

y2 = t1 (x, y, zu) = (xy) (zu) = t2 (xy, z, u) = (xy)
2
.

This implies that y2 is constant c, hence A satisfies (xy) z =
x (yz) = c; therefore, A ∈ L1 ∩ Ld1.

The entry marked by L1 ∩ Ld1 (!) in Table I is special in
the sense that the identities (xy) z = z2, x (yz) = x2 do not
guarantee laziness. Here (5a) yields (zu)

2
= (xy)

2, i.e., (xy)
2

is constant. Since the only constant in JA∪ ↓f is the diagonal
operation f∗ (x) = x2, we see that x2 must be constant. Then
we have (xy) z = x (yz) = x2 = z2, hence A ∈ L1 ∩ Ld1.

In order to complete the description of lazy groupoids, we
still need to verify that every groupoid belonging to the the
varieties L1, . . . , L7, L

d
1, . . . , L

d
6 defined in Lemma 5 is indeed

lazy. We shall also show that none of the 13 cases is trivial
in the sense that there exists groupoids with essentially binary
multiplication in each of these varieties. We can achieve both
goals by describing free algebras in the varieties L1, . . . , L7

(we omit Ld1, . . . , L
d
6). In the following, whenever we use one

of the two defining identities for any one of our varieties, we
write 1.

= or 2.
= to indicate whether we have used the first or the

second indentity (as listed in Lemma 5).
Lemma 6: Let V be one of the varieties L1, . . . , L7 and

let X be a set of variables. Then the free algebra FX (V )
of V freely generated by X is isomorphic to the groupoid
(X ∪X ×X; ·) whose multiplication is given by Table II.

x · y (x, y) · z x · (y, z) (x, y) · (z, u)

L1 (x, y) (x, x) (x, x) (x, x)

L2 (x, y) (x, x) (x, y) (x, x)

L3 (x, y) (x, y) (x, x) (x, y)

L4 (x, y) (x, z) (x, x) (x, x)

L5 (x, y) (x, y) (x, y) (x, y)

L6 (x, y) (x, z) (x, y) (x, z)

L7 (x, y) (x, z) (x, z) (x, u)

TABLE II

If X has at least two elements, then this multiplication is
essentially binary and FX (V ) is a lazy groupoid, hence every
member of V is lazy.

Proof: We prove the lemma only for L2; the other
varieties can be dealt with in an analogous way. Let X be a
set with at least two elements, and let us consider the groupoid
A = (X ∪X ×X; ·), where the multiplication · is defined by
the row corresponding to L2 in Table II. It is straightforward
to verify that this operation is essential and A ∈ L2.

We prove by term induction that every term of L2 is
equivalent to x or xy for some x, y ∈ X . Let t be a term
of L2 over the set X of variables that contains at least two
multiplications (i.e., at least three, not necessarily distinct
variables). Then t = s1 · s2, where the terms s1 and s2
are shorter than t, hence, by the induction hypothesis, they
are equivalent to a variable or to a product of two variables.
Therefore, we have the following three possibilities with some
(not necessarily distinct) variables x, y, z, u ∈ X:

s1 = xy, s2 = z =⇒ s1s2 = (xy) z
1.
= x2;

s1 = x, s2 = yz =⇒ s1s2 = x (yz)
2.
= xy; (6)

s1 = xy, s2 = zu =⇒ s1s2 = (xy) (zu)
2.
= (xy) z

1.
= x2.

Thus, every term over L2 is indeed equivalent to a variable
or a product of two variables, showing that every essential
member of L2 is a lazy groupoid.

Let us note that the terms x (x ∈ X) and xy (x, y ∈ X)
are pairwise inequivalent over L2; in fact, it is easy to see
that they are pairwise inequivalent already over A. This fact
together with (6) shows that FX (L2) is isomorphic to A.

Theorem 7: A gruopoid is lazy if and only if it belongs to
one of the 13 varieties L1, . . . , L7, L

d
1, . . . , L

d
6.

Proof: The “only if” part is covered by Lemma 5, while
the “if” part follows from Lemma 6 and its dual.

Remark 1: In order to describe lazy groupoids more ex-
plicitly (i.e., up to isomorphism) would could determine con-
gruences and the corresponding quotients of the free algebras
given in Lemma 6. We leave this task for future work.



V. APPLICATION TO ESSENTIALLY MINIMAL GROUPOIDS

As the following lemma shows, for binary operations there
is a strong relationship between laziness and essential mini-
mality.

Lemma 8: Let A = (A; ·) be an essential lazy groupoid,
and let C denote the clone of term functions of A. If A is
idempotent, then C is a minimal clone, whereas if A is not
idempotent then C is an essentially minimal clone.

Proof: Laziness of A implies that every operation in C is
equivalent to one of the operations xy, x2 and x. If x2 = x
holds in A, then C has exactly two subclones, namely C = [xy]
and JA = [x], hence C is a minimal clone. Otherwise, C has
exactly three subclones, namely C = [xy],

[
x2
]

and JA = [x],
hence C is an essentially minimal clone.

Theorem 9: Every essential groupoid in the varieties
L1, . . . , L6, L

d
1, . . . , L

d
6 has an essentially minimal clone. The

variety L7 contains groupoids with essentially minimal clones
as well as groupoids with minimal clones (the latter are exactly
the rectangular bands).

Proof: If A is an idempotent groupoid in one of the
varieties L1, L2, L3, L5, then A satisfies the identity xz =

(xx) z
1.
= x2, hence A is not essential. Similarly, if A ∈

L4 is idempotent, then A is not essential, since it satisfies
xy = x (yy)

2.
= x2. For L6 we can draw the same con-

clusion from xy = (xy) (xy)
1.
= x (xy)

2.
= x2. Therefore,

by Lemma 8, we have that every essential groupoid in the
varieties L1, . . . , L6, L

d
1, . . . , L

d
6 has an essentially minimal

clone.
The variety L7 consists of semigroups satisfying xyz = xz,

thus the idempotent members of L7 are just the rectangular
bands, which are known to have minimal clones (this also
follows from Lemma 8). However, L7 also contains nonidem-
potent semigroups (for example FX (L7); see Lemma 6), and
these have essentially minimal clones, again by Lemma 8.

Remark 2: We have seen in the above theorem that L7

contains a proper essential subvariety, namely the variety of
rectangular bands. One can verify that L1 and Ld1 have two
proper essential subvarieties, namely the semigroup varieties
defined by xyz = x2 = y2 (this is just L1 ∩ Ld1) and xyz =
x2, xy = yx, respectively. On the other hand, the varieties
L2, . . . , L6, L

d
2, . . . , L

d
6 have no proper essential subvarieties.

Our main motivation for studying lazy clones is Propo-
sition 4.2 of [4], which reduces the description of certain
types of essentially minimal clones to the description of lazy
clones. In order to recall this result, we need to introduce
some notation and terminology. Let f (x, y) = xy be a binary
operation on a nonempty set A, and, as before, let f∗ denote
the corresponding diagonal operation: f∗ (x) = f (x, x) = x2.
Let us denote by Γ (f) the set of periodic points of f∗:

Γ (f) = {a ∈ A : (f∗)
n

(a) = a for some n ∈ N} .

Two types of essentially minimal clones are defined in [4];
here we can state this definition in a slightly simpler form,
as we are dealing only with lazy binary operations. Let f
be a non-idempotent lazy binary operation (then [f ] is an

essentially minimal clone by Lemma 8). If the restriction of f
to Γ (f) is essential, then we say that the operation f (or the
clone [f ]) is of type A, otherwise it is of type B. According
to Proposition 4.2 of [4], essentially minimal clones of type
A are closely related to lazy clones. Here we formulate this
result for binary operations.

Theorem 10 ([4]): Let f (x, y) = xy be a binary operation
on A such that the restriction of f to Γ (f) is essential, and
let A = (A; ·) be the corresponding groupoid. Then [f ] is
an essentially minimal clone if and only if the following are
satisfied.

(i) ∅ 6= Γ (f) ⊂ A
(ii) A satisfies the identity xy = x2y2.

(iii) Either
(a) Γ (f) is closed under multiplication, and the

groupoid (Γ (f) ; ·) has a minimal clone, or
(b) Γ (f) is not closed under multiplication, the op-

eration (xy)
2 is not essential, and [f ] is minimal

among essential lazy clones.
This theorem divides essentially minimal clones into two

subtypes, which we will call subtype Aa and Ab, according to
whether condition (a) or (b) holds in (iii). It is widely accepted
that the full description of minimal clones is a very difficult
problem that is beyond reach even for binary operations, there-
fore it does not seem a feasible task to determine essentially
minimal groupoids of subtype Aa. However, from Theorem 7
we can easily deduce the following description of essentially
minimal groupoids of subtype Ab.

Theorem 11: An essential groupoid has an essentially min-
imal clone of subtype Ab if and only if it belongs to the variety
L6 or Ld6.

Proof: Let f (x, y) = xy be a binary operation on A
such that [f ] is an essentially minimal groupoid of subtype
Ab, and let A = (A; ·) be the corresponding groupoid. Then
[f ] is a lazy clone, hence, by Theorem 7, we can assume (up to
duality) that A belongs to one of the varieties L1, . . . , L7. Each
of these varieties satisfies

(
x2
)2

= x2, hence (f∗)
2

= f∗.
This means that the set of periodic points equals the range of
f∗ (moreover, it coincides with the set of fixed points of f∗):
Γ (f) =

{
a2 : a ∈ A

}
. Thus [f ] is of type A if and only if x2y2

is essential. The varieties L1, . . . , L5 satisfy x2y2 = x2, hence
these are of type B, whereas L6 and L7 satisfy x2y2 = xy,
hence essential groupoids in these varieties are of type A.

If A ∈ L7, then Γ (f) is closed under multiplication: x2y2 =
xy = (xy)

2 follows from the identity xyz = xz, which holds
in L7. Moreover, the multiplication is idempotent on Γ (f),
thus (Γ (f) ; ·) is a rectangular band, and therefore it has a
minimal clone. This shows that every essentially minimal (i.e.,
non-idempotent, cf. Lemma 8) groupoid in L7 is of type Aa

Finally, we prove that every essential groupoid A ∈ L6 is
of subtype Ab. Suppose for contradiction that Γ (f) is closed
under multiplication, i.e., for every a, b ∈ A there exists c ∈ A
such that a2b2 = c2. Then we have

ab
∗
= a2b2 = c2

∗
= c2c2 = (ab) (ab)

∗
= a2. (7)



(At the steps indicated by ∗= we used the identity (xy) (zu) =
xz, which can be deduced from the defining identites of L6

as follows: (xy) (zu)
1.
= x (zu)

2.
= xz.) Since (7) holds for all

a, b ∈ A, we can conclude that A satisfies the identity xy =
x2, contradicting the essentiality of the multiplication. The
other two conditions of (iii)/(b) are easily verified: (xy)

2 ∗
= x2

shows that (xy)
2 is not essential, and we have seen in the proof

of Lemma 8 that [f ] has only two proper subclones, and both
of them are essentially unary.

Remark 3: In [2] several varieties of essentially minimal
groupoids were given. One can verify that L5 is a subvariety
of V2 (consequently Ld5 ⊆ V d2 ) and L3 is a subvariety of V4
(consequently Ld3 ⊆ V d4 ). Binary essentially minimal clones on
the three-element set were determined in [3]; there are 16 such
clones up to conjugacy. Only one of them is lazy, namely the
clone of the groupoid A3; this groupoid belongs to the variety
Ld6.
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