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Abstract. The following natural problem, first considered by
D. Lau, has been tackled by several authors recently: Let C be
a total clone on 2 := {0, 1}. Describe the interval I(C) of all par-
tial clones on 2 whose total component is C. We establish some
results in this direction and combine them with previous ones to
show the following dichotomy result: For every total clone C on 2,
the set I(C) is either finite or of continuum cardinality.

This paper is dedicated to the distinguished scholar and friend

Professor I.G. Rosenberg on the occasion of his 80th birthday.

1. Preliminaries

Let k ≥ 2 be an integer and let k be a k-element set. Without loss of generality

we assume that k := {0, . . . , k − 1}. For a positive integer n, an n-ary partial

function on k is a map f : dom (f) → k where dom (f) is a subset of kn, called

the domain of f . Let Par(n)(k) denote the set of all n-ary partial functions on k

and let Par(k) :=
⋃
n≥1

Par(n)(k). An n-ary partial function g is said to be a total

function if dom (g) = kn. Let Op(k) be the set of all total functions on k.

For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary i-th projec-

tion function defined by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn. Furthermore,

let Jk := {eni | 1 ≤ i ≤ n, n ∈ N \ {0}} be the set of all (total) projections.

Partial and total functions on k are composed in a natural way. We refer the

reader to [3, 9, 10] for details.

Definition. A partial clone on k is a composition closed subset of Par(k) contain-

ing Jk. If a partial clone is contained in the set of all total functions Op(k), then

it is called a clone on k.
1
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Remark 1. There are several other equivalent definitions for partial clones. One

definition uses Mal’cev’s formalism and the other uses the concept of one point

extension. These definitions can be found in [9] and in Chapter 20 of [10]. Later

on in this paper we will use Mal’cev’s elementary operations as described in [9]

and [10].

Examples.

1) For a = 0, 1 let Ta be the set of all total functions satisfying f(a, . . . , a) = a,

M be the set of all monotone total functions and S be the set of all self-dual total

functions on 2. Then T0, T1,M and S are clones on 2.

2) Let T0,2 := {f ∈ Op(2) | [(a1, b1) 6= (1, 1), . . . , (an, bn) 6= (1, 1)]

=⇒ (f(a1, . . . , an), f(b1, . . . , bn)) 6= (1, 1)}.
T0,2 is a clone on 2 (see Chapter 3 of [10] for details.)

3) Let S̃ := {f ∈ Par(2) | {(a1, . . . , an), (¬a1, . . . ,¬an)} ⊆ dom (f)

=⇒ f(¬a1, . . . ,¬an) = ¬f(a1, . . . , an)},
where ¬ is the negation on 2. Then S̃ is a partial clone on 2.

The idea behind the last two examples is formalized as follows.

Definition. For h ≥ 1 and n ≥ 1, let ρ be an h-ary relation on k and f be an

n-ary partial function on k. We say that f preserves ρ if for every h × n matrix

M = [Mij] whose columns M∗j ∈ ρ, (j = 1, . . . n) and whose rows Mi∗ ∈ dom (f)

(i = 1, . . . , h), the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol ρ := {f ∈ Par(k) | f preserves ρ}.

It is well known (see, e.g., [10] Chapter 20) that pPol ρ is a partial clone called the

partial clone determined by the relation ρ.

Note that if there is no h×n matrix M = [Mij] whose columns M∗j ∈ ρ and whose

rows Mi∗ ∈ dom (f), then f ∈ pPol ρ. Note also that the clone on k determined

by the relation ρ is Pol ρ := pPol ρ ∩Op(k).

Thus in the example above T0,2 = Pol {(0, 0), (0, 1), (1, 0)} and S̃ = pPol {(0, 1), (1, 0)}.
All partial clones on k (clones on k), ordered by inclusion, form a lattice LPk

(LOk
,

respectively) in which the infimum is the set-theoretical intersection. Clearly LOk

is a sublattice of LPk
. It is therefore very natural to ask about the position of the
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lattice LOk
in LPk

. In [11] D. Lau initiated the study of the following problem for

the case k = 2.

Problem. Let C be a total clone on 2 := {0, 1}. Describe the set of all partial

clones on 2 whose total component is C, i.e., describe the set

I(C) := {D ⊆ Par(2) | D is partial clone such thatD ∩Op(2) = C}.

The same question was asked for clones on the finite set k with k ≥ 2, and results

in this direction have been established recently, mainly concerning the maximal

clones on k. We refer the reader to Section 20.7 in [10] for details. By Theorem

20.7.2 the set I(C) is an interval for every total clone C on 2.

In this paper we focus our attention to the case k = 2. We give a full classification

of all intervals I(C), where C is one of the countably many clones on 2. More

precisely, we first show that I(T0,2) is of continuum cardinality on 2. Then we

prove that the same result holds for any clone on 2 contained in one of {T0,2, T1,2}.
Finally we combine these results with previous known results discussed in [9] to

prove our main result.

Let F := {Op(2), T0, T1, T0 ∩ T1,M,M ∩ T0,M ∩ T1,M ∩ T0 ∩ T1, S, S ∩ T0 ∩ T1}.
We have:

Dichotomy Theorem. Let C be a clone on 2. Then the interval I(C) in LP2 of

all partial clones whose total component is C is finite if and only if C ∈ F and is

of continuum cardinality otherwise.

We mention in passing that many results in this direction have been obtained by

several authors, (see [1, 4, 5, 6, 7, 8, 9, 14, 15, 16]).

2. Partial clones intersecting Op(2) in T0,2

Let ρ0,2 := {(0, 0), (0, 1), (1, 0)} and as seen above let T0,2 := Pol ρ0,2. It is shown

in [12] that the clone T0,2 is covered by the clone T0 = Pol {0} of all 0-preserving

functions. In this section we construct a continuum family of partial clones on 2

whose intersection with Op(2) is T0,2.

The idea behind the proof given in this section comes from [4] and is briefly dis-

cussed in [3].

Throughout let k ≥ 4 be an even integer, and set n(k) = k(k + 1) + 1.
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Define Rk
↑ as the n(k)-ary relation whose members are tuples in which any two 1’s

are separated by at least one 0 (in particular, the first and last positions cannot

be simultaneously 1, since we consider the indices modulo n(k)). For i, j ∈ [n(k)],

we denote by d(i, j) the circular distance between i and j.

Lemma 3. For every even integer k ≥ 4, T0,2 ⊆ pPolRk
↑.

Proof. Since

Rk
↑(x1, . . . , xn(k)) =

∧
i,j∈[n(k)]
d(i,j)=1

%0,2(xi, xj)

we have, by the general theory (see e.g., the Representation Lemma 20.3.4 in [10])

that pPol ρ0,2 ⊆ pPolRk
↑ , and since clearly T0,2 ⊆ pPol ρ0,2, the result follows. �

Let Mk
↑ be the n(k) × n(k) matrix with columns in Rk

↑ , the first being c1 =

[1001010 . . . 1010]T and the remaining columns are obtained by applying cyclic

shifts to c1, i.e., c2 = [01001010 · · · 101]T , c3 = [101001010 · · · 10]T , . . ., cn(k) =

[001010 · · · 101]T . Note that every entry on the diagonal of the matrix Mk
↑ is 1.

Remark 4. Let ri and rj be two rows of Mk
↑ . If d(i− j) ≥ 2, then ri and rj have

a 1 in the same position.

Lemma 5. If k′ < k, then there is no n(k′) × n(k) matrix N whose columns are

in Rk′

↑ and whose rows are rows of Mk
↑ .

Proof. Suppose that k′ < k and that N is an n(k′) × n(k) matrix whose columns

are in Rk′

↑ . For a contradiction, suppose that the rows of N are rows of Mk
↑ . By

Remark 4, the only possible “neighbor” rows of a row r in N are exactly the

predecessor and successor rows of r in Mk
↑ . But then n(k′) would be even, thus

yielding the desired contradiction. �

Define Rk
↓ as the n(k)-ary relation whose members are tuples in which any two 1’s

are separated by at least k 0’s (in particular, if the first position is 1, then the last

k positions must be 0).

Lemma 6. For every even integer k ≥ 4, T0,2 ⊆ pPolRk
↓.
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Proof. As in Lemma 3, since

Rk
↓(x1, . . . , xn(k)) =

∧
i,j∈[n(k)]

1≤d(i,j)≤k

%0,2(xi, xj)

we have T0,2 ⊆ pPol %0,2 ⊆ pPolRk
↓ . �

Let Mk
↓ be the n(k) × n(k) matrix with columns in Rk

↓ , the first being c′1 =

[1 0 · · · 0︸ ︷︷ ︸
k+1

1 0 · · · 0︸ ︷︷ ︸
k

· · · 1 0 · · · 0︸ ︷︷ ︸
k

]T and the remaining columns are obtained by apply-

ing cyclic shifts to c′1 as before. As for the matrix Mk
↑ , every entry on the diagonal

of Mk
↓ is 1.

Remark 7. Since k ≥ 4 is even, if ri is a row of Mk
↑ , and r′j is a row of Mk

↓ , then

ri and r′j have a 1 in the same position.

Lemma 8. If k′ > k, then there is no n(k′) × n(k) matrix N whose columns are

in Rk′

↓ and whose rows are rows of Mk
↓ .

Proof. Suppose that k′ > k and that N is an n(k′) × n(k) matrix whose columns

are in Rk′

↓ . For a contradiction, suppose that the rows of N are rows of Mk
↓ . Since

each row of Mk
↓ has exactly k 1’s, we have that N has k ·n(k′) 1’s. Hence, N has a

column with at least k·n(k′)
n(k)

≥ k′ + (k′−1)(k′−k)
n(k)

> k′ 1’s. But this yields the desired

contradiction, since all columns of N are members of Rk′

↓ , and each has at most k′

1’s. �

Let Rk be the 2n(k)-ary relation given by Rk := Rk
↑ × Rk

↓ . Since T0,2 ⊆ pPolRk
↑

and T0,2 ⊆ pPolRk
↓ , we have T0,2 ⊆ pPolRk . Now as T0,2 ⊆ pPolRk, we have

that pPolRk ∩ Op(2) is one of T0,2, T0 or Op(2). As the n(k)-ary function f on

2 defined by f(0, . . . , 0) = 0 and f(x1, . . . , xn(k)) = 1 if (x1, . . . , xn(k)) 6= (0, . . . , 0)

belongs to T0 but does not preserve Rk, we conclude that pPolRk ∩Op(2) = T0,2,

i.e., pPolRk ∈ I(T0,2).

Define Mk as the 2n(k)× n(k) matrix given by

Mk =

(
Mk
↑

Mk
↓

)
.

Note that each column of Mk is a tuple of Rk
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Lemma 9. Let N be a 2n(k′)× n(k) matrix whose columns are in Rk′ and whose

rows are rows of Mk. Then, either all rows of N are rows of Mk
↓ , or the first n(k′)

are rows of Mk
↑ and the remaining n(k′) are rows of Mk

↓ .

Proof. By Remark 4 and the fact that Rk′ = Rk′

↑ × Rk′

↓ , not all of the last n(k′)

rows can be rows of Mk
↑ , since for all columns in Rk′

↓ the distance between two 1’s

is at least k′. If we assume that there are rows from Mk
↑ and Mk

↓ at the same time,

we see that two such rows are neighbors and by Remark 7 there is a column with

adjacent 1’s. But this contradicts the assumption that the columns belong to Rk′ .

Thus there can only be rows from Mk
↓ among the last n(k′) rows of N .

Moreover, from Remark 7 and the fact that Rk′ = Rk′

↑ ×Rk′

↓ , it follows that either

all of the first n(k′) rows of N are rows of Mk
↑ or all of the first n(k′) rows of N

are rows of Mk
↓ . �

Let fk be the n(k)-ary partial function whose domain is the set of rows of Mk,

and such that fk is constant 1 on the rows of Mk
↑ and constant 0 on the rows of

Mk
↓ . Note that since both Mk

↑ and Mk
↓ have entries 1 on their diagonal, the partial

function fk is undefined on the tuple (0, . . . , 0).

Lemma 10. Let k, k′ ≥ 4 be even integers. Then fk preserves Rk′ if and only if

k 6= k′.

Proof. Since [1 · · · 10 · · · 0]T does not belong to Rk′ , we have that if k = k′, then fk

does not preserve Rk′ .

So suppose that k 6= k′. If k < k′, then it follows from Lemmas 8 and 9, that fk

preserves Rk′ by default.

Suppose now that k > k′. If N is an 2n(k′) × n(k) matrix whose columns are in

Rk′ and whose rows are rows of Mk (otherwise we are done for the domain of fk

is exactly the set of rows of Mk), then by Lemmas 5 and 9 it follows that all rows

of N are rows of Mk
↓ . Since fk is constant 0 on the rows of Mk

↓ , and since the

2n(k′)-tuple all of whose entries are zero is a member of Rk′ , we conclude that fk

preserves Rk′ . �

Denote by E≥4 := {4, 6, 8, . . . } the set of all even integers greater than or equal to

4 and denote by P(E≥4) the power set of E≥4. Since T0,2 ⊆ pPolRk for every even
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integer k ≥ 4, we have that

T0,2 ⊆
⋂

k∈E≥4\X

pPolRk

for every subset X of E≥4. By Lemma 10 the map

χ : P(E≥4)→ I(T0,2) ∪ I(T0) ∪ I(Op(2))

defined byX 7−→ χ(X) :=
⋂

k∈E≥4\X

pPolRk is one-to-one. Since I(T0) and I(Op(2))

are finite (see Section 20.8 in [10]) we have the following result:

Theorem 11. The interval I(T0,2) of partial clones on 2 is of continuum cardi-

nality.

3. Partial clones intersecting Op(2) in a subclone of T0,2

In this section we show that Theorem 11 holds for every subclone of T0,2 in LO2 .

We will employ a result established in [9]. First we need to recall some notations.

Let f ∈ Par(2) be n-ary and g ∈ Par(2) be m-ary. Then the superposition of

f and g, denoted f ? g is the (n + m − 1)-ary partial function on 2 defined by

dom (f ? g) := {(a1, . . . , an+m−1) | (a1, . . . , am) ∈ dom (g) and

(g(a1, . . . , am), am+1, . . . , an+m−1) ∈ dom (f)}
and

(f ? g)(a1, . . . , an+m−1) := f(g(a1, . . . , am), am+1, . . . , an+m−1).

A set of partial functions F ⊆ Par(2) is called a closed set, if F ?F ⊆ F , ζ(F ) ⊆ F ,

τ(F ) ⊆ F , ∆(F ) ⊆ F and ∇(F ) ⊆ F . The operations ζ, τ,∆,∇, ? are known as

Mal’cev’s five elementary operations. We refer the reader to the introduction of [9]

and to Section 20.1 of [10] for more details. Notice that it is well known that a set

of partial functions F ⊆ Par(2) is a partial clone on 2 if and only if it is a closed

subset and it contains the set of all projections J2 (see, e.g., Section 20.1 of [10]).

We need the following result established in [9].

Lemma 12. (Theorem 8 [9]) Let C be a clone over 2 and let I be a nonempty set.

Furthermore, let (Qi)i∈I be a family of subsets of Par(2) such that

1) Qi ∩Op(2) = ∅,
2) Qi is a closed set of Par(2),
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3) Qi ? C ⊆ Qi and C ? Qi ⊆ Qi.

Then, for every subclone B of C on 2 and every i ∈ I, we have that Qi ∪ B is a

partial clone on 2. If furthermore Qi 6= Qj for all i, j ∈ I, i 6= j, then |I(B)| ≥ |I|.

We use Theorem 11 and the lemma above to prove our second main result:

Theorem 13. Let B ⊆ T0,2 be a clone on 2. Then the interval of partial clones

I(B) is of continuum cardinality.

Proof. Denote by U0 the set of all partial functions undefined on (0, . . . , 0), i.e.,

U0 := {f ∈ Par(2) | (0, . . . , 0) 6∈ dom (f)}.
Now in Lemma 12 let C be the clone T0,2 on 2, I be the set P(E≥4) as defined in the

paragraph preceding Theorem 11, and for X ∈ P(E≥4) let QX := (
⋂
k 6∈X

pPolRk) ∩

U0.

We show that the family (QX)X∈P(E≥4) satisfies conditions 1), 2) and 3) of Lemma

12.

1) Since U0 contains no total functions we have QX ∩Op(2) = ∅.
2) It is easy to verify that the setsQX satisfy ζ(QX) ⊆ QX , τ(QX) ⊆ QX , ∆(QX) ⊆
QX and∇(QX) ⊆ QX (see, e.g., [9]). We show that QX ?QX ⊆ QX . Let f, g ∈ QX .

Since
⋂
k 6∈X

pPolRk is a partial clone, we have that f ?g ∈
⋂
k 6∈X

pPolRk. Furthermore,

since (0, . . . , 0) 6∈ dom (g), we have that (0, . . . , 0) 6∈ dom (f ? g), i.e., f ? g ∈ U0

and thus f ? g ∈ QX . This shows that QX is a closed set of Par(2).

3) To show that QX ? T0,2 ⊆ QX take f ∈ QX and g ∈ T0,2. Since T0,2 ⊆ pPolRk

for all k ≥ 4, we have f ? g ∈
⋂
k 6∈X pPolRk for every X ∈ P(E≥4) and it remains

to show that f ? g ∈ U0, i.e., (0, . . . , 0) 6∈ dom (f ? g).

Indeed since g ∈ T0,2 ⊆ T0, we have g(0, . . . , 0) = 0 and thus if

f ? g(0, . . . , 0) = f(g(0, . . . , 0), 0, . . . , 0) = f(0, . . . , 0) was defined, then we would

have (0, ..., 0) ∈ dom (f), a contradiction to f ∈ U0. This gives that f ? g ∈ U0

and so f ? g ∈ QX .

The proof of T0,2 ? QX ⊆ QX is similar.

Now we show that QX 6= QY for every X 6= Y,X, Y ∈ P(E≥4). Since X 6= Y , say

there is a t ∈ X, t 6∈ Y . Then by Lemma 10 ft ∈
⋂
k 6∈X

pPolRk and ft 6∈
⋂
k 6∈Y

pPolRk.

It is shown in Section 2 that the partial functions fk are undefined on (0, . . . , 0),
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thus fk ∈ U0 for all k ≥ 4. This shows that ft ∈ QX and ft 6∈ QY proving that

QX 6= QY .

By Lemma 12 we have that |I(B)| ≥ |P(E≥4)| and thus I(B) is of continuum

cardinality. �

Now let ρ1,2 := {(0, 1), (1, 0), (1, 1)} and let T1,2 := Pol ρ1,2. Then by duality we

have:

Theorem 14. Let B ⊆ T1,2 be a clone on 2. Then the interval of partial clones

I(B) is of continuum cardinality.

4. Complete classification of all Intervals of the form I(C)

In this section we use results discussed in [9] and combine them with our results

established in the previous sections to complete the classification of all intervals

of partial clones of the form I(C) over 2. Let Ta (for a ∈ {0, 1}), M and S be

as defined in Section 1. Let L be the clone of all linear functions, furthermore for

a ∈ {0, 1} and µ ≥ 2 let Ta,µ = Pol ({0, 1}µ \ {(¬a, . . . ,¬a)}) and Ta,∞ =
⋂
µ≥2

Ta,µ,

Λ be the clone generated by {∧, c0, c1} and V be the clone generated by {∨, c0, c1}
on 2.

Set F := {Op(2), T0, T1, T0 ∩ T1,M,M ∩ T0,M ∩ T1,M ∩ T0 ∩ T1, S, S ∩ T0 ∩ T1}.
In [9] the authors collect several known results and establish some new ones con-

cerning the intervals I(C) where C is a clone on 2. The following is a conclusion

of [9].

Theorem 15. Let C be a clone on 2. Then the interval of partial clones I(C) over

2 is finite if and only if C ∈ F . Furthermore if C ⊆ B with B ∈ {L,Λ, V, T0,∞, T1,∞},
then the set I(C) has the cardinality of the continuum. Finally if C ⊆ B with

B ∈ {T0,2, T1,2}, then the set I(C) is infinite.

The reader can verify that with the exception of subclones of T0,∞ and T1,∞, the

theorem above leaves open the cardinality of I(C) for almost all subclones C of

T0,2 and T1,2 (see Figure 1 at the end of this section for the positions of these

various clones on 2 in the Post Lattice).

Combining Theorems 13, 14 and 15 gives our Dichotomy Theorem stated in Sec-

tion 1 of this paper.
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We mention in passing that as the clone S ∩M is a subclone of T0,2, we have by

Theorem 13 that the interval of partial clones I(S∩M) is of continuum cardinality.

A result in this direction is shown in [4] where a continuum family of partial clones

containing the set of all partial monotone and self-dual functions is constructed.

Remark 1.

This paper shows that there is no interval of partial clones of the form I(C) that

is countably infinite in LP2 .

Call a partial clone D on 2 strong if it contains all subfunctions of its functions,

i.e., if for every g ∈ Par(2), we have g ∈ D whenever g = f |dom (g), for some f ∈ D.

Now the lattice LO2 is a countably infinite sublattice of LP2 , but LO2 consists of

clones of total functions only. Thus the clones in LO2 are not strong partial clones

on 2.

We pose the following problem:

Problem. Does the lattice LP2 have a countably infinite interval of strong partial

clones?

Remark 2.

As defined above let ρ0,2 := {(0, 0), (0, 1), (1, 0)} and let T0,2 := Pol ρ0,2. Theorem

11 says that the interval of all partial clones that intersect Op(2) in T0,2 is of

continuum cardinality over 2. More results in this direction are established in [2].

Let 〈ρ0,2〉 be the smallest closed class of relations that contain ρ0,2 and let G be the

set of all undirected finite graphs without multiple edges but possibly with loops

(up to an isomorphism). An appropriate closure operator is introduced on G in [2]

such that the closed classes of graphs are in a one-to-one correspondence with the

closed subclasses of 〈ρ0,2〉 which in turn are in a one-to-one correspondence with

the strong partial clones containing T0,2. This gives a simple proof to the result

established in Theorem 11 in the present paper. Moreover, this correspondence

allows us to to give some interesting descriptions of the bottom and the top of the

lattice of all strong partial clones containing the total clone T0,2 on 2.
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C |I(C)|
Op(2) 3

Ta (a ∈ {0, 1}) 6
M 6
S 6

T0 ∩ T1 30
M ∩ Ta (a ∈ {0, 1}) 15

M ∩ T0 ∩ T1 101
S ∩ T0 ∩ T1 380

Table 1. Sizes of the finite intervals I(C)
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