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Abstract. We describe the associative spectra of linear quasigroups in terms
of linear congruences for left and right depth sequence of binary trees.

1. Introduction

The associative spectrum of a binary operaition (or of a groupoid) is a sequence
of natural numers that measures – in some sense – how far the operation is from
being associative. In this paper we focus on linear quasigroups, i.e., groupoids of
the form A = (A, ◦) with x ◦ y = ϕ(x) + ψ(y), where + is a group operation on A
and ϕ,ψ are automorphisms of the group (A,+). Our main result (Theorem 4.10)
is the description of the associative spectra of linear quasigroups.

To this end, we provide necessary and sufficient conditions for the satisfaction of
a bracketing identity t ≈ t′ by a groupoid in terms of a condition on the binary trees
T and T ′ corresponding to t and t′ that is easy to verify directly from the trees.
Such conditions are typically based on the (left, right) depths of leaves in the trees
modulo an integer, or some variants of this idea. Each such condition yields an
equivalence relation on binary trees, and the n-th term of the associative spectrum
of the groupoid under consideration is then given by the number of equivalence
classes of binary trees with n leaves.

These sequences of numbers of equivalence classes of binary trees are interesting
variants of the ubiquitous Catalan numbers. Many of these variants are new and do
not appear in the OEIS, and we believe they may be of interest on their own right,
as they are based on simple and fundamental relationships between binary trees.
We have computed the first few members of the sequences, but unfortunately we
were not able to explicitly describe the entire sequences. Finding explicit formulas
for the n-th member of such sequences remains an intriguing open problem.

2. Preliminaries

2.1. Generalities. We assume the reader is familiar with basic concepts in ab-
stract algebra: algebras, terms, identities, etc.

We will use the following notation for familiar sets of natural numbers. Let N :=
{0, 1, 2, . . . } and N+ := N \ {0}. For any a, b ∈ N, let [a, b] := {i ∈ N | a ≤ i ≤ b},
the interval from a to b; in particular, [a, b] = ∅ if a > b. For n ∈ N, let [n] := [1, n].

Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universi-

dade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H6720 Szeged,
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2 ASSOCIATIVE SPECTRA OF LINEAR QUASIGROUPS

We will denote tuples by bold letters and their components by the corresponding
italic letters with subscripts, e.g., a = (a1, . . . , an).

An operation on A is a mapping f : An → A for some number n ∈ N, called

the arity of f . The i-th n-ary projection on A is the operation pr
(n)
i : An → A,

(a1, . . . , an) 7→ ai.

2.2. Groupoids, groups, quasigroups. Recall that a groupoid is an algebra A =
(A, ◦) with a single binary operation ◦, often referred to as multiplication and
usually written simply as juxtaposition. A semigroup is a groupoid with associative
multiplication. A monoid is a semigroup with a neutral element. A group is a
monoid in which every element is invertible.

The opposite groupoid of a groupoid A = (A, ◦) is the groupoid Aop = (A, �)
where the multiplication is defined as a � b := b ◦ a.

Given a groupoid A = (A, ◦), multiplication by a fixed element a ∈ A gives two
self-maps on A: the left translation by a, which is the map La : A → A, x 7→ ax,
and the right translation by a, which is the map Ra : A→ A, x 7→ xa.

A quasigroup is a groupoid (A, ◦) such that for all a, b ∈ A, there exist unique
elements x, y ∈ A such that a ◦ x = b and y ◦ a = b. In other words, the left and
right translations La and Ra of (A, ◦) are bijections for all a ∈ A. In other words,
the multiplication table of (A, ◦) (for a finite set A) is a Latin square. We can thus
define the the right division / and the left division \ as follows: b/x := a if a◦x = b,
and y\b := a if y ◦ a = b. A quasigroup with a neutral element is called a loop. An
associative loop is a group.

2.3. Bracketings, associative spectrum. In this paper, we consider terms in the
language of groupoids over the set X := {xi | i ∈ N+}, the so-called standard set
of variables. Such terms can be defined by the following recursion: every variable
xi ∈ X is a term, and if t1 and t2 are terms, then (t1t2) is a term; every term is
obtained by a finite number of applications of these rules. Denote by W (X) the set
of all terms over X. A subword of a term t that is itself a term is called a subterm
of t.

For a subset S ⊆ N+, let XS := {xi | i ∈ S}. The set of variables occurring
in a term t is denoted by var(t). A term t is n-ary if var(t) ⊆ X[n]. Note that
an n-ary term is also m-ary for every m ≥ n. In order to emphasize the fact that
var(t) ⊆ X[p,q], we may write t as t(xp, xp+1, . . . , xq).

Let A = (A, ◦). Any assignment h : X → A of values from A for the variables
extends to a valuation h′ : W (X) → A of terms in A by the following recursion:
h′(xi) := h(xi) for xi ∈ X, and if t = (t1t2) ∈ W (X), then h′(t) := h′(t1) ◦ h′(t2).
Of course, for the valuation of a term t ∈W (X), we only need to consider a partial
assignment h : var(t)→ A. We will simplify the notation and write h(t) instead of
h′(t).

Let A = (A, ◦) be a groupoid, and let t be an n-ary term. Define the operation

tA : An → A by the following recursion: if t = xi ∈ X, then tA := pr
(n)
i ; if

t = (t1t2), then tA(a) := tA1 (a) ◦ tA2 (a) for all a ∈ An. The operation tA is called
the term operation induced by t on A. Thus, the term operation tA gives all the
valuations of t in A: tA(a) = h(t), where h(xi) = ai for all i ∈ [n]. (As noted
above, the arity of a term is not unique, so the arity of the induced term operation
must be specified if necessary. The arity is usually clear from the context or does
not matter.)
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An identity is a pair (s, t) of terms, usually written as s ≈ t. An identity s ≈ t
is trivial if s = t. A groupoid A = (A, ◦) satisfies an identity s ≈ t, in symbols,
A |= s ≈ t, if sA = tA, or, equivalently, if h(s) = h(t) for all assignments h : X → A.

A bracketing of size n is a term in the language of groupoids obtained by inserting
pairs of parentheses in the string x1x2 · · ·xn appropriately. The number of distinct
bracketings of size n equals the (n − 1)-st Catalan number Cn−1. We denote by
Bn the set of all bracketings of size n. A bracketing identity of size n is an identity
t ≈ t′ where t, t′ ∈ Bn.

Let A = (A, ◦) be a groupoid. For each n ∈ N+, we define the equivalence
relation σn(A) on Bn by the rule that (t, t′) ∈ σn(A) if and only if A satisfies the
identity t ≈ t′. We call the sequence (σn(A))n∈N+

the fine associative spectrum of
A. The associative spectrum of A is the sequence (sn(A))n∈N+

, where sn(A) :=
|Bn/σn(A)|. Equivalently, sn(A) is the number of distinct term operations induced
by the bracketings of size n on A. We clearly have 1 ≤ sn(A) ≤ Cn−1. If the
operation is associative, then sn(A) = 1 for all n ∈ N+. At the other extreme,
we have groupoids whose associative spectrum is Catalan, i.e., sn(A) = Cn−1 for
n ≥ 2; we call such groupoids antiassociative.1

The associative spectrum can be seen as a measure of how far the groupoid
operation is from being associative. Intuitively, the faster the associative spectrum
grows, the less associative the operation is considered. This notion was introduced
by Csákány and Waldhauser [6], and it appears in the literature under different
names, such as “subassociativity type” (Braitt, Silberger [4]), and “the number of
∗-equivalence classes of parenthesizations of x0 ∗ x1 ∗ · · · ∗ xn” (Hein, Huang [8],
Huang, Mickey, Xu [11]).

The opposite of a bracketing t ∈ Bn, denoted top is the bracketing obtained by
writing t backwards and changing xi to xn−i+1 for i ∈ [n].

Fact 2.1. A groupoid A satisfies t ≈ t′ if and only if Aop satisfies top ≈ t′op.

Based on Fact 2.1, one can obtain the following result.

Lemma 2.2 (Csákány, Waldhauser [6, Statement 2.4]). Isomorphic groupoids have
the same associative spectrum. A groupoid and its opposite groupoid have the same
associative spectrum.

Since there are only one bracketing of size 1, namely x1, and only one bracketing
of size 2, namely (x1x2), it it obvious that s1(A) = s2(A) = 1 for every groupoid A.
Therefore, we may always assume that n ≥ 3 when we consider the n-th component
of an associative spectrum.

3. Binary trees and variants of Catalan numbers

3.1. Binary trees. A tree is a directed graph T that has a designated vertex u
called the root and in which there is a unique walk from the root to any other vertex
v. Hence a tree is acyclic, and the edges are directed away from the root. In this
paper, we draw trees in such a way that the root is on the top and edges are directed
downwards; with this convention there is no need to indicate the direction of edges.
In a tree, the outneighbours of a vertex v are called its children, and v is called
the parent of its children. The vertices reachable from v are called its descendants,

1This is not to be confused with the following property that is also often called antiassociativity:
for all a, b, c ∈ A, a ◦ (b ◦ c) 6= (a ◦ b) ◦ c.
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and v is an ancestor of any of its descendant. Two vertices are siblings if they have
the same parent. A childless vertex is called a leaf; non-leaves are called internal
vertices. We denote by Int(T ) the set of all internal vertices of T . A subgraph of a
tree induced by a vertex v and all its descendants is called the subtree rooted at v.

An ordered tree or plane tree is a tree in which a linear ordering is specified for
the children of each vertex. We think of ordering the children from left to right, so
that if v has outdegree k and its children are ordered as u0 < u1 < · · · < uk−1, then
u0 is the leftmost child and uk−1 is the rightmost child of v. Diagrams presenting
plane trees shall be drawn in such a way that the children of a vertex are drawn
left-to-right; such a drawing uniquely specifies the ordering of children.

A binary tree is a plane tree in which every internal vertex has exactly two
children; the two children are referred to as the left child and the right child. We
denote by Tn the set of all (isomorphism classes of) binary trees with n leaves. The
subtree rooted at the left child (right child) of a vertex v is referred to as the left
(right) subtree of v.

Let T be a plane tree. The address of a vertex v in T , denoted by αT (v), is
a word over N defined by the following recursion. The address of the root is the
empty word ε. If v is an internal node with address w, and the children of v are
u0 < u1 < · · · < uk−1, then the addresses of the child ui is wi. Thus, the address
of a vertex conveys the sequence of choices of children made along the unique path
from the root to the given vertex.

The length of the unique path from the root to a vertex v in T is called the depth
of v in T and is denoted by dT (v). In a binary tree T , we also define the left depth
of a vertex v in T , denoted by δT (v), as the number of left steps on the unique path
from the root of T to v, i.e., the number of 0’s in αT (v). The right depth of v in T
is defined analogously and is denoted by ρT (v).

The vertices of a plane tree T are totally ordered by the lexicographic ordering
of their addresses (with respect to the natural ordering of N): v ≤ v′ if and only
if αT (v) ≤lex αT (v′). This ordering is referred to as the left-to-right order of the
vertices, and it corresponds to the so-called preorder traversal of the tree.

The addresses of two consecutive leaves of a binary tree are related in the fol-
lowing way.

Lemma 3.1. Let T be a binary tree with leaves 1, 2, . . . , n in the left-to-right order.
Then for all i ∈ [n− 1], αT (i) = u01k and αT (i + 1) = u10` for some k, ` ∈ N,
where u is the address of the deepest common ancestor of the leaves i and i+ 1.

Proof. Obvious, as the leaves i and i+1 are the rightmost leaf of the left subtree and
the leftmost leaf of the right subtree, respectively, of the deepest common ancestor
of i and i+ 1. �

New binary trees can be built from given ones by joining two trees under a new
root vertex. Let T1 and T2 be binary trees. We denote by T1 ∧ T2 the binary tree
that is obtained by taking the disjoint union of T1 and T2, adding a new vertex u
and designating it as the root of T1 ∧T2, and setting the root of T1 as the left child
of u and the root of T2 as the right child of u.

Another way of building new binary trees from given ones is adding new leaves.
Let T be a binary tree, and assume its leaves are 1, 2, . . . , n in the left-to-right
order. Now let i ∈ [n], and let T+

i be the binary tree obtained by adding two new
vertices p and q, which are designated as the left child and the right child of vertex
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Figure 1. Two binary trees with the same depth sequence modulo k.

i, respectively. In this way we turned the leaf i of T into an internal vertex in T+
i ,

and T+
i has n+ 1 leaves.

It is well known that binary trees with n leaves are in a one-to-one correspondence
with bracketings of size n; hence the number of binary trees with n leaves is Cn−1.
A canonical bijection between Bn and Tn is given by the restriction to Bn of the
map τ from the set of all groupoid terms to the set of all binary trees defined
recursively as follows. For any variable xi, let τ(xi) be the binary tree with one
vertex. For a term t = (t1 · t2), let τ(t) := τ(t1) ∧ τ(t2). We often identify a
bracketing t ∈ Bn with τ(t), and we sometimes write T (t) for τ(t).

If T = τ(t) for some bracketing t ∈ Bn, then the tree τ(top) is called the opposite
tree of T and is denoted by T op. The opposite tree of T can be thought of as
obtained from T by reflection over a vertical line.

3.2. Modular (left, right) depth sequences. Let T be a binary tree with n
leaves, and assume its leaves are 1, 2, . . . , n in the left-to-right order. The depth
sequence of T is the tuple dT := (dT (1), dT (2), . . . , dT (n)). Similarly, the left depth
sequence of T is the tuple δT := (δT (1), δT (2), . . . , δT (n)), and the right depth se-
quence of T is ρT := (ρT (1), ρT (2), . . . , ρT (n)). A binary tree is uniquely determined
by its depth sequence, and it is also uniquely determined by its left (or right) depth
sequence (see Csákány, Waldhauser [6, Statements 2.7, 2.8]).

We may also consider (left, right) depth sequences modulo some k ∈ N. Let
dkT , δkT , ρkT be the sequences obtained from dT , δT , ρT , respectively, by taking
componentwise remainders under division by k. These are called the (left, right)
depth sequences of T modulo k, or modular (left, right) depth sequences of T . As
the following example demonstrates, binary trees are not uniquely determined by
their modular (left, right) depth sequences.

Example 3.2. For any k ∈ N+, the two binary trees with 2k + 1 leaves shown in
Figure 1 have the same depth sequence modulo k, namely (1, 2, . . . , k−1, 0, 0, 0, k−
1, . . . , . . . , 2, 1). Similarly, the two binary trees with k+ 2 leaves shown in Figure 2
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k k

Figure 2. Two binary trees with the same left depth sequence
modulo k.

have the same left depth sequence modulo k, namely (1, 0, k − 1, k − 2, . . . , 1, 0),
and their opposite trees have the same right depth sequence modulo k.

The (left, right) depth sequences of trees built with the constructions introduced
earlier in this subsection can be described easily in terms of the (left, right) depth
sequences of the given trees.

Lemma 3.3. Let T and T ′ be binary trees with (left, right) depth sequences dT =
(d1, . . . , dm), δT = (δ1, . . . , δm), ρT = (ρ1, . . . , ρm), dT ′ = (d′1, . . . , d

′
n), δT ′ =

(δ′1, . . . , δ
′
n), ρT ′ = (ρ′1, . . . , ρ

′
n). Then the (left, right) depth sequences of T ∧ T ′,

T+
i (i ∈ [m]), and T op are the following:

dT∧T ′ = (d1 + 1, . . . , dm + 1, d′1 + 1, . . . , d′n + 1),

δT∧T ′ = (δ1 + 1, . . . , δm + 1, δ′1, . . . , δ
′
n),

ρT∧T ′ = (ρ1, . . . , ρm, ρ
′
1 + 1, . . . , ρ′n + 1);

dT+
i

= (d1, . . . , di−1, di + 1, di + 1, di+1, . . . , dm),

δT+
i

= (δ1, . . . , δi−1, δi + 1, δi, δi+1, . . . , δm),

ρT+
i

= (ρ1, . . . , ρi−1, ρi, ρi + 1, ρi+1, . . . , ρm);

dT op = (dm, . . . , d1),

δT op = (ρm, . . . , ρ1),

ρT op = (δm, . . . , δ1).

Proof. Straightforward verification. �

It is not obvious to the authors how to recognize whether a given n-tuple of
natural numbers is the (left, right) depth sequence of some binary tree (modulo k).
For the depth sequence modulo 2, Huang, Mickey, and Xu provided a rather simple
necessary and sufficient condition [11, Lemma 6].

3.3. Equivalence relations on binary trees based on modular (left, right)
depth sequences. In this subsection we are going to define several equivalence
relations on the set Tn of binary trees with n leaves (n ∈ N+). Using the one-to-one
correspondence between binary trees with n leaves and bracketings of n variables,
we may equivalently view these as equivalence relations on bracketings: if ∼ is any
one of the equivalence relations defined on binary trees and t, t′ ∈ Bn, we let t ∼ t′
if and only if T (t) ∼ T (t′).
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k \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OEIS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A000012

2 1 1 2 5 10 21 42 85 170 341 682 1 365 2 730 5 461 10 922 A000975

3 1 1 2 5 14 42 129 398 1 223 3 752 11 510 35 305 108 217 331 434 1 014 304
4 1 1 2 5 14 42 132 429 1 429 4 849 16 689 58 074 203 839 720 429 2 560 520

5 1 1 2 5 14 42 132 429 1 430 4 862 16 795 58 773 207 906 742 203 2 670 389

6 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 011 742 885 2 674 303
7 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 439

8 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 440

Cn−1 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 440 A000108

Table 1. The number T d
k,n of binary trees with n leaves up to

k-depth-equivalence and Catalan numbers Cn−1.

Definition 3.4. For k, ` ∈ N+ and T, T ′ ∈ Tn, we let

• T ∼d
k T

′ if and only if dkT = dkT ′ , that is, dT (i) ≡ dT ′(i) (mod k) for all
i ∈ [n] (k-depth-equivalence);
• T ∼L

k T ′ if and only if δkT = δkT ′ , that is, δT (i) ≡ δT ′(i) (mod k) for all
i ∈ [n] (k-left-depth-equivalence);

• T ∼R
k T ′ if and only if ρkT = ρkT ′ , that is, ρT (i) ≡ ρT ′(i) (mod k) for all

i ∈ [n] (k-right-depth-equivalence);
• T ∼LR

k,` T
′ if and only if T ∼L

k T
′ and T ∼R

` T
′ ((k, `)-depth-equivalence).

We introduce the following notation for the number of equivalence classes of Tn
with respect to the above equivalence relations:

T d
k,n := |Tn/∼d

k|, TL
k,n := |Tn/∼L

k |, TR
k,n := |Tn/∼R

k |, TLR
k,`,n := |Tn/∼LR

k,` |.

It is clear that T ∼L
k T
′ if and only if T op ∼R

k T
′op, and consequently TL

k,n = TR
k,n.

Regarding the number of equivalence classes of the k-depth-equivalence relation
∼d
k, only a few particular cases are well understood. The 0-depth-equivalence rela-

tion ∼d
0 is just the equality relation, so the numbers T d

0,n coincide with the Catalan

numbers: T d
0,n = Cn−1 for all n ≥ 1. The 1-depth-equivalence relation ∼d

1 is en-

tirely trivial; all binary trees with n leaves are 1-depth-equivalent, so T d
1,n = 1 for

all n ≥ 1. The 2-depth-equivalence was investigated by Huang, Mickey and Xu
[11], and the numbers T d

2,n were shown to be given by the sequence A000975 in The
On-Line Encyclopedia of Integer Sequences (OEIS) [17], which is known to have
several characterizations, for example, for n ≥ 2,

T d
2,n =

⌊
2n

3

⌋
=

2n+1 − 3− (−1)n+1

6
=

{
2n−1

3 , if n is even,
2n−2

3 , if n is odd.

We are not aware of any results concerning moduli greater than 2. We have com-
puted the values of T d

k,n for small n and k with the help of the GAP computer

algebra system [7] and present them in Table 1. Apart from the first two rows,
these sequences do not seem to match any entry in the OEIS.

In contrast, the number TL
k,n of ∼L

k -equivalence classes of Tn is well understood
for any k, n ∈ N+; these numbers are given by the so-called k-modular Catalan
numbers Ck,n defined by Hein and Huang [8]: TL

k,n = Ck,n−1. Closed formulas for

http://oeis.org/A000975
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k \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OEIS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A000012

2 1 1 2 4 8 16 32 64 128 256 512 1 024 2 048 4 096 8 192 A011782

3 1 1 2 5 13 35 96 267 750 2 123 6 046 17 303 49 721 143 365 414 584 A005773
4 1 1 2 5 14 41 124 384 1 210 3 865 12 482 40 677 133 572 441 468 1 467 296 A159772

5 1 1 2 5 14 42 131 420 1 375 4 576 15 431 52 603 180 957 627 340 2 189 430 A261588

6 1 1 2 5 14 42 132 428 1 420 4 796 16 432 56 966 199 444 704 146 2 504 000 A261589
7 1 1 2 5 14 42 132 429 1 429 4 851 16 718 58 331 205 632 731 272 2 620 176 A261590

8 1 1 2 5 14 42 132 429 1 430 4 861 16 784 58 695 207 452 739 840 2 658 936 A261591

9 1 1 2 5 14 42 132 429 1 430 4 862 16 795 58 773 207 907 742 220 2 670 564 A261592
10 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 785 207 998 742 780 2 673 624

11 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 011 742 885 2 674 304

12 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 899 2 674 424
13 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 439

14 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 440
15 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 440

Cn−1 1 1 2 5 14 42 132 429 1 430 4 862 16 796 58 786 208 012 742 900 2 674 440 A000108

Table 2. The number TL
k,n of binary trees with n leaves up to

k-left-depth-equivalence, i.e., modular Catalan number Ck,n−1.

modular Catalan numbers are known [8, Theorem 1.1]:

Ck,n =
∑

λ⊆(k−1)n
|λ|<n

n− |λ|
n

mλ(1n) =
∑

0≤j≤(n−1)/k

(−1)j

n

(
n

j

)(
2n− jk
n+ 1

)
.

(For explanation of the symbols used in the first summation formula, please refer
to [8].) In particular, C2,n = 2n−2 for n ≥ 2. The numbers TL

k,n = Ck,n−1 for
k, n ≤ 15 are evaluated in Table 2.

As for the number TLR
k,`,n of ∼LR

k,` -equivalence classes of Tn, Hein and Huang [9,

10, Section 1, last paragraph] conjectured, based on computational evidence, that
TLR
k,`,n = TL

k+`−1,n, for all k, `, n ≥ 1. We have verified this with the help of a
computer for k, `, n ≤ 14.

Next we define more general equivalence relations on binary trees that are also
based on left and right depth sequences. As we shall see in the next section,
these relations are of key importance in describing associative spectra of linear
quasigroups.

Definition 3.5. For a, b,m ∈ N, define the equivalence relation ∼lin
a,b,m on Tn by

the following rule. Assume that T and T ′ are binary trees in Tn and their leaves
are 1, 2, . . . , n in the left-to-right order. Set

T ∼lin
a,b,m T ′ :⇐⇒ ∀i ∈ [n] : aδT (i) + bρT (i) ≡ aδT ′(i) + bρT ′(i) (mod m).

Let T lin
a,b,m,n := |Tn/∼lin

a,b,m|.

We have enumerated the numbers T lin
a,b,m,n for small values of the parameters a,

b, m, n and present them in Appendix 5. It remains an open problem to determine
these numbers for arbitrary a, b, m, n. The following lemma shows some relation-
ships between numbers of this form, as well as to the other variants of Catalan
numbers of Definition 3.4.
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Lemma 3.6. Let a, b,m ∈ N.

(i) T lin
a,b,m,n = T lin

b,a,m,n.

(ii) For any ` ∈ N+, we have ∼lin
a,b,m = ∼lin

`a,`b,`m; consequently, T lin
a,b,m,n =

T lin
`a,`b,`m,n.

(iii) If ` is a unit modulo m, then ∼lin
a,b,m = ∼lin

`a,`b,m; consequently, T lin
a,b,m,n =

T lin
`a,`b,m,n.

(iv) If gcd(a, b) = 1 and m = ab, then ∼lin
a,b,m = ∼LR

b,a ; consequently, T lin
a,b,m,n =

TLR
b,a,n = TLR

a,b,n.

Proof. (i) Since for all t, t′ ∈ Bn,

t ∼lin
a,b,m t′ ⇐⇒ ∀i ∈ [n] : aδt(xi) + bρt(xi) ≡ aδt′(xi) + bρt′(xi) (mod m)

⇐⇒ ∀i ∈ [n] : aρtop(xi) + bδtop(xi) ≡ aρt′op(xi) + bδt′op(xi) (mod m)

⇐⇒ top ∼lin
b,a,m t′op,

we conclude that the map t 7→ top induces a bijection between Bn/∼lin
a,b,m and

Bn/∼lin
b,a,m for each n ∈ Nn.

(ii) Clear because the congruences ax + by ≡ 0 (mod m) and `ax + `by ≡ 0
(mod `m) are equivalent.

(iii) Since ` is a unit modulo m, the congruences ax + by ≡ 0 (mod m) and
`ax+ `by ≡ 0 (mod m) are equivalent.

(iv) Since gcd(a, b) = 1, it follows from the Chinese remainder theorem that
ax + by ≡ 0 (mod ab) is equivalent to ax + by ≡ 0 (mod a) and ax + by ≡ 0
(mod b), which in turn is equivalent to ax ≡ 0 (mod b) and by ≡ 0 (mod a). From
gcd(a, b) = 1, it follows that a is a unit modulo b and b is a unit modulo a; hence
the last pair of congruences is equivalent to x ≡ 0 (mod b) and y ≡ 0 (mod a). We
conclude that t ∼lin

a,b,m t′ if and only if t ∼LR
b,a t

′, as claimed. �

3.4. Equivalence of binary trees modulo a group.

Definition 3.7. Let G = (G, ·) be a group with neutral element 1. For a family
(γi)i∈I of elements of G and a word w ∈ I∗, define the group element γw by the
following recursion: γε := 1, and if w = iw′ for some i ∈ I and w′ ∈ I∗, then
γw := γi · γw′ . (Compare this with the map ϕw defined in Subsection 4.2.)

Let a, b ∈ G, and let T and T ′ be binary trees with n leaves. Let γ0 := a
and γ1 := b. We say that T and T ′ are (a, b)-equivalent modulo G, and we write
T ∼G

a,b T
′, if for all i ∈ [n], γαT (xi) = γαT ′ (xi). We denote by TG

a,b,n the number of

∼G
a,b-equivalence classes of binary trees with n leaves.

Example 3.8. The various equivalence relations on binary trees that we have seen
in the previous subsection are special instances of (a, b)-equivalence modulo some
group G.

(i) Let G = (Zk,+) for k ∈ N, and consider ∼G
a,b. With a = 1, b = 1, we get

k-depth-equivalence ∼d
k; with a = 1, b = 0, we get k-left-depth-equivalence

∼L
k ; and with a = 0, b = 1, we get k-right-depth-equivalence ∼R

k . With
arbitrary a, b ∈ N, we get the equivalence relation ∼lin

a,b,k.

(ii) For k, ` ∈ N, taking G = (Zk,+) × (Z`,+), a = (1, 0), b = (0, 1), we get
(k, `)-depth-equivalence ∼LR

k,` .
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4. Linear quasigroups

4.1. Affine quasigroups. A quasigroup A = (A, ◦) is affine over a loop (A,+)
if there exist automorphisms ϕ,ψ ∈ Aut(A,+), and a constant c ∈ A such that
x ◦ y = (ϕ(x) + ψ(y)) + c. If c = 0 in the above, then A is linear over (A,+). The
quintuple (A,+, ϕ, ψ, c) is called an arithmetic form of A. It is well known (see
[12]) that

• an affine quasigroup with arithmetic form (A,+, ϕ, ψ, c) is idempotent if
and only if c = 0 and ϕ+ ψ = idA (pointwise addition of functions on the
left side);
• an affine quasigroup with arithmetic form (A,+, ϕ, ψ, c) is medial (i.e., it

satisfies the identity (xy)(uv) ≈ (xu)(yv)) if and only if (A,+) is an abelian
group and ϕψ = ψϕ (proved independently by Bruck [5], Murdoch [16],
Toyoda [18]).

4.2. Bracketings over linear quasigroups. Let ϕi : A → A (i ∈ I) be a family
of maps. We define, for each string w ∈ I∗, the map ϕw : A → A by the following
recursion: ϕε := idA, and if w = iw′ for some i ∈ I and w′ ∈ I∗, then ϕw := ϕi◦ϕw′ .

Proposition 4.1. Let A = (A, ◦) be a linear quasigroup over a group (A,+) with
arithmetic form (A,+, ϕ0, ϕ1, 0). Let t, t′ ∈ Bn.

(i) tA(a1, . . . , an) = ϕαt(x1)(a1) + ϕαt(x2)(a2) + · · ·+ ϕαt(xn)(an).
(ii) A satisfies t ≈ t′ if and only if for all i ∈ [n], ϕαt(xi) = ϕαt′ (xi).

Proof. (i) We proceed by induction on n. The claim holds for n = 1 because in this
case we have t = x1 and tA(a1) = idA(a1) = ϕε(a1) = ϕαt(x1)(a1).

Assume that the claim holds for n ≤ k for some k ≥ 1, and let t ∈ Bk+1. Then
t = (t1 · t2) for some subterms t1 and t2. By the induction hypothesis, we have

tA1 (a) = ϕαt1
(x1)(a1) + ϕαt1

(x2)(a2) + · · ·+ ϕαt1
(x`)(a`),

tA2 (a) = ϕαt2
(x`+1)(a`+1) + ϕαt2

(x`+2)(a`+2) + · · ·+ ϕαt2
(xk+1)(ak+1).

Using the fact that ϕ0 and ϕ1 are automorphisms of (A,+), it follows that

tA(a) = ϕ0(tA1 (a)) + ϕ1(tA2 (a))

= ϕ0ϕαt1
(x1)(a1) + · · ·+ ϕ0ϕαt1

(x`)(a`) +

ϕ1ϕαt2
(x`+1)(a`+1) + · · ·+ ϕ1ϕαt2

(xk+1)(ak+1)

= ϕαt(x1)(a1) + · · ·+ ϕαt(xk+1)(ak+1).

(ii) Assume first that A satisfies t ≈ t′. By applying part (i), by assigning
the neutral element 0 of (A,+) to all variables but xi, and by observing that any
automorphism of (A,+) maps 0 to itself, we get

tA(0, . . . , 0, ai, 0, . . . , 0) = ϕαt(xi)(ai),

t′A(0, . . . , 0, ai, 0, . . . , 0) = ϕαt′ (xi)(ai),

which implies ϕαt(xi) = ϕαt′ (xi) for all i ∈ [n].
Assume now that ϕαt(xi) = ϕαt′ (xi) for all i ∈ [n]. Then we have, by part (i),

that

tA(a1, . . . , an) = ϕαt(x1)(a1) + · · ·+ ϕαt(xn)(an)

= ϕαt′ (x1)(a1) + · · ·+ ϕαt′ (xn)(an) = t′A(a1, . . . , an),
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that is, tA = t′A, so A satisfies the identity t ≈ t′. �

4.3. Special cases of linear quasigroups.

Proposition 4.2. Let A = (A, ◦) be a linear quasigroup over a group (A,+) with
arithmetic form (A,+, ϕ0, ϕ1, 0). Let t, t′ ∈ Bn.

(i) If ϕ0 = ϕ1 and ϕ0 has order k, then A satisfies t ≈ t′ if and only if t ∼d
k t
′.

Consequently, sn(A) = T d
k,n.

(ii) If ϕ1 = idA and ϕ0 has order k, then A satisfies t ≈ t′ if and only if t ∼L
k t
′.

Consequently, sn(A) = TL
k,n = Ck,n−1.

(iii) If ϕ0 = idA and ϕ1 has order k, then A satisfies t ≈ t′ if and only if t ∼R
k t
′.

Consequently, sn(A) = TR
k,n = Ck,n−1.

Proof. (i) Since ϕ0 = ϕ1, we have ϕαt(xi) = ϕ
dt(xi)
0 . Since ϕ0 has order k, it follows

that ϕαt(xi) = ϕαt′ (xi) if and only if dt(xi) ≡ dt′(xi) (mod k). By Proposition 4.1,

A satisfies t ≈ t′ if and only if t ∼d
k t
′. The last claim is clear because T d

k,n =

|Bn/∼d
k|.

(ii) Since ϕ1 = idA, we have ϕαt(xi) = ϕ
δt(xi)
0 . Since ϕ0 has order k, it follows

that ϕαt(xi) = ϕαt′ (xi) if and only if δt(xi) ≡ δt′(xi) (mod k). By Proposition 4.1,

A satisfies t ≈ t′ if and only if t ∼L
k t
′. The last claim is clear because Ck,n−1 =

TL
k,n = |Bn/∼L

k |.
(iii) The proof is similar to part (ii), and it also follows from Lemma 2.2 by

using the fact that the affine quasigroup with arithmetic form (A,+, ϕ, ψ, c) is the
opposite groupoid of the affine quasigroup with arithmetic form (A,+, ψ, ϕ, c). �

Proposition 4.3. Let A = (A, ◦) be a linear quasigroup over a group (A,+) with
arithmetic form (A,+, ϕ0, ϕ1, 0), and assume that ϕ0 and ϕ1 have orders k0 and
k1, respectively, and ϕ0ϕ1 = ϕ1ϕ0. Let t, t′ ∈ Bn.

(i) If t ∼LR
k0,k1

t′, then A satisfies t ≈ t′. Consequently, σn(A) is a coarsening

of ∼LR
k0,k1

and hence sn(A) ≤ TLR
k0,k1,n

.

(ii) If for all p, q, r, s ∈ N, ϕp0ϕ
q
1 = ϕr0ϕ

s
1 implies p ≡ r (mod k0) and q ≡ s

(mod k1), then A satisfies t ≈ t′ if and only if t ∼LR
k0,k1

t′. Consequently,

sn(A) = TLR
k0,k1,n

.

Proof. (i) Assume t ∼LR
k0,k1

t′. Then δt(xi) ≡ δt′(xi) (mod k0) and ρt(xi) ≡ ρt′(xi)

(mod k1) for all i ∈ [n]. Since ϕ0ϕ1 = ϕ1ϕ0 and ϕ0 and ϕ1 have orders k0 and

k1, respectively, we have ϕαt(xi) = ϕ
δt(xi)
0 ϕ

ρt(xi)
1 = ϕ

δt′ (xi)
0 ϕ

ρt′ (xi)
1 = ϕαt′ (xi) for all

i ∈ [n]. By Proposition 4.1, A satisfies t ≈ t′.
(ii) By part (i), it suffices to show that A |= t ≈ t′ implies t ∼LR

k0,k1
t′. So, assume

that A |= t ≈ t′. Then for all i ∈ [n], ϕαt(xi) = ϕαt′ (xi), i.e., ϕ
δt(xi)
0 ϕ

ρt(xi)
1 =

ϕ
δt′ (xi)
0 ϕ

ρt′ (xi)
1 because ϕ0ϕ1 = ϕ1ϕ0. By our hypothesis, this implies that for all

i ∈ [n], δt(xi) ≡ δt′(xi) (mod k0) and ρt(xi) ≡ ρt′(xi) (mod k1), in other words,
t ∼LR

k0,k1
t′. �

Proposition 4.4. Let A = (A, ◦) be a linear quasigroup over a group (A,+) with
arithmetic form (A,+, ϕ0, ϕ1, 0), and assume that ϕ0 = πa and ϕ1 = πb for some
permutation π of A and a, b ∈ N. Assume that π has order `. Let t, t′ ∈ Bn. Then
A |= t ≈ t′ if and only if t ∼lin

a,b,` t
′. Consequently, sn(A) = T lin

a,b,`,n.
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Proof. We have ϕαt(xi) = (πa)δt(xi)(πb)ρt(xi) = πaδt(xi)+bρt(xi) and, similarly, ϕαt′ (xi) =

πaδt′ (xi)+bρt′ (xi). Since π has order `, it follows that ϕαt(xi) = ϕαt′ (xi) if and only
if aδt(xi) + bρt(xi) ≡ aδt′(xi) + bρt′(xi) (mod `). The claim then follows from
Proposition 4.1. �

Remark 4.5. The condition of Proposition 4.4 is equivalent to the condition that
(x, y) = (δt(xi)−δt′(xi), ρt(xi)−ρt′(xi)) is a solution of the congruence ax+by ≡ 0
(mod `). It is well known that such a congruence has γ` solutions, where γ :=
gcd(a, b, `). A method for determining the solutions is described by Lehmer [14,
p. 155].

4.4. Associative spectra of linear quasigroups.

Definition 4.6. For a group G = (G, ·) and g0, g1 ∈ G, let ΛG(g0, g1) denote the
following set of pairs of integers:

ΛG(g0, g1) = {(r, s) ∈ Z× Z : g1g
r
0g
−1
1 = g0g

s
1g
−1
0 }.

Lemma 4.7. For any group G and g0, g1 ∈ G, the set ΛG(g0, g1) is a subgroup of
Z× Z.

Proof. The defining condition g1g
r
0g
−1
1 = g0g

s
1g
−1
0 of ΛG(g0, g1) is equivalent to

φ(gr0) = gs1, where φ(x) = g−10 g1xg
−1
1 g0 is the conjugation by g−11 g0. If (r, s), (r′, s′) ∈

ΛG(g0, g1), then, using the fact that φ is an automorphism of G, we have

φ(gr+r
′

0 ) = φ(gr0g
r′

0 ) = φ(gr0)φ(gr
′

0 ) = gs1g
s′

1 = gs+s
′

1 ,

thus (r + r′, s + s′) ∈ ΛG(g0, g1). Similarly, (r, s) ∈ ΛG(g0, g1) implies (−r,−s) ∈
ΛG(g0, g1):

φ(g−r0 ) = φ((gr0)−1) = φ(gr0)−1 = (gs1)−1 = g−s1 . �

Lemma 4.8. Let G be a group, let g0, g1 ∈ G, and let T, T ′ be binary trees with
leaves 1, 2, . . . , n (in the left-to-right order). Then T ∼G

g0,g1 T
′ holds if and only if

(δT (i)− δT ′(i), ρT ′(i)− ρT (i)) ∈ ΛG(g0, g1) for all i ∈ [n].

Proof. First let us make some preliminary observations that we will use in the proof.
To simplify notation, we let δi = δT (i), ρi = ρT (i), δ′i = δT ′(i) and ρ′i = ρT ′(i) for
i ∈ [n]. For a leaf i ∈ [n− 1], let z and z′ be the deepest common ancestors of i
and i+ 1 in T and T ′, respectively. Setting u = αT (z) and v = αT ′(z′), we have

(1) αT (i) = u01p, αT (i+ 1) = u10q, αT ′(i) = v01p
′
, αT ′(i+ 1) = v10q

′

for some p, q, p′, q′ ∈ N. This implies the following relationships among the depths:

δi = δT (z) + 1, δ′i = δT ′(z′) + 1, δi+1 = δT (z) + q, δ′i+1 = δT ′(z′) + q′,

ρi = ρT (z) + p, ρ′i = ρT ′(z′) + p′, ρi+1 = ρT (z) + 1, ρ′i+1 = ρT ′(z′) + 1.

We can thus conclude that

(2) (δi − δ′i)− (δi+1 − δ′i+1) = q′ − q and (ρ′i − ρi)− (ρ′i+1 − ρi+1) = p′ − p.
Let γ0 = g0 and γ1 = g1, and let us simply write γi = γαT (i), γ

′
i = γαT ′ (i) (see

Definition 3.7). We can compute these elements of G with the help of (1):

γi = γug0g
p
1 , γi+1 = γug1g

q
0, γ

′
i = γvg0g

p′

1 , γ
′
i+1 = γvg1g

q′

0 .

Therefore, we have

(3) γ′iγ
−1
i = γvg0g

p′−p
1 g−10 γ−1u and γ′i+1γ

−1
i+1 = γvg1g

q′−q
0 g−11 γ−1u .
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Now we are ready to begin the proof. Assume first that T ∼G
g0,g1 T

′, i.e., γi = γ′i
for all i ∈ [n]. We are going to prove by induction on i that (δi − δ′i, ρ′i − ρi) ∈
ΛG(g0, g1). The base case i = 1 is straightforward: (δ1−δ′1, ρ′1−ρ1) = (δ1−δ′1, 0) ∈
ΛG(g0, g1) is equivalent to g

δi−δ′i
0 = 1, and this is certainly true, as gδ10 = γ1 = γ′1 =

g
δ′1
0 . Now, for the induction step, let us assume that (δi − δ′i, ρ′i − ρi) ∈ ΛG(g0, g1)

holds for some i ∈ [n− 1]. Since ΛG(g0, g1) is a group, in order to prove that (δi+1−
δ′i+1, ρ

′
i+1−ρi+1) ∈ ΛG(g0, g1), it suffices to verify that (q′− q, p′−p) ∈ ΛG(g0, g1),

according to (2). We know that γi = γ′i and γi+1 = γ′i+1, and this implies that

γ′iγ
−1
i = γ′i+1γ

−1
i+1 = 1. From (3) it follows then that g0g

p′−p
1 g−10 = g1g

q′−q
0 g−11 , and

this shows that we indeed have (q′ − q, p′ − p) ∈ ΛG(g0, g1).
For the converse, assume that (δi−δ′i, ρi−ρ′i) ∈ ΛG(g0, g1) for all i ∈ [n]. We are

going to prove by induction on i that γi = γ′i. The base case γ1 = γ′1 is equivalent

to gδ10 = g
δ′1
0 , and this follows immediately, as (δ1 − δ′1, ρ′1 − ρ1) = (δ1 − δ′1, 0) ∈

ΛG(g0, g1). For the induction step, let us assume that γi = γ′i for some i ∈ [n− 1].
We assumed that (δi− δ′i, ρ′i−ρi) and (δi+1− δ′i+1, ρ

′
i+1−ρi+1) belong to the group

ΛG(g0, g1), hence (q′ − q, p′ − p) ∈ ΛG(g0, g1) by (2). This fact together with (3)
and the induction hypothesis γi = γ′i allow us to deduce that γi+1 = γ′i+1:

�(4) 1 = γ′iγ
−1
i = γvg0g

p′−p
1 g−10 γ−1u = γvg1g

q′−q
0 g−11 γ−1u = γ′i+1γ

−1
i+1.

Remark 4.9. Propositions 4.3 and 4.4 follow as special cases of Lemma 4.8.

Theorem 4.10. The fine associative spectrum of a linear quasigroup over a group
is of the form ∼L

k ∩ ∼lin
a,b,m for suitable integers k, a, b,m.

Proof. Let A = (A, ◦) be a linear quasigroup over a group (A,+) with arithmetic
form (A,+, ϕ0, ϕ1, 0). Proposition 4.1 implies that the fine spectrum of A is ∼G

ϕ0,ϕ1
,

where G is the automorphism group of (A,+). Let us consider the group Λ :=
ΛG(ϕ0, ϕ1) ≤ Z × Z. Every subgroup of Z2 can be generated by (at most) two
elements, hence there exists a matrix M ∈ Z2×2 such that Λ consists of all linear
combinations of the column vectors of M with integer coefficients. As every integer
matrix has an Hermite normal form, there exists a unimodular matrix U ∈ Z2×2

so that H := MU is a lower triangular matrix. Let H =

(
u 0
v w

)
; then (r, s) ∈ Λ

if and only if there exist x, y ∈ Z such that r = ux and s = vx + wy. Assuming
u 6= 0, the latter equality is equivalent to us = uvx+ uwy, and taking r = ux into
account, this yields uwy = us− vr. Thus we have (r, s) ∈ Λ if and only if u | r and
uw | us− vr.

Now Lemma 4.8 shows that T ∼G
ϕ0,ϕ1

T ′ holds for binary trees T and T ′ if and
only if u | δT (i)− δT ′(i) and uw | u(ρT ′(i)−ρT (i))− v(δT (i)− δT ′(i)) for all i ∈ [n].
These divisibilities are equivalent to the congruences δT (i) ≡ δT ′(i) (mod u) and
vδT (i) + uρT (i) ≡ vδT ′(i) + uρT ′(i) (mod uw). Thus the fine associative spectrum
of A is ∼G

ϕ0,ϕ1
=∼L

u ∩ ∼lin
v,u,uw, and this proves the theorem in the case u 6= 0.

If u = 0, then we have r = 0 for all (r, s) ∈ Λ, hence Lemma 4.8 implies
that T ∼G

ϕ0,ϕ1
T ′ can hold only if T and T ′ have the same left depth sequence.

This means that A is antiassociative, i.e., its fine spectrum is trivial, and it can be
written, e.g., as ∼L

0 ∩ ∼lin
0,0,0 (note that the modulo 0 congruence is just the equality

relation). �
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Remark 4.11. The result in the previous theorem seems a bit asymmetric. This
is due to the fact that we worked with the column space of the matrix M . The
row space would have given an equivalence relation of the form ∼R

k ∩ ∼lin
a,b,m. On

the other hand, we can see from the proof that gcd(v, w) | s, thus we can write
∼G
ϕ0,ϕ1

=∼L
u ∩ ∼lin

v,u,uw ∩ ∼R
gcd(v,w). However, it is perhaps not worth introducing a

fifth parameter just to obtain a symmetric form.

5. Numerical data

Table 3 shows the number of ∼lin
a,b,m-equivalence classes of Tn, for a, b,m ≤

14. Note that, by Lemma 3.6, the triples (a, b,m) and (a′, b′,m′) yield the same
sequence if

• a′ = `a, b′ = `b, c′ = `c for some ` ∈ N+;
• a′ = b, b′ = a, m′ = m; or
• a′ = `a, b′ = `b, m′ = m for some unit ` modulo m.

Therefore we list in the table only those triples (a, b,m) for which gcd(a, b,m) = 1,
a ≤ b, and a and b are the smallest possible with respect to multiplication by units.
The table entries are arranged in the lexicographical order of the first 14 terms of
the sequence (T lin

a,b,m,n)n∈N+ .
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a b m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 TL
2,n

1 1 2 1 1 2 5 10 21 42 85 170 341 682 1365 2730 5461 Td
2,n

1 3 3 1 1 2 5 13 35 96 267 750 2123 6046 17303 49721 143365 TL
3,n

1 4 4 1 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 441468 TL
4,n

2 3 6 1 1 2 5 14 41 124 384 1210 3865 12482 40677 133572 441468 ?
1 2 3 1 1 2 5 14 42 128 390 1185 3586 10862 32929 99883 303000 ?

1 1 3 1 1 2 5 14 42 129 398 1223 3752 11510 35305 108217 331434 Td
3,n

1 2 4 1 1 2 5 14 42 131 420 1374 4561 15306 51793 176404 603990 ?

1 5 5 1 1 2 5 14 42 131 420 1375 4576 15431 52603 180957 627340 TL
5,n

1 6 6 1 1 2 5 14 42 132 428 1420 4796 16432 56966 199444 704146 TL
6,n

2 5 10 1 1 2 5 14 42 132 428 1420 4796 16432 56966 199444 704146 ?

3 4 12 1 1 2 5 14 42 132 428 1420 4796 16432 56966 199444 704146 ?
1 3 4 1 1 2 5 14 42 132 429 1425 4807 16402 56472 195860 683420 ?

1 1 4 1 1 2 5 14 42 132 429 1429 4849 16689 58074 203839 720429 Td
4,n

1 3 6 1 1 2 5 14 42 132 429 1429 4851 16718 58331 205631 731257 ?

1 7 7 1 1 2 5 14 42 132 429 1429 4851 16718 58331 205632 731272 TL
7,n

1 2 6 1 1 2 5 14 42 132 429 1430 4861 16784 58695 207450 739810 ?

1 4 6 1 1 2 5 14 42 132 429 1430 4861 16784 58695 207452 739839 ?
1 8 8 1 1 2 5 14 42 132 429 1430 4861 16784 58695 207452 739840 TL

8,n

2 7 14 1 1 2 5 14 42 132 429 1430 4861 16784 58695 207452 739840 ?
1 4 5 1 1 2 5 14 42 132 429 1430 4862 16790 58708 207382 738815 ?

1 1 5 1 1 2 5 14 42 132 429 1430 4862 16795 58773 207906 742203 Td
5,n

1 2 5 1 1 2 5 14 42 132 429 1430 4862 16795 58773 207907 742219 ?

1 4 8 1 1 2 5 14 42 132 429 1430 4862 16795 58773 207907 742220 ?
1 9 9 1 1 2 5 14 42 132 429 1430 4862 16795 58773 207907 742220 TL

9,n

2 3 12 1 1 2 5 14 42 132 429 1430 4862 16795 58773 207907 742220 ?

1 10 10 1 1 2 5 14 42 132 429 1430 4862 16796 58785 207998 742780 TL
10,n

1 5 6 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208005 742795 ?

1 1 6 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 Td
6,n

1 2 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 ?

1 3 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 ?
1 5 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 ?

1 6 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 ?

1 6 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 ?
1 11 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208011 742885 TL

11,n

1 12 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742899 TL
12,n

1 1 7 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
7,n

1 1 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
8,n

1 1 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
9,n

1 1 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
10,n

1 1 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
11,n

1 1 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
12,n

1 1 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
13,n

1 1 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 Td
14,n

1 2 7 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 2 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 2 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 2 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 2 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 2 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 2 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 3 7 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 3 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 3 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
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a b m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 3 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 3 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 3 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 3 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 4 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 4 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 4 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 4 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 4 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 5 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 5 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 5 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 5 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 6 7 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 6 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 6 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 6 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 6 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 7 8 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 7 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 7 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 7 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 8 9 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 8 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 8 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 8 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 9 10 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 9 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 9 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 10 11 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 10 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 10 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 11 12 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 12 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?
1 12 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 13 13 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 TL
13,n

1 13 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 ?

1 14 14 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 TL
14,n

Table 3. T lin
a,b,m,n

Below we list all binary trees with five leaves, and we indicate their left and
right depth sequences. Denoting a tree by its left depth sequence, it is easy to
verify that the only nontrivial ∼LR

3,1-equivalence class is {13210, 43210}, the only

nontrivial ∼LR
1,3-equivalence class is {11110, 22210}, and the only nontrivial ∼LR

2,2-

equivalence class is {11210, 33210}. Moreover, the only nontrivial ∼d
2-equivalence

classes are {11210, 33210}, {12110, 32210}, {12210, 32110}, and {21110, 23210}.
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11110 11210 12110 12210 13210 21110 21210
01234 01233 01223 01232 01222 01123 01122

43210 33210 32210 23210 22210 32110 22110
01111 01211 01121 01221 01231 01112 01212
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