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Abstract—We consider classes of operations in multiple-valued
logic that are closed under composition as well as under permu-
tation of variables, identification of variables (diagonalization)
and introduction of inessential variables (cylindrification). Such
closed classes on a given finite set form a complete lattice that
includes the lattice of clones as the principal filter above the trivial
clone. We determine all maximal closed classes; it turns out that
there is only one family of closed classes besides Rosenberg’s six
families of maximal clones. For minimal closed classes we prove
an analogon of Rosenberg’s five-type classification of minimal
clones and we describe explicitly the unary closed classes.

I. INTRODUCTION

Let A be a nonempty finite set, and let C be a class of
finitary operations on A. If C is closed under composition
of operations and contains the projections, then C is called a
clone on A. There are countably infinitely many clones on a
two-element base set, and all such clones were determined by
Post [1]. For |A| ≥ 3 there exists a continuum of clones on A
(see [2]), and it is widely accepted that an explicit description
of clones is an extremely difficult task even for |A| = 3. The
set of all clones on A is a complete lattice, and many authors
have investigated different parts of these lattices of clones.
Here we focus on two special classes of clones: maximal and
minimal clones. Maximal clones (i.e., coatoms in the lattice of
clones) have been determined by Rosenberg [3] on arbitrary
finite sets. The description of minimal clones (i.e., atoms in the
lattice of clones) seems to be a considerably harder problem;
a full description is available only for |A| ≤ 4 (see [4], [5],
[6], [7]). However, Rosenberg classified minimal clones into
five types, and for two of the types he found necessary and
sufficient conditions for minimality over arbitrary finite sets
[8].

In this paper we generalize these two theorems of Rosenberg
about maximal and minimal clones to more general classes of
operations. We consider classes that are closed under com-
position but do not necessarily contain projections. However,
we assume that our classes are closed under permutation
of variables, identification of variables and introduction of
inessential variables; in the case of clones, these properties
are guaranteed by the presence of projections. The set of
these closed classes on a given base set A forms a complete
lattice under inclusion, in which the lattice of clones appears
as the principal filter generated by the trivial clone (i.e.,

the clone that consists of projections only). We determine
the coatoms in the lattice of closed classes, thus extending
Rosenberg’s theorem about maximal clones to these more
general classes of operations. We will see that the coatoms
are exactly the maximal clones and one more family of closed
classes without projections. Since the bottom element of the
lattice of closed classes is the empty class, the atoms are quite
trivial to determine (one of them is the trivial clone). The
true analogues of minimal clones turn out to be the closed
classes on the “second floor” of the lattice, i.e., the covers
of atoms, hence we will refer to these classes as minimal
closed classes. These include minimal clones, hence describing
them is at least as difficult as describing minimal clones.
We provide a classification of minimal closed classes in the
spirit of Rosenberg’s classification of minimal clones, and we
determine minimal closed classes for one of the five types,
namely for the unary type.

In the next section we recall the definitions and results about
classes of operations, composition, clones and relations that
will be used in the sequel. For more background on these
topics we refer the reader to the monographs [9] and [10].
Then in Section III we state and prove the above mentioned
generalization of Rosenberg’s theorem on maximal clones, and
in Section IV we establish a generalization of Rosenberg’s
classification of minimal clones.

II. PRELIMINARIES

Throughout this paper, A is a nonempty finite set, andOA =⋃
n≥1A

An

denotes the set of all finitary operations on A. For
a class K ⊆ OA of operations, let K(n) stand for the n-ary
part of K, i.e., K(n) := K ∩ AAn

. For n ∈ N, let [n] =
{1, 2, . . . , n}.

A. Composition of operations and classes of operations

For f ∈ O(n)
A and g1, . . . , gn ∈ O(k)

A , the composition of f
by g1, . . . , gn is the operation f (g1, . . . , gn) ∈ O(k)

A defined
by

(f (g1, . . . , gn)) (x) = f (g1 (x) , . . . , gn (x)) for all x ∈ Ak.

We can extend this definition to composition of classes of
operations: for K,L ⊆ OA let K ◦ L denote the set{

f (g1, . . . , gn) : k, n ∈ N, f ∈ K(n), g1, . . . , gn ∈ L(k)
}
.



This composition is a binary operation on the power set of
OA. In general, it is not associative, but it becomes associative
when restricted to equational classes (see, e.g., [11], [12]).

B. Subfunctions and equational classes

The i-th n-ary projection for 1 ≤ i ≤ n ∈ N is the
operation e

(n)
i ∈ O(n)

A such that e(n)
i (x1, . . . , xn) = xi for

all (x1, . . . , xk) ∈ An. For f, g ∈ OA, we say that g is a
subfunction of f (notation: g � f ) if g belongs to the class
composition

{f} ◦ {e(n)
i : n ∈ N, i ∈ [n]},

i.e., if g can be obtained from f by permutation of variables,
identification of variables (diagonalization) and introduction
of inessential variables (cylindrification). The subfunction rela-
tion is a quasiorder on OA, and the corresponding equivalence
is defined by f ≡ g ⇐⇒ f � g and g � f . It is easy to
see that two operations are equivalent if and only if they can
be obtained from each other by permutation of variables and
introduction or deletion of inessential variables. In particular,
denoting the identity function on A by id, we have f ≡ id if
and only if f is a projection. Therefore, we will simply write
{id} for the set of projections.

A class K ⊆ OA of operations on A is called an equational
class if it is an order ideal in the subfunction quasiorder. This
terminology is motivated by the fact that definability by certain
types of functional equations is equivalent to being closed
under forming subfunctions [13], [14]. Although composition
of classes of operations is not associative in general, equational
classes form a semigroup under composition [11]. Every
clone is an idempotent element in this semigroup, and every
idempotent is a composition-closed equational class (see the
formal definition in the next subsection). In [15] the study
of the semigroup of equational classes was initiated with the
intention of obtaining a better understanding of composition
of operations and composition-closed classes such as clones.

C. Clones and closed classes

A clone on A is a class K ⊆ OA that is closed under
composition and contains all projections:

K ◦ K ⊆ K and {id} ⊆ K. (1)

The least clone containing a given class K ⊆ OA is denoted
by [K]; it consists of those operations that can be built from
members of K and from projections by means of composition.
The set of all clones on a fixed base set A constitutes
a lattice under inclusion, with the lattice operations being
C1 ∧ C2 = C1 ∩ C2 and C1 ∨ C2 = [C1 ∪ C2]. The least
element of the lattice of clones over A is the clone containing
only projections, which is called the trivial clone, and the
greatest element is OA, the clone of all operations on A.
Atoms and coatoms of the lattice of clones are called minimal
clones and maximal clones, respectively. As mentioned in the
introduction, maximal clones on finite sets are completely
known [3], while for minimal clones only a classification is
available, with two of the five types completely described [8].

We consider in this paper equational classes that are closed
under composition, that is, classes K ⊆ OA such that K◦K ⊆
K and f ∈ K, g � f =⇒ g ∈ K for all g ∈ OA, or, more
compactly,

K ◦ K ⊆ K and K ◦ {id} ⊆ K. (2)

For brevity, in the following we will simply write closed class
instead of composition-closed equational class. For K ⊆ OA,
we denote by bKc the least closed class containing K. The
set of all closed classes on A forms a lattice under inclusion,
with the lattice operations being K1 ∧ K2 = K1 ∩ K2 and
K1 ∨ K2 = bK1 ∪ K2c. Note that the least element of this
lattice is the empty class. For all K ⊆ OA, we have [K] =
bK ∪ {id}c, and C ⊆ OA is a clone if and only if C is a closed
class and id ∈ C. Therefore, the lattice of clones appears in
the lattice of closed classes as the principal filter generated
by the trivial clone. The lattice of closed classes over a two-
element base set has already continuum cardinality; this lattice
has been described in [16].

Remark 1: Iterative algebras provide another generalization
of clones. These classes are usually defined by the five
Mal’tsev operations ζ, τ , ∆, ∇, ? (see [9], [10]), but they
can also be defined by means of class composition as follows.
A class K ⊆ Ω is an iterative algebra iff

K ◦ (K ∪ {id}) ⊆ K. (3)

It is clear that (1) =⇒ (3) =⇒ (2), hence every clone is an
iterative algebra, and every iterative algebra is a closed class.

D. Relations and constraints

For an m-ary relation R ⊆ Am and a matrix N ∈ Am×n,
we say that N is an R-matrix if each column of N belongs
to R. If f ∈ O(n)

A , then fN stands for the m-tuple that
is obtained by applying f row-wise to N , and let fR =
{fN : N ∈ Am×n is an R-matrix}. If fR ⊆ R, then we say
that f preserves the relation R. For a set Q of relations,
let PolQ denote the set of all operations that preserve every
member of Q:

PolQ = {f ∈ OA : ∀R ∈ Q fR ⊆ R} .

Preservation of relations induces a Galois connection between
operations and relations on A. The corresponding Galois
closed sets are exactly the clones and the so-called relational
clones (see [17], [18]). Thus, C ⊆ OA is a clone if and only
if there exists a set of relations Q such that C = PolQ.
Relational clones can also be characterized as sets of relations
closed under certain constructions; since we will not need this
description, we do not give the details here. We will only
use the fact that the relations in the smallest relational clone
(generated by the unary total relation A) are exactly relations
of the form

S = {a ∈ Am : ai = aj whenever (i, j) ∈ ε} , (4)

where ε is an equivalence relation on [m]. In other words, a
relation is preserved by all operations on A if and only if S
is of form (4).



Composition-closed equational classes can be described by
relational constraints, i.e., pairs (R,S) of relations, where R
and S have the same arity. For a set Q of relational constraints,
we define Pol∗Q ⊆ OA as follows:

Pol∗Q = {f ∈ OA : ∀ (R,S) ∈ Q fR ⊆ S and fS ⊆ S} .

It was shown in [16] that a class K ⊆ OA is a closed class if
and only if there exists a set of relational constraints Q such
that C = Pol∗Q.

Remark 2: Iterative algebras (cf. Remark 1) also admit a
characterization in terms of relational constraints, as shown
by Harnau in [19]. Here one uses pairs of relations (R,S)
with S ⊆ R, and an operation f is said to preserve such a
pair if fR ⊆ S.

III. MAXIMAL CLOSED CLASSES

First let us recall Rosenberg’s description of maximal
clones. We do not define the types of relations appearing in
the theorem, as we will not need them.

Theorem 1 (Rosenberg’s theorem [3]): A clone C ⊆ OA is
a maximal clone if and only if C = PolR for some relation
R satisfying one of the following six conditions:

(i) R is a bounded partial order;
(ii) R is the graph of a permutation of prime order;

(iii) R is a nontrivial equivalence relation;
(iv) R is a prime-affine relation;
(v) R is a central relation;

(vi) R is an h-regular relation.
Proposition 2: Every composition-closed equational class

of OA is contained in a maximal composition-closed equa-
tional class.

Proof: It is well known that OA is a finitely generated
clone. In fact, OA can be generated by a single operation;
such a generator is called a Sheffer operation. For instance,
the operation defined by

g (x, y) =
{
x⊕ 1, if x = y;

0, if x 6= y.

is a Sheffer operation on A = {0, 1, . . . , n− 1}, where ⊕
stands for addition modulo n (see [20]). Thus, we have [g] =
OA, hence bg, idc = OA. This shows that OA is a finitely
generated closed class, and then by Zorn’s lemma we have
that each closed class is contained in a maximal one.

We will prove that the maximal closed subclasses of OA

are exactly the maximal clones together with the classes

Mab := {f ∈ OA : f (a, . . . , a) = f (b, . . . , b)}

for a, b ∈ A, a 6= b.
It is easy to verify directly that Mab is a closed class;

alternatively, one can observe that Mab = Pol∗ ({(a, b)} ,=).
Lemma 3: For any a, b ∈ A, a 6= b, the clone generated by
Mab is OA.

Proof: It would be sufficient to verify that Mab is not
contained in any of the maximal clones given in Theorem 1.
Alternatively, since Mab contains all constants, one could

use one of the criteria for functional completeness (e.g., the
Werner-Wille theorem). However, it seems easier to give a
direct proof as follows. Let f ∈ OA be an arbitrary operation,
and let n denote the arity of f . Choose any operation g ∈ OA

of arity n+ 2 such that

g (x1, . . . , xn, a, b) = f (x1, . . . , xn) (5a)

for all (x1, . . . , xn) ∈ An, and

g (x, . . . , x) = a (5b)

for all x ∈ A. (Clearly, there are many such operations g; the
values of g on tuples not listed above are irrelevant.) Condition
(5b) guarantees that g ∈ Mab, and then by (5a) we conclude
f ∈ [Mab], as the constants a and b also belong to Mab.

Theorem 4: The maximal composition-closed equational
classes on A are the maximal clones (see Theorem 1) and
the classes Mab with a, b ∈ A, a 6= b.

Proof: Let K be a maximal closed class that is not a clone.
Since K is closed, there exists a set Q of relational constraints
such that K = Pol∗ (Q). For each (R,S) ∈ Q we have
Pol∗ (R,S) ⊇ K, hence Pol∗ (R,S) = K or Pol∗ (R,S) =
OA by the maximality of K. From K =

⋂
(R,S)∈Q Pol∗ (R,S)

it follows that there exists (R,S) ∈ Q such that Pol∗ (R,S) =
K. Then we have K = Pol∗ (R,S) ⊆ Pol (S), hence either
Pol (S) = K or Pol (S) = OA, again by the maximality of K.
However, the first case is impossible, as K is not a clone. Thus
Pol (S) = OA, which means that S belongs to the smallest
relational clone (generated by the unary total relation A), thus
S is of the form (4) for some m ∈ N and an equivalence
relation ε on [m].

Next we show that R * S. Suppose for contradiction that
R ⊆ S, and let f ∈ OA be an arbitrary operation. Then fR ⊆
fS ⊆ S, since S is preserved by all operations. This implies
that Pol∗ (R,S) = OA, which contradicts Pol∗ (R,S) = K.

Thus R * S, and then there exists a tuple r ∈ R\S. Taking
into account that S is given by (4), r /∈ S implies that there
exist i, j ∈ [m] such that (i, j) ∈ ε but ri 6= rj . We claim that
K =Mab with a = ri, b = rj .

Let f ∈ K be an arbitrary operation, and let N be the
m× n matrix such that each column vector of N is r and n
is the arity of f . Clearly, N is an R-matrix. Since f ∈ K =
Pol∗ (R,S), we have fN ∈ S. The i-th and j-th entries of
the tuple fN are f (a, . . . , a) and f (b, . . . , b), respectively.
Therefore, fN ∈ S and (i, j) ∈ ε imply that f (a, . . . , a) =
f (b, . . . , b) according to (4). This shows that f ∈ Mab for
every f ∈ K, i.e., K ⊆Mab. By the maximality of K we can
conclude that K =Mab.

We have proved that every maximal closed class is either
a maximal clone or one of the classes Mab with a 6= b.
It remains to prove that each of these classes is indeed
maximal. By Proposition 2, every closed class is contained
in a maximal one, hence it suffices to prove that the afore-
mentioned classes are pairwise incomparable. It is clear that
maximal clones are pairwise incomparable as well as the
classes Mab (a, b ∈ A, a 6= b). Now let C be a maximal clone



and let let a, b ∈ A, a 6= b. There are no projections in Mab,
hence C * Mab, and Mab * C follows immediately from
Lemma 3.

Corollary 5: There are finitely many maximal composition-
closed equational classes on A.

Proof: It follows from Theorem 1 that there are finitely
many maximal clones on A, and it is clear that there are finitely
many classes Mab.

Example 6: All closed classes on {0, 1} have been de-
scribed in [16]; in particular, the maximal closed classes
turned out to be the five maximal clones of Boolean func-
tions (0-preserving functions, 1-preserving functions, mono-
tone functions, linear functions, selfdual functions) and the
class Ω= =

{
f ∈ O{0,1} : f (0, . . . , 0) = f (1, . . . , 1)

}
. Theo-

rem 4 indicates that the situation is similar over arbitrary finite
sets, as the classesMab are immediate generalizations of Ω=.

IV. MINIMAL CLOSED CLASSES

First we determine the atoms of the lattice of closed classes
on A. We say that a unary operation u ∈ O(1)

A is idempotent,
if u2 = u, i.e., u (u (x)) = u (x) holds for all x ∈ A. Observe
that u is idempotent if and only if u (x) = x for all x ∈
ranu := {u (x) : x ∈ A}. (Note that it is also customary to
say that f ∈ OA is idempotent if f (x, . . . , x) = x for all
x ∈ A. We will not use this notion of idempotence in this
paper.)

Proposition 7: A class K ⊆ OA is an atom in the lattice
of composition-closed equational classes on A if and only if
K = buc for some idempotent unary operation u ∈ O(1)

A .
Proof: Let K be an atom in the lattice of closed classes,

and let f ∈ K be an arbitrary operation. Since K is an
equational class, the unary operation g (x) := f (x, . . . , x)
belongs to K. Finiteness of A implies that some power of g is
idempotent, i.e., there exists k ∈ N such that u := gk satisfies
u2 = u. Clearly, u ∈ K, as K is closed under composition.
Therefore, ∅ $ buc ⊆ K, and then buc = K, since K has no
proper nonempty closed subclasses.

Remark 3: If u is an idempotent unary operation, then buc
contains only the operations that are equivalent to u, i.e.,
essentially unary operations f of the form f (x1, . . . , xn) =
u (xi). For u = id we obtain the trivial clone bidc = [id] =
{e(n)

i : n ∈ N, i ∈ [n]}. In the following we will refer to the
atoms described in Proposition 7 as trivial closed classes. The
proof of Proposition 7 shows that every nontrivial nonempty
closed class contains a trivial closed class.

To be in accordance with the terminology of clone theory,
we shall say that a nonempty nontrivial closed class K is a
minimal closed class, if the only nonempty nontrivial closed
subclass of K is K itself. If K is a minimal closed class and
buc ⊆ K is a trivial closed class, then K covers buc in the
lattice of closed classes, and we will briefly express this fact
by saying that K is a minimal closed class above buc. Note
that it may happen that K covers two trivial closed classes;
see Remark 4.

Now we recall Rosenberg’s theorem on minimal clones, and
then we present the corresponding result for minimal closed

classes.
Theorem 8 (Rosenberg’s theorem [8]): Let C ⊆ OA be a

minimal clone, and let f be an operation in C\[id] of minimum
arity. Then K = [f ] and one of the following five conditions
hold for f :

(I) f is a unary operation;
(II) f is a binary operation such that for all x ∈ A,

f (x, x) = x;
(III) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = x;
(IV) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = y;
(V) f is of arity n with 3 ≤ n ≤ |A|, and there exists

an i ∈ [n] such that f (x1, . . . , xn) = xi whenever
|{x1, . . . , xn}| < n.

Theorem 9: Let K ⊆ OA be a minimal composition-
closed equational class above buc, where u ∈ O(1)

A is an
idempotent unary operation. Let f be an operation in K \ buc
of minimum arity. Then K = bf, uc, and one of the following
five conditions hold for f :

(I) f is a unary operation;
(II) f is a binary operation such that for all x ∈ A,

f (x, x) = u (x);
(III) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = u (x);
(IV) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = u (y);
(V) f is of arity n with 3 ≤ n ≤ |A|, and there exists

an i ∈ [n] such that f (x1, . . . , xn) = u (xi) whenever
|{x1, . . . , xn}| < n.

Proof: Since K is minimal, it is clear that K = bf, uc for
any f ∈ K \ buc. Let f ∈ K \ buc be of minimum arity, and
let us denote this minimal arity by n. If n = 1, then f is of
type (I). From now on we shall assume that n ≥ 2. If g is any
operation that is obtained from f by identifying some of its
variables, then g ∈ buc by the minimality of the arity of f ,
hence g ≡ u. If n = 2, then this immediately implies that (II)
holds.

If n ≥ 4, then by a generalization of Świerczkowski’s
lemma (see Theorem 7 in [21]) there exists an index i ∈ [n]
such that f (x1, . . . , xn) = u (xi) whenever x1, . . . , xn ∈ A
are not pairwise different. If n > |A|, then this implies
f (x1, . . . , xn) = u (xi) for all x1, . . . , xn ∈ A, i.e., f ≡ u.
However, this contradicts the assumption f ∈ K \ buc.
Therefore, we must have n ≤ |A|, and we can conclude that
f is of type (V).

It only remains to consider the case n = 3. By the above
arguments, there exist r, s, t ∈ {x, y} such that for all x, y ∈ A
we have

f (x, x, y) = u (r) ,
f (x, y, x) = u (s) ,
f (y, x, x) = u (t) .

The cases (r, s, t) = (x, x, x) and (r, s, t) = (y, y, y) corre-
spond to types (III) and (IV), respectively, while the cases



(r, s, t) ∈ {(x, x, y) , (x, y, x) , (y, x, x)} correspond to type
(V).

In the remaining three cases we can assume (up to a
permutation of variables) that (r, s, t) = (y, x, y). If u is a
constant operation, then f belongs to types (III) and (IV),
which coincide in this case. Thus we may assume without
loss of generality that the range of u contains two different
elements, say a and b. In particular, we have

f (a, a, b) = u (b) = b. (6)

Using the idempotence of u, it is easy to see that the oper-
ation g (x, y, z) := f (u(x), f (x, y, z) , u(z)) ∈ K satisfies

∀x, y ∈ A : g(x, x, y) = g(x, y, x) = g(y, x, x) = u(x). (7)

Moreover, it is also straightforward to verify (by term in-
duction) that every ternary operation in bg, uc \ buc satisfies
(7) as well. The minimality of K implies that K = bg, uc.
Therefore, we have f ∈ bg, uc \ buc, hence f satisfies (7),
too. In particular, we have f (a, a, b) = a, which contradicts
(6). Thus, the case (r, s, t) = (y, x, y) is impossible whenever
u is not constant, and this completes the proof.

Corollary 10: There are finitely many minimal
composition-closed equational classes in OA, and every
nonempty nontrivial composition-closed equational class
contains a minimal one.

Proof: Since A is finite, there are finitely many operations
on A of arity at most |A|, hence there are finitely many
minimal closed classes by Theorem 9.

To prove the second statement of the theorem, let us denote
by T the set of all closed classes of OA that are of the form
bf, uc, where u is an idempotent unary operation and f /∈ buc
satisfies one of the five conditions listed in Theorem 9. (Note
that we do not require here that bf, uc is a minimal closed
class.) We will show that every nontrivial closed class contains
a closed subclass that belongs to T . To this extent, let K be
a nontrivial closed subclass of OA, and let u ∈ K(1) with
u2 = u. If K contains a unary operation f 6= u, then K
contains the closed subclass bf, uc ∈ T , which corresponds to
type (I). Now let us assume that u is the only unary operation
in K, and let f ∈ K\buc be of minimum arity. Then the proof
of Theorem 9 shows that f satisfies one of the conditions (II)–
(V), hence bf, uc ∈ T is the desired closed subclass of K, and
this completes the proof of our claim.

Now let K be an arbitrary nonempty nontrivial closed class,
and let P be the set of closed subclasses of K that belong to T .
Then (P ;⊆) is a finite nonempty partially ordered set, hence
it contains at least one minimal element K0. We claim that
K0 is a minimal closed class. Suppose for contradiction that
K1 $ K0 is a proper nonempty nontrivial closed subclass of
K0. Then, by the second paragraph of this proof, there exists
a class K2 ⊆ K1 such that K2 ∈ P . Therefore, we have
K2 $ K0 and K0,K2 ∈ P , which contradicts the fact that K0

is a minimal element of the poset P . Thus, K0 is indeed a
minimal closed subclass of K.

Minimal clones of type (I) and type (IV) have been ex-
plicitly described by Rosenberg in [8]. A unary operation f

generates a minimal clone if and only if either f is idempotent
(f2 = f ) or f is a permutation of prime order (fp = id for
some prime p). A ternary operation f of type (IV) generates
a minimal clone if and only if there exists a binary operation
+ on A such that (A; +) is an Abelian group of exponent
2 and f (x, y, z) = x + y + z. In the following theorem we
describe minimal closed classes K of type (I). In this case all
operations in K are essentially unary (and equivalent to some
member of K(1)), hence it suffices to describe the unary part
K(1).

Theorem 11: Let K ⊆ OA be a minimal composition-
closed equational class of type (I) above buc, where u ∈ O(1)

A

is an idempotent unary operation. Then there exists f ∈
K(1) \ {u} such that K = bf, uc and one of the following
three conditions hold:

(Ia) there exists a prime p such that fp = u, fu = uf = f ;
in this case we have that K(1) =

{
f, f2, . . . , fp

}
;

(Ib) f2 = f, fu, uf ∈ {f, u}; in this case we have that
K(1) = {f, u};

(Ic) f2 = fu = uf = u; in this case we have that K(1) ={
f, f2

}
.

Proof: Since every member of K is essentially unary, we
may work with its unary part, which constitutes a subsemi-
group of the transformation semigroup O(1)

A . The minimality
of K means that K(1) has exactly two subsemigroups con-
taining u, namely {u} and K(1). Let f ∈ K(1) \ {u} be an
arbitrary operation, then K = bf, uc and K(1) (as a semigroup)
is generated by f and u. Since K(1) is a finite semigroup, each
of its elements has an idempotent power. In particular, there
exists k ∈ N such that fk is idempotent. We separate two
cases on whether fk = u or not.

Case 1: fk = u. In this case K(1) is generated by f , hence
it is a cyclic semigroup. If the index of this cyclic semigroup
is at least 2, then

{
f2, f3, . . .

}
is a proper subsemigroup of

K(1). By minimality, this implies
{
f2, f3, . . .

}
= {u}, hence

f2 = u and f3 = fu = uf = u, and thus the conditions
of (Ic) are fulfilled (in this case K(1) is a two-element zero
semigroup). If the index of K(1) is 1, then K(1) is a group
with identity element u. Then it is clear that K is minimal if
and only if K(1) is a cyclic group of prime order, hence (Ia)
is satisfied.

Case 2: fk 6= u. In this case fk and u generate a
subsemigroup of K(1) that properly contains {u}. By min-
imality, this subsemigroup must be all of K(1). Therefore,
K(1) is generated by two idempotents, hence we may assume
without loss of generality that f is idempotent (we replace
the generating set {f, u} with

{
fk, u

}
). It is clear that

K(1) ◦ {u} :=
{
gu : g ∈ K(1)

}
is a subsemigroup of K(1) that

contains {u}. Therefore, we have either K(1) ◦ {u} = K(1)

or K(1) ◦ {u} = {u}. In the former case f = gu for some
g ∈ K(1), hence fu = gu2 = gu = f , while in the latter
case fu = u. A similar argument, using the subsemigroup
{u}◦K(1), shows that uf = f or uf = u, hence the conditions
of (Ib) are satisfied. (Note that we have four possibilities for
the pair (fu, uf): two of them yield a two-element semilattice,



and the other two possibilities correspond to K(1) being a two-
element left or right zero semigroup.)

Remark 4: Note that if f belongs to types (II)–(V), then
f (x, . . . , x) = u (x), hence bf, uc = bfc. Also, if condition
(Ia) or (Ic) of Theorem 11 holds, then bf, uc = bfc. However,
if f corresponds to type (Ib), then bf, uc 6= bfc, and in this
case bf, uc cannot be generated by a single operation. Observe
also that in all types except (Ib), there is only one idempotent
unary operation in a minimal closed class, hence the operation
u in Theorems 9 and 11 is unique, and then our minimal
class is join-irreducible in the lattice of closed classes. A
minimal class of type (Ib) contains exactly two idempotent
unary operations, hence it has two lower covers in the lattice
of closed classes, and therefore it is not join-irreducible.

Example 12: There are three atoms in the lattice of closed
classes of Boolean functions: bidc , b0c , b1c. The minimal
closed classes above bidc are the seven minimal clones: [0]
(type (Ib)), [1] (type (Ib)), [¬x] (type (Ia)), [x ∧ y] (type (II)),
[x ∨ y] (type (II)), [xy ∨ xz ∨ yz] (type (III)) and [x+ y + z]
(type (IV)). The results of [16] imply that the minimal closed
classes covering b0c are b0, 1c (type (Ib)), bx+ yc (type (II)),
bxy + yc (type (II)). The minimal closed classes covering
b1c are the duals of the latter classes, namely b0, 1c (type
(Ib)), bx+ y + 1c (type (II)), b→c (type (II)). As observed
in Remark 4, minimal closed classes of type (Ib) cover two
atoms: [0] covers b0c and bidc, [1] covers b1c and bidc and
b0, 1c covers b0c and b1c.
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[10] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren,
ser. Mathematische Monographien. Berlin: VEB Deutscher Verlag der
Wissenschaften, 1979, vol. 15.

[11] M. Couceiro, S. Foldes, and E. Lehtonen, “Composition of Post classes
and normal forms of Boolean functions,” Discrete Math., vol. 306,
no. 24, pp. 3223–3243, 2006.

[12] M. Couceiro, “On the lattice of equational classes of Boolean functions
and its closed intervals,” J. Mult.-Valued Logic Soft Comput., vol. 14,
no. 1-2, pp. 81–104, 2008.

[13] O. Ekin, S. Foldes, P. L. Hammer, and L. Hellerstein, “Equational
characterizations of Boolean function classes,” Discrete Math., vol.
211, no. 1-3, pp. 27–51, 2000.

[14] N. Pippenger, “Galois theory for minors of finite functions,” Discrete
Math., vol. 254, no. 1-3, pp. 405–419, 2002.

[15] J. Almeida, M. Couceiro, and T. Waldhauser, “On the semigroup of
equational classes of finite functions,” in 43rd IEEE International
Symposium on Multiple-Valued Logic (ISMVL 2013) (Toyama). IEEE
Computer Soc., Los Alamitos, CA, 2013, pp. 243–247.

[16] T. Waldhauser, “On composition-closed classes of Boolean functions,”
J. Mult.-Valued Logic Soft Comput., vol. 19, no. 5-6, pp. 493–518, 2012.
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