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Reflections on and of minor-closed classes of
multisorted operations

Erkko Lehtonen, Reinhard Pöschel and Tamás Waldhauser

Abstract. The minor relation of functions is generalized to multisorted
functions. Pippenger’s Galois theory for minor-closed sets of functions is
extended to multisorted functions and multisorted relation pairs. Reflec-
tions of minor-closed sets are again minor-closed, and the effect of reflec-
tions on the invariant relation pairs of minor-closed sets of multisorted
functions is described.
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1. Introduction

A function f : An → B is called a minor of a function g : Am → B, if f can
be obtained from g by permuting arguments, introducing fictitious arguments,
and identifying arguments. Formation of minors is a way of building new func-
tions from given ones; in fact, they are substitution instances of functions in
which variables are substituted for variables. As such, they arise naturally
in universal algebra as particular term operations of an algebra. The minor
relation is a quasiorder on the set of all functions of several arguments from
A to B, and it induces a partial order (the so-called “minor poset”) on the
equivalence classes.

Minors of functions have been investigated by several authors from dif-
ferent points of view. In the current paper, our aim is to extend this line of
research to the setting of multisorted functions, which are briefly recalled in
Section 2. We define minors and make a few initial observations on the struc-
ture of the minor poset of multisorted functions in Section 3, focusing on the
minimal and maximal elements, ascending chains, and principal filters and
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ideals. The generalization is rather straightforward in itself, but, as we will
see, there are some interesting phenomena that do not arise in the one-sorted
case.

Minor-closed sets of functions, or “minions”, as recently coined by
Opršal, were characterized by Pippenger [6] in terms of a Galois connection
induced by the so-called preservation relation between functions and relation
pairs. In Section 4, we extend Pippenger’s Galois theory in a natural way to
multisorted functions and multisorted relation pairs. A few technical compli-
cations arise due to the fact that some of the components of a multisorted
universe may be empty, but these are treated quite efficiently by our formal-
ism. Nullary relations are nevertheless needed, in contrast to the classical case.

Motivated by considerations of the complexity of constraint satisfaction
problems, Barto, Opršal and Pinsker [1] introduced an algebraic construction
called reflection. Given sets A and B, an operation f : An → A, and maps
h : B → A and h′ : A → B, they defined the (h, h′)-reflection of f as the
operation f(h,h′) : Bn → B given by the rule

f(h,h′)(b1, . . . , bn) = h′(f(h(b1), . . . , h(bn))),

for all b1, . . . , bn ∈ B. As proposed by the current authors [4], the notion
of reflection extends to multisorted functions with little modifications in the
definition. Observing first that reflections of minor-closed sets of functions
are again minor-closed, we describe in the final section, Section 5, how the
invariant relation pairs of multisorted operations are affected by reflections.

2. Multisorted operations

We will start with recalling the definitions of basic concepts in the theory of
multisorted sets and multisorted operations. We will mainly follow the notation
and terminology used in the book by Wechler [9].

Definition 2.1. We denote by N the set of nonnegative integers and by N+ the
set of positive integers. For n ∈ N, let [n] := {1, . . . , n}. Note that [0] = ∅.

Definition 2.2. We write tuples (a1, a2, . . . , an) interchangeably as words
a1a2 . . . an. The set of all words over a set S is denoted by W (S). The empty
word is denoted by ε. The length of a word w ∈ W (S) is the number of letters
in w and it is denoted by |w|. Thus, |w1w2 . . . wn| = n for w1, w2, . . . , wn ∈ S.
For s ∈ S, the number of occurrences of s in w is denoted by |w|s.

Since a word w = w1 . . . wn is formally a map w : [n] → S, it makes sense
to speak of the image of w, namely, the set Im w = {w1, . . . , wn} of values, or
entries of w. For u,w ∈ W (S), we write u ⊆ w if Im u ⊆ Im w.

Definition 2.3. Let S be a set of elements called sorts. An S-indexed family of
sets is called an S-sorted set. The usual set-theoretical relations and operations
are carried over to S-sorted sets by componentwise definitions. Thus, given S-
sorted sets A = (As)s∈S and B = (Bs)s∈S , we say that A is an (S-sorted)
subset of B and we write A ⊆ B if As ⊆ Bs for all s ∈ S. The union and
intersection of S-sorted sets A and B are A∪B := (As ∪Bs)s∈S and A∩B :=
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(As ∩ Bs)s∈S . More generally, the union
⋃ C and the intersection

⋂ C of an
arbitrary family C of S-sorted sets are given by (

⋃ C)s :=
⋃{As | A ∈ C} and

(
⋂ C)s :=

⋂{As | A ∈ C}, for each s ∈ S. For any subset S′ ⊆ S, we denote
by A|S′ the S-sorted subset of A given by

(A|S′)s :=

{
As, if s ∈ S′,
∅, if s /∈ S′.

When we make statements such as “let A be an S-sorted set”, it is understood
that the member of the family A indexed by s ∈ S is denoted by As.

Definition 2.4. Let A be an S-sorted set. If As �= ∅, then we say that sort s is
essential in A; otherwise sort s is inessential in A. Let SA := {s ∈ S | As �= ∅}
be the set of essential sorts in A. It follows immediately from the definitions
that A|SA

= A and SA|S′ = SA ∩ S′ for any S′ ⊆ S.

Definition 2.5. Let A and B be S-sorted sets. An S-sorted mapping f from
A to B, denoted by f : A → B, is a family (fs)s∈S of maps fs : As → Bs. If
x ∈ As and there is no risk of confusion about the sort s, we may write f(x)
instead of fs(x).

Definition 2.6. For an S-sorted set A = (As)s∈S and a word w = w1w2 . . . wn

∈ W (S), let Aw := Aw1 × Aw2 × · · · × Awn
. Note that Aε = {∅}.

Definition 2.7. A pair (w, s) ∈ W (S) × S is called a declaration over S. Let A
be an S-sorted set. A declaration (w, s) with w = w1 . . . wn is reasonable in A if
As = ∅ implies Awi

= ∅ for some i, or, equivalently, if Aw �= ∅ implies As �= ∅.
Note that the declaration (ε, s) is reasonable in A if and only if As �= ∅.

An S-sorted operation on A is any function f : Aw → As for some decla-
ration (w, s) that is reasonable in A. The word w is called the arity of f and
the element s is called the (output) sort of f . The elements of S occurring in
the word w are called the input sorts of f . We denote the declaration, arity,
sort, and the set of input sorts of f by dec(f), ar(f), sort(f), and inp(f),
respectively. If |w| = n, then we also say that f has numerical arity n, or that
f is n-ary.

Note that if w = w1 . . . wn and Awi
= ∅ for some i ∈ [n], then Aw =

∅ and f : Aw → As is the empty function ∅ → As. Even though, in pure
set-theoretical terms, any empty function is equal to the empty set, we will
nevertheless distinguish between empty functions of different declarations.

Definition 2.8. We denote the set of all S-sorted operations of declaration
(w, s) on A by F (w,s)

A . Let FA be the set of all S-sorted operations on A, i.e.,

FA :=
⋃

{F (w,s)
A | (w, s) ∈ W (S) × S}.

Remark 2.9. The special case when |S| = 1 corresponds to the usual, one-
sorted operations on a set A. In this case, the declaration of a function is
completely specified by the numerical arity, and we may simply speak of n-ary
operations on A.
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Another important special case are the functions of several arguments
from A1 to A2, where A1 and A2 are possibly different sets, i.e., functions
f : An

1 → A2 for some n ∈ N. These can be seen as S-sorted operations on
A = (As)s∈S , with S = {1, 2}, such that the only input sort is 1 and the
output sort is 2.

Definition 2.10. Let f : Aw → As be an n-ary operation, and let i ∈ [n]. The i-
th argument is essential in f , if there exist tuples a,b ∈ Aw such that aj = bj

for all j ∈ [n]\{i} and f(a) �= f(b). An argument that is not essential is
inessential or fictitious. Let

Ess f := {i ∈ [n] | the i-th argument is essential in f},

and ess f := |Ess f |. The quantity ess f is called the essential arity of f .

3. Minors of multisorted operations

New functions can be built from a given function f : An → B of several argu-
ments by manipulation of its arguments: permutation of arguments, identifi-
cation of arguments, introduction of inessential arguments. The functions that
can be formed in this way are called minors of f . We shall extend the notion of
minor to multisorted operations. Multisorted operations differ markedly from
one-sorted operations in that arguments cannot be identified arbitrarily; it is
only possible to identify arguments of the same sort.

Definition 3.1. Recall that a tuple a = (a1, . . . , an) ∈ Aw, with w = w1 . . . wn,
is a mapping a : [n] → A satisfying a(i) = ai ∈ Awi

for all i ∈ [n]. As such,
it makes perfect sense to compose tuples with other maps. In particular, for
any map λ : [m] → [n], the composite a ◦ λ is a map [m] → A, i.e., an m-
tuple given by a ◦ λ = (aλ(1), . . . , aλ(m)), and it is an element of Au, where
u = wλ(1) . . . wλ(m). We will write briefly aλ for a ◦ λ.

Definition 3.2. Let f : Aw → As and g : Au → As be S-sorted operations on
A, with w = w1 . . . wn, u = u1 . . . um. We say that f is a minor of g, or that
g is a major of f , and we write f ≤ g, if there exists a map λ : [m] → [n]
such that ui = wλ(i) for all i ∈ [m] and f(a) = g(aλ) (i.e., f(a1, . . . , an) =
g(aλ(1), . . . , aλ(m))) for all a ∈ Aw. (Note that the existence of such a map λ
implies u ⊆ w.)

Given an S-sorted operation g : Au → As with |u| = m, a word w =
w1 . . . wn ∈ W (S) such that u ⊆ w and a map λ : [m] → [n] satisfying ui =
wλ(i) for all i ∈ [m], define the function gw

λ : Aw → As of declaration (w, s) on
A by the rule gw

λ (a) = g(aλ), for all a = (a1, . . . , an) ∈ Aw. The function gw
λ is

a minor of g. Conversely, every minor of g is of the form gw
λ for some suitable

w and λ.

Remark 3.3. In the case of usual, one-sorted operations, Definition 3.2 becomes
somewhat simpler, since the condition ui = wλ(i) for all i ∈ [m] is automat-
ically satisfied by every map λ : [m] → [n]. Thus f : An → A is a minor of
g : Am → A if there exists a map λ : [m] → [n] such that f(a) = g(aλ) for all
a ∈ An.
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The minor relation ≤ is a quasiorder on FA. As for all quasiorders, it
induces an equivalence relation ≡ on FA by the rule f ≡ g if and only if
f ≤ g and g ≤ f . Moreover, ≤ induces a partial order on the quotient FA/≡
by the rule f/≡ ≤ g/≡ if and only if f ≤ g. We will refer to (FA/≡,≤) as
the minor poset of multisorted operations on A. Its elements are equivalence
classes of operations, but, for the sake of notational simplicity, we will denote
an equivalence class by any of its representatives.

Remark 3.4. Informally speaking, f is a minor of g if f can be obtained from
g by permutation of arguments, introduction of inessential arguments, and
identification of arguments of the same sort. Note that formation of minors
allows of introducing fictitious arguments of any sort, even of a sort that is
not among the input sorts of a given function. On the other hand, it is never
possible to get rid of all arguments of any input sort. (In the case of one-sorted
operations, we can permute and identify arguments and introduce fictitious
arguments, but it is never possible to get a nullary function from a non-nullary
one.)

The equivalence of functions could be described as follows. A reduced
form of a function f : Aw → As is a function obtained from f by deleting as
many inessential arguments as possible while retaining at least one argument
of each input sort. Two functions are equivalent if and only if their reduced
forms are the same up to permutation of arguments.

It is part of the folklore of the theory of minors of one-sorted operations
that f ≤ g implies ess f ≤ ess g. It is easy to see that this holds as well for
multisorted operations.

Remark 3.5. The minors of a nullary operation f : Aε → As, f(∅) = c ∈ As are
all constant operations taking value c of any declaration (w, s) with w ∈ W (S).
On the other hand, no non-nullary operation has a nullary minor.

We shall establish a few basic facts about the structure of the minor
poset of multisorted operations on A. In particular, we are going to describe
the minimal and maximal elements, as well as the finite principal filters and
ideals. Let us start with the minimal elements.

Lemma 3.6. Let f : Aw → As. If Im w �= S, then there exists g ∈ FA such that
g < f .

Proof. Let t ∈ S\ Im w, and define g : Awt → As by the rule

g(x1, . . . , xn, xn+1) := f(x1, . . . , xn)

for all (x1, . . . , xn, xn+1) ∈ Awt. Then clearly g < f . �
Proposition 3.7. Let A be an S-sorted set.

(i) If S is infinite, then the minor poset (FA/≡,≤) has no minimal elements.
(ii) If S is finite, then the minimal elements of (FA/≡,≤) are precisely the

operations that are “unary at each sort”, i.e., operations f : Aw → As

where |w|s = 1 for every s ∈ S. Moreover, every operation is bounded
below by a unique minimal element.
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Proof. (i) Follows immediately from Lemma 3.6.
(ii) Assume first that f : Aw → As is minimal, |w| = n. Lemma 3.6

implies that Im w = S. Let u ∈ W (S) be a word such that |u|s = 1 for every
s ∈ S, |u| = m. Then there exists a (unique) map λ : [n] → [m] with wi = uλ(i)

for all i ∈ [n]. By definition fu
λ ≤ f . Since f is minimal, we must have fu

λ ≡ f ,
so f/≡ = fu

λ /≡.
For the converse, let f : Aw → As with |w| = n and |w|s = 1 for every

s ∈ S. Suppose g : Au → A, |u| = m, satisfies g ≤ f . By the definition of
minor, there exists λ : [n] → [m] such that wi = uλ(i) for all i ∈ [n] and
g(a) = f(aλ) for all a ∈ Au. Then there exists a (unique) map σ : [m] → [n]
with ui = wσ(i) for all i ∈ [m], and it holds that σλ = id[n]. Consequently,
g(aσ) = f(aσλ) = f(a) for all a ∈ Aw, that is, f ≤ g. Thus f ≡ g, so f is
minimal.

Concerning the last claim, it is easy to see that for any operation
f : Aw → As, we obtain a minor of f that is unary at each sort by intro-
ducing fictitious arguments of every sort, if necessary, and then identifying
all arguments of the same sort. This minor is unique, up to permutation of
arguments. �

Remark 3.8. In the case of one-sorted functions, the minimal elements of the
minor poset are precisely the unary functions.

Now we turn our attention to maximal elements. With the exception of
a few “pathological cases” (described in Lemma 3.10 below), almost every
function has proper majors and is hence non-maximal.

Lemma 3.9. Let A be an S-sorted set, let f : Aw → As for some w ∈ W (S),
s ∈ S, and assume that |Aw| > 1 and |As| > 1. Then there exists g ∈ FA such
that f < g.

Proof. Since |Aw| > 1, there exists an i such that |Awi
| > 1. Without loss of

generality, assume that i = n. Choose a point a ∈ Aw and an element c ∈ As

such that f(a) �= c. Define g : Awwn
→ As as

g(x1, . . . , xn, xn+1) =

{
f(x1, . . . , xn), if xn = xn+1,
c, if xn �= xn+1.

We clearly have f ≤ g, because we can obtain f from g by identifying
the last two arguments. In order to prove that g � f , we will show that
ess f < ess g. Assume that the i-th argument is essential in f , and let the
tuples (b1, . . . , bi−1, bi, bi+1, . . . , bn) and (b1, . . . , bi−1, b

′
i, bi+1, . . . , bn) witness

this fact. If i �= n, then

g(b1, . . . , bi, . . . , bn, bn) = f(b1, . . . , bi, . . . , bn)

�= f(b1, . . . , b′
i, . . . , bn) = g(b1, . . . , b′

i, . . . , bn, bn),

so the i-th argument is essential in g. Since |Awn
| > 1, there exists an element

a′
n ∈ Awn

distinct from an. By the choice of a, we also have
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g(a1, . . . , an−1, an, an) = f(a) �= c =

{
g(a1, . . . , an−1, a

′
n, an)

g(a1, . . . , an−1, an, a′
n),

which shows that the n-th and (n + 1)-st arguments are essential in g as well.
Consequently, ess f < ess g, and we conclude that g is a proper major of f . �

It still remains to deal with the cases when |Aw| ≤ 1 or |As| ≤ 1. Note
that As = ∅ implies Aw = ∅, so we have the three exceptional cases described
in the following lemma.

Lemma 3.10. Let A be an S-sorted set, and let f : Aw → As and g : Au → As

for some w, u ∈ W (S), s ∈ S.
(i) If |As| = 1, then f ≤ g if and only if u ⊆ w.
(ii) If |Aw| = 1, then there exists c ∈ As such that f(a) = c for all a ∈ Aw;

moreover f ≤ g if and only if u ⊆ w and g(a) = c for all a ∈ Au.
(iii) If Aw = ∅, then f ≤ g if and only if u ⊆ w.

Proof. Let n = |w|, m = |u|. Assume first that |As| = 1, and let c be the
unique element of As. Then every function h : Av → As, v ∈ W (S), satisfies
h(a) = c for all a ∈ Av. If f ≤ g, then u ⊆ w by the definition of minor.
Conversely, if u ⊆ w, then there exists a map λ : [m] → [n] with ui = wλ(i) for
all i ∈ [m], and we have f(a) = c = g(aλ) for all a ∈ Aw, that is, f ≤ g.

Assume then that |Aw| = 1. Then |Awi
| = 1 for every i ∈ [n], and it

clearly holds that |Av| = 1 for every v ∈ W (S) such that v ⊆ w (this holds
even for v = ε). Then there exists c ∈ As such that f(a) = c for every (in
fact, the unique) element a of Aw. If f ≤ g, then u ⊆ w and there exists a
map λ : [m] → [n] with ui = wλ(i) for all i ∈ [m] such that g(aλ) = f(a) = c
for all a ∈ Aw. Since |Au| = |Aw| = 1, it holds that {aλ | a ∈ Aw} = Au;
hence g takes value c at every point in Au. Conversely, assume that u ⊆ w and
g(a) = c for all a ∈ Au. Then there exists a map λ : [m] → [n] with ui = wλ(i)

for all i ∈ [m], and we have f(a) = c = g(aλ) for all a ∈ Aw, that is, f ≤ g.
Finally, assume that Aw = ∅. If f ≤ g, then u ⊆ w by the definition

of minor. Conversely, if u ⊆ w, then there exists a map λ : [m] → [n] with
ui = wλ(i) for all i ∈ [m], and the condition that f(a) = g(aλ) for all a ∈ Aw

is vacuously true; hence f ≤ g. �

Proposition 3.11. Let A be an S-sorted set. The maximal elements of the minor
poset (FA/≡,≤) are precisely the nullary operations and the operations of the
form f : At → As, where s, t ∈ S and As = At = ∅.
Proof. Follows immediately from Lemmas 3.9 and 3.10. (Note that there exists
no nullary operation Aε → As if As is empty.) �

Remark 3.12. In the case of one-sorted operations, the maximal elements of the
minor poset are the nullary operations if A �= ∅. Every non-nullary operation
on a set with at least one element has proper majors, and the construction
of Lemma 3.9 provides one whenever |A| > 1. However, if A is empty, then
there is no nullary operation on A, and for each n ≥ 1 there is just one n-ary
operation on A, namely the empty operation. The latter are all equivalent to
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each other, hence the minor poset has only one element, which is maximal and
minimal at the same time.

The previous results can be applied to characterize the finite principal
filters of the minor poset.

Definition 3.13. Let ↑f be the principal filter generated by f/≡ in (FA/≡,≤),
that is, ↑f := {g/≡ | f ≤ g}.

Proposition 3.14. Let A be an S-sorted set. Let f : Aw → As for some w =
w1 . . . wn ∈ W (S), s ∈ S.

(i) The principal filter ↑f contains an infinite chain if and only if |As| > 1
and |Awi

| > 1 for some i ∈ [n].
(ii) If As = ∅, then ↑f ∼= (G,⊇), where G := P(Im w)\P(Im w ∩ SA).
(iii) If |As| = 1, then ↑f ∼= (P(Im w),⊇).
(iv) If As �= ∅ and |Awi

| ≤ 1 for all i ∈ [n], then ↑f ∼= (G ∪ H,≤), where G
is as in (ii) and H := P(Im w ∩ SA) × As, and the partial order relation
is defined as follows: X ≤ Y if and only if

• X,Y ∈ G and X ⊇ Y , or
• X,Y ∈ H with X = (B, b), Y = (C, c) and B ⊇ C and b = c, or
• X ∈ G, Y ∈ H with Y = (C, c) and X ⊇ C.

Proof. For statement (i), assume first that |As| > 1 and |Awi
| > 1 for some

i ∈ [n]. If Aw = ∅, then we need to first remove some letters from w to obtain
a word u such that wi ∈ Im u, u ⊆ w and Au �= ∅, and we let g : Au → As be
any function; then f < g by Lemma 3.10(iii). (If Aw �= ∅, such preprocessing
is not necessary.) Repeated application of Lemma 3.9 then yields an infinite
ascending chain above f .

The converse implication is established in the remaining statements of
the current proposition, which can be proved with straightforward verification
using Lemma 3.10. �
Example 3.15. In order to illustrate the posets appearing in Proposition 3.14,
let S = {1, 2, 3, 4, 5}, A1 = A2 = ∅, A3 = {0, 1, 2}, A4 = {0, 1, 2, 3}, A5 =
{0}, and let f , g, h be S-sorted operations on A with dec(f) = (1234, 5),
dec(g) = (1234, 1), dec h = (1234, 3). These are all empty operations, since
A1234 = A1 × A2 × A3 × A4 = ∅. However, the principal filters ↑f , ↑g and ↑h
are quite distinct; they are shown in Figure 1, which is a Hasse diagram with
some shorthand notation for easier readability. The diagram comprises several
copies of a diamond (the big disks) connected by thick lines. Each thick line
between a pair of diamonds represents four edges, each connecting a vertex of
one diamond to its corresponding vertex in the other diamond.

In fact, Figure 1 gives three Hasse diagrams at once: each one of the posets
↑f , ↑g and ↑h is represented by the part of the diagram inside the polygonal
frame labeled as such. The vertices bear labels indicating a representative of
each equivalence class, and they can be interpreted as follows. Let s be the
output sort of the function (f , g or h) being considered. A label of the form
w ∈ W (S) designates the empty function of declaration (w, s). A label of the
form (w, a) ∈ W (S)×As designates the constant function of declaration (w, s)
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↑f↑g
↑h

432431

12

(34, 43()0 , 2)

123 124

423231 41

(3, 0) (4,4( )0,3( )1, 3()1 , 2) (4, 2)

(ε,( )2ε,( )0ε, 1)

21

1234

(34, 1)

Figure 1. Principal filters generated by the functions f , g,
h of Example 3.15

taking value a everywhere. For example, the vertex labeled 14 represents (the
equivalence class of) the empty function of declaration (14, 5) in the diagram
of ↑f , the empty function of declaration (14, 1) in ↑g, and the empty function
of declaration (14, 3) in ↑h.

Proposition 3.14 describes, fully and accurately, all finite principal filters
of the minor poset. In contrast, description of the finite principal ideals seems
quite a challenging task, even for one-sorted functions. A function-free charac-
terization of finite principal ideals in terms of quotients of partition lattices was
obtained by Lehtonen and Waldhauser [5], but the condition is rather intricate,
and we do not even know whether there exists any finite bounded poset that
does not satisfy the condition. This remains a topic of further investigation.
(Note that a slightly different terminology is used in [5]: “minor poset” refers
there to principal ideals of the minor poset (FA/≡,≤).)

4. Galois theory of minor-closed classes of functions and
relation pairs

We say that a class F ⊆ FA of S-sorted operations on A is minor-closed if
all minors of members of F are members of F . Denote by 〈F 〉mc the minor-
closure of F , i.e., the smallest minor-closed class containing F . The minor-
closed classes are exactly the downsets (order ideals) of the quasiordered set
(FA;≤). Let M be the set of all minor-closed subsets of FA, and order it by
inclusion.
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Proposition 4.1. For any family C of minor-closed subsets of FA, the union⋃ C and the intersection
⋂ C are minor-closed. Consequently, the set M of all

minor-closed subsets constitutes a complete sublattice of the power set lattice
(P(FA),⊆). The least and greatest elements of M are ∅ and FA, respectively.

Proof. Let C be a family of minor-closed subsets of FA. Let g ∈ ⋃ C and
f ≤ g. Then g ∈ C for some C ∈ C. Since C is minor-closed, we have f ∈ C,
so f ∈ ⋃ C. We conclude that

⋃ C is minor-closed. The proof that
⋂ C is

minor-closed is similar.
The statement about the least and greatest elements is obvious, because

both ∅ and FA are minor-closed. �

Pippenger’s [6] Galois theory of minor-closed classes of functions and
invariant relation pairs (constraints) can be translated to the setting of mul-
tisorted functions. We will develop the theory under the assumption that all
components of the underlying S-sorted set A are finite (possibly empty). The
set S of sorts may be finite or infinite.

Definition 4.2. Let A := (As)s∈S be an S-sorted set. For m ∈ N, an m-ary
S-sorted relation on A is a family (Rs)s∈S of m-ary relations Rs ⊆ Am

s . An
m-ary S-sorted relation pair on A is a pair (R,R′), where R and R′ are m-ary
S-sorted relations on A. The relations R and R′ are called the antecedent and
the consequent of the relation pair, respectively.

We say that a relation pair (R,R′) has finite support if the set SR = {s ∈
S | Rs �= ∅} is finite. (The set SR′ may nevertheless be infinite.) In this paper,
we will only consider relation pairs with finite support. This does not impose
a significant restriction, because for any S-sorted relation pair (R,R′), it holds
that

mPol(R,R′) = mPol{(R|S′ , R′) | S′ ⊆ S, S′ finite}.

We denote by Q(m)
A the set of all m-ary S-sorted relation pairs on A with finite

support, and we denote by QA the set of all S-sorted relation pairs on A with
finite support.

An n-tuple (a1,a2, . . . ,an) of m-tuples can be viewed as an m×n matrix
with columns a1, a2, . . . , an. The i-th row of this matrix is (a1(i),a2(i), . . . ,
an(i)). With this viewpoint in mind, we will often think of tuples belonging
to a relation as columns, and we refer to their components as rows.

Note that B0 = {∅} for any set B, either empty or nonempty. Hence,
there exist exactly two nullary relations on any set B, namely, ∅ and {∅}. In
contrast, for any n ≥ 1, the only n-ary relation on the empty set ∅ is the empty
relation ∅.

Definition 4.3. Let A := (As)s∈S be an S-sorted set. Let f be an S-sorted
operation of declaration (w, s) on A (w = w1 . . . wn), and let (R,R′) ∈ Q(m)

A

be an m-ary S-sorted relation pair on A with R = (Rs)s∈S and R′ = (R′
s)s∈S .

We write M ≺w R if M := (a1,a2, . . . ,an) is an m × n matrix such that
aj ∈ Rwj

for all j ∈ [n]. For a matrix M = (a1,a2, . . . ,an) such that aj ∈ Am
wj
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for all j ∈ [n], we write f(M) to denote the m-tuple in Am
s whose i-th entry

is f(a1(i),a2(i), . . . ,an(i)), for i ∈ [m]. In other words, if M = (aij), then

f(M) :=

⎛

⎜
⎜
⎜
⎝

f(a11, a12, . . . , a1n)
f(a21, a22, . . . , a2n)

...
f(am1, am2, . . . , amn)

⎞

⎟
⎟
⎟
⎠

.

We say that f preserves (R,R′), or that f is a polymorphism of (R,R′), or
(R,R′) is invariant under f , and we write f � (R,R′), if for all m×n matrices
M, the condition M ≺w R implies f(M) ∈ R′

s.
This notation extends to sets of S-sorted operations and sets of S-sorted

relation pairs in the obvious way: for any F ⊆ FA and Q ⊆ QA, we write
F � Q to mean that f � (R,R′) holds for all f ∈ F and for all (R,R′) ∈ Q.
Furthermore, we simplify the notation for singletons and write f � Q for
{f} � Q and F � (R,R′) for F � {(R,R′)}.

Let us point out three special cases.
• If m = 0, then the condition M ≺w R asserts that M = (∅, ∅, . . . , ∅), and

f(M) = ∅ ∈ A0
s. Consequently, f � (R,R′) if and only if

(∀i ∈ [n] : Rwi
= {∅}) =⇒ R′

s = {∅}.
Thus, whether a function f preserves a nullary relation pair depends only
on the declaration of f .

• If w = ε and m ≥ 1, then f � (R,R′) if and only if (c, . . . , c) ∈ R′
s, where

c is the constant value taken by f .
• If Aw = ∅ and m ≥ 1, then Rwi

= ∅ for some i ∈ [n], so there is no
matrix M such that M ≺w R. Hence the implication in the definition of
preservation holds vacuously. Thus, every empty function preserves every
relation pair of arity at least 1.

Definition 4.4. The preservation relation induces a Galois connection between
multisorted operations and multisorted relation pairs on A. For any set F ⊆ FA

of S-sorted operations and for any set Q ⊆ QA of S-sorted relation pairs, we
write

mInv F := {(R,R′) ∈ QA | ∀f ∈ F : f � (R,R′)},

mPol Q := {f ∈ FA | ∀(R,R′) ∈ Q : f � (R,R′)}.

Definition 4.5. Assume that A = (As)s∈S is an S-sorted set in which every
component As is finite. For any w = w1 . . . wn ∈ W (S), let Xw = (xw

1 , . . . ,xw
n )

be the N ×n matrix whose rows are all the n-tuples in Aw in some fixed order,
where N = |Aw|. Then each column xw

i is a tuple in AN
wi

. Let χw = (χw,s)s∈S

be the N -ary S-sorted relation in which the component χw,s of sort s ∈ S
comprises those columns xw

i of Xw for which wi = s, i.e., χw,s := {xw
i | i ∈

[n], wi = s}.
Let us point out two special cases.

• If w = ε, then N = 1 and n = 0, and χε = (χε,s)s∈S is the unary S-sorted
relation with χε,s = ∅ for all s ∈ S.
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• If Aw = ∅, then N = 0, n = |w|, and χw = (χw,s)s∈S is the nullary S-
sorted relation with χw,s = {∅} if s = wi for some i ∈ [n], and χw,s = ∅
otherwise.

Definition 4.6. For an S-sorted relation σ and a set F ⊆ FA of S-sorted
operations on A, let

ΓF (σ) :=
⋂

{R′ | F � (σ,R′)}.

Remark 4.7. The relation pair (σ,ΓF (σ)) is an invariant of F , since it is the
intersection of the relation pairs (σ,R′) ∈ mInv F . In fact, ΓF (σ) is the least
relation R′ such that F � (σ,R′).

Lemma 4.8. Let A = (As)s∈S be an S-sorted set in which every set As is finite.
Assume that F ⊆ FA is minor-closed. Then for every word w ∈ W (S) we have
ΓF (χw) = ({f(Xw) | f ∈ F (w,s)})s∈S.

Proof. Write γs := {f(Xw) | f ∈ F (w,s)} and let γ = (γs)s∈S . In order
to prove the inclusion ΓF (χw) ⊆ γ, we show that (χw, γ) ∈ mInv F . Let
f ∈ F , say with dec(f) = (u, s), |u| = m, and let M ≺u χw. Then there
exists λ : [m] → [n] such that M = (xw

λ(1), . . . ,x
w
λ(m)) and thus ui = wλ(i) for

all i ∈ [m]. Then fw
λ ∈ F (w,s), because F is minor-closed, and consequently

f(M) = fw
λ (Xw) ∈ γs.

In order to prove the converse inclusion γ ⊆ ΓF (χw), we show that γ ⊆ R′

for every R′ such that (χw, R′) ∈ mInv F . Indeed, let r ∈ γs. Then there exists
f ∈ F (w,s) such that r = f(Xw). Since Xw ≺w χw and f � (χw, R′), we must
have r = f(Xw) ∈ R′

s, and this proves that γ ⊆ R′. From the definition of
ΓF (χw), we conclude that γ ⊆ ΓF (χw). �
Lemma 4.9. Let A = (As)s∈S be an S-sorted set in which every set As is
finite. Let F ⊆ FA be a minor-closed class and w ∈ W (S). Then the following
statements hold.

(i) For any s ∈ S and f, g ∈ F (w,s)
A , f = g if and only if f(Xw) = g(Xw).

(ii) For any f ∈ FA satisfying ar(f) = w we have f ∈ F if and only if
f � (χw,ΓF (χw)).

(iii) ΓF (χw) = ΓF ′(χw), where F ′ := {f ∈ F | ar(f) = w}.
(iv) F � (χw,ΓF (χw)).
(v) F = mPol{(χw,ΓF (χw)) | w ∈ W (S)}.
Proof. (i) Obvious, because the rows of Xw are all the n-tuples of the set Aw

and hence f(Xw) is the tuple listing the values of f at each point in its domain.
(ii) If f ∈ F , then f � (χw,ΓF (χw)) by Remark 4.7. Since Xw ≺w χw,

it follows that f(Xw) ∈ ΓF (χw), so by Lemma 4.8 there is f ′ ∈ F with
dec(f ′) = dec(f) such that f(Xw) = f ′(Xw). By (i) we obtain f = f ′ ∈ F .

(iii) Since F ′ ⊆ F , we have mInv F ⊆ mInv F ′, whence ΓF ′(χw) ⊆
ΓF (χw). For the converse inclusion, note that F ′ =

⋃
s∈S F (w,s). Since

Xw ≺w χw, we must have ({f(Xw) | f ∈ F (w,s)})s∈S ⊆ R′ for every R′

such that (χw, R′) ∈ mInv F ′. Lemma 4.8 and the definition of ΓF ′(χw) then
yield ΓF (χw) ⊆ ΓF ′(χw).
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(iv) Follows immediately from Remark 4.7.
(v) Follows immediately from items (ii) and (iv). �

Theorem 4.10. Let A := (As)s∈S be an S-sorted set, and assume that the sets
As are all finite. Let F ⊆ FA be a set of S-sorted operations on A. Then
F = mPol Q for some Q ⊆ QA if and only if F is minor-closed. Consequently,
〈F 〉mc = mPol mInv F for any F ⊆ FA.

Proof. The “if” part is given by Lemma 4.9. For the converse, assume that
F = mPol Q. Let f ∈ F (w,s), w = w1 . . . wn. Let u := u1 . . . um ∈ W (S)
be such that {w1, . . . , wn} ⊆ {u1, . . . , um}, and let λ : [n] → [m] be a map
satisfying wi = uλ(i) for all i ∈ [n]. We need to show that fu

λ ∈ F . Let
(R,R′) ∈ Q be a q-ary relation pair. Let M := (a1,a2, . . . ,am) be a q × m
matrix with columns aj (j = 1, . . . ,m) and assume that M ≺u R. Then
(aλ(1), . . . ,aλ(n)) ≺w R, so we have fu

λ (M) = f(aλ(1), . . . ,aλ(n)) ∈ R′
s, because

f � (R,R′). We conclude that fu
λ ∈ mPol Q = F , so F is minor-closed.

We have shown that F is minor-closed if and only if F = mPol Q for
some Q ⊆ QA. By the general properties of Galois connections, the latter is
equivalent to F = mPol mInv F . Thus we see that the closed classes corre-
sponding to the closure operators F �→ mPol mInv F and F �→ 〈F 〉mc are the
same, therefore the two closure operators coincide: 〈F 〉mc = mPol mInv F for
all F ⊆ FA. �

We are now going to describe the Galois closed sets of relation pairs. We
follow the approach taken by Lau [3, Section II.2] and Pöschel and Kalužnin [8,
Sections 1.1–1.2] for describing the Galois closed sets of relations in the classical
theory of clones and relational clones. The notions and ideas present in these
pieces of literature can be translated in a straightforward way to the realm of
S-sorted operations and relation pairs.

For an arbitrary equivalence relation � on [m], let δm
� = (δm

�,s)s∈S , where

δm
�,s := {(a1, . . . , am) ∈ Am

s | (i, j) ∈ � =⇒ ai = aj}.

We write simply δ� when m is clear from the context. Relation pairs of the
form (δm

� , δm
� ) are called diagonal relation pairs. (Note that δ0�,s = {∅}.)

Remark 4.11. It is easy to verify that every S-sorted operation in FA preserves
every diagonal relation pair (δm

� , δm
� ).

Recall the “elementary operations” ζ, τ , pr, × and ∧ on relations (see
Lau [3, Section II.2.3]). Let R and R̃ be m-ary and m′-ary relations on a set B,
respectively. Then ζR = τR = R for m ≤ 1, prR = R for m = 0, R ∧ R̃ = R
for m �= m′, and

ζR := {(a2, a3, . . . , am, a1) | (a1, a2, . . . , am) ∈ R} (m ≥ 2),

τR := {(a2, a1, a3, . . . , am) | (a1, a2, . . . , am) ∈ R} (m ≥ 2),

prR := {(a2, . . . , am) | (a1, a2, . . . , am) ∈ R} (m ≥ 1),

R × R̃ := {(a1, . . . , am, b1, . . . , bm′) | (a1, . . . , am) ∈ R, (b1, . . . , bm′) ∈ R̃},

R ∧ R̃ := {(a1, . . . , am) | (a1, . . . , am) ∈ R ∩ R̃} (m = m′).
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The operation ζ is called cyclic shift of rows, τ is called transposition of first
two rows, pr is called deletion of first row, × is called Cartesian product, and
∧ is called intersection. Observe that if R is an empty relation (of arbitrary
arity), then prR = ∅ and R × R̃ = ∅ for every relation R̃. If R is a nonempty
unary relation, then we have prR = {∅}, and if R is the nonempty nullary
relation (i.e., R = {∅}), then R × R̃ = R̃.

We define analogous elementary operations of S-sorted relation pairs.
For (R,R′) ∈ Q(m)

A , we set ζ(R,R′) := (ζR, ζR′), where ζR := (ζRs)s∈S

and ζR′ := (ζR′
s)s∈S . Similarly, τ(R,R′), pr(R,R′), (R,R′) × (R̃, R̃′) and

(R,R′) ∧ (R̃, R̃′) are defined componentwise and in parallel in each sort.
A relation pair (R,R′) is a relaxation of (R̃, R̃′) if R ⊆ R̃ and R′ ⊇ R̃′.

We say that (R,R′) is obtained from (R̃, R′) by restricting the antecedent if
R ⊆ R̃, and we say that (R,R′) is obtained from (R, R̃′) by extending the
consequent if R′ ⊇ R̃′.

Definition 4.12. Following Pippenger [6], we say that a set Q ⊆ QA of rela-
tion pairs is minor-closed if it contains the diagonal relation pairs and is closed
under the elementary operations ζ, τ , pr, ×, ∧, relaxations and arbitrary inter-
sections.

Remark 4.13. The closure under arbitrary intersections subsumes the closure
under ∧. If the set S of sorts is finite and every component of the S-sorted
set A is finite, then closure under arbitrary intersections can be omitted from
Definition 4.12.

Moreover, we would like to mention that the closure of sets of S-sorted
relation pairs under the operations ζ, τ , pr, ×, ∧ is equivalent to the closure
with respect to pp-formulas (more precisely, with respect to logical operations
on relations defined by primitive positive first-order formulas) as it is known
from the one-sorted case (cf., e.g., [7, Remark 1.6]).

Using the argument provided by Lau [3, Section II.2.5], one can show that
a minor-closed set Q is also closed under operations derivable from the elemen-
tary operations, such as permutation of rows, projection onto rows i1, i2, . . . , it
(denoted by pri1,i2,...,it), identification of rows, repetition of rows, introduction
of fictitious rows, relational product. We denote by [Q]mc the minor-closure of
a set Q ⊆ QA, i.e., the smallest minor-closed set of relation pairs containing
Q.

It follows immediately from the definitions that mInv F is minor-closed
for every F ⊆ FA.

Lemma 4.14. Let A = (As)s∈S be an S-sorted set in which every set As

is finite. Let (R,R′) ∈ QA and F ⊆ FA. Assume that (R,R′) ∈ mInv F .
Then there exists (R,R′′) ∈ mInv F such that R′′ ⊆ R′, and there are a
word w ∈ W (S) and i1, . . . , im ∈ [q], q := |Aw|, such that (R,R′′) =
pri1,...,im(χw,ΓF (χw)). In particular,

mInv F = [{(χw,ΓF (χw)) | w ∈ W (S)}]mc.
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Proof. Assume that R is m-ary and SR = {s1, . . . , st}. For s ∈ S, let ns :=
|Rs|, and let N :=

∑
s∈S ns. Note that N is a well-defined integer, because SR

is finite and every set As is finite. Let MR be the m×N matrix, whose leftmost
columns are the ns1 tuples in Rs1 , which are followed by the ns2 tuples in Rs2 ,
and so on, and the rightmost columns are the nst

tuples in Rst
. Let

w := s1 . . . s1︸ ︷︷ ︸
ns1

s2 . . . s2︸ ︷︷ ︸
ns2

. . . st . . . st︸ ︷︷ ︸
nst times

.

There exist i1, . . . , im ∈ [q], q := |Aw|, such that pri1,...,im(Xw) = MR

and hence pri1,...,im(χw) = R. Let R′′ := pri1,...,im(ΓF (χw)).
We claim that R′′ ⊆ R′. Let r ∈ R′′

s . By Lemma 4.8 and Theorem 4.10,
there exists fr̃ ∈ 〈F 〉(w,s)

mc = (mPol mInv F )(w,s) such that fr̃(Xw) = r̃ and
r = pri1,...,im(r̃). Then

r = pri1,...,im(r̃) = pri1,...,im(fr̃(Xw)) = fr̃(pri1,...,im(Xw)) = fr̃(MR) ∈ R′
s,

because MR ≺w R and (R,R′) ∈ mInv F . Clearly, (R,R′′) ∈ mInv F since
(χw,ΓF (χw)) ∈ mInv F by Remark 4.7 and mInv F is minor-closed. �

Lemma 4.15. Let A = (As)s∈S be an S-sorted set in which every set As is
finite. Let Q ⊆ QA be a minor-closed class, and let F := mPol Q. Then
(χw,ΓF (χw)) ∈ Q for every w ∈ W (S).

Proof. Fix w ∈ W (S), and let γ :=
⋂{R′ | (χw, R′) ∈ Q}. Then (χw, γ) ∈ Q,

because Q is minor-closed. We are going to show that γ ⊆ ΓF (χw); from
this it follows that (χw,ΓF (χw)) ∈ Q, because Q is closed under extension of
consequents.

Suppose, to the contrary, that γ � ΓF (χw). Then there exists s ∈ S
and r ∈ Aq

s, q := |Aw|, such that r ∈ γs\ΓF (χw)s. Define the function
fr : Aw → As by the rule fr(Xw) := r. Since r /∈ ΓF (χw) and Xw ≺w χw

we have fr � (χw,ΓF (χw)). The set F is minor-closed by Theorem 4.10,
whence it follows by Lemma 4.9(ii) that fr /∈ F . Since fr /∈ F = mPol Q, there
exists a relation pair (R,R′) ∈ Q, say, of arity m, that is not preserved by fr,
i.e., there exists M ≺w R such that fr(M) /∈ R′

s.
Let N be the (q + m) × |w| matrix obtained by placing Xw on top of M.

Let � be the partition of the set [q + m] in which elements i, j ∈ [q + m] belong
to the same block if and only if rows i and j of N are equal. Recall that the
rows of Xw are all tuples in Aw, so each row of M appears also as a row of
Xw. Let h : [m] → [q] be the map such that for each i ∈ [m], the i-th row of
M equals the h(i)-th row of Xw; thus M = prh(1),...,h(m) Xw. Let

(σ, σ′) := ((χw, γ) × (R,R′)) ∧ (δ�, δ�),

(σ̃, σ̃′) := pr1,...,q(σ, σ′).

Note that both (σ, σ′) and (σ̃, σ̃′) belong to Q because Q is closed under
products, intersections and projections. Observe also that χw ⊆ σ̃, because
the columns of N belong to (χw ×R)∧ δ�. Furthermore, σ̃ ⊆ χw by definition,
so σ̃ = χw and we have (χw, σ̃′) ∈ Q. By the definition of γ, we have (χw, γ) ⊆
(χw, σ̃′) = (σ̃, σ̃′).
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Since γ ⊆ σ̃′, we have r ∈ σ̃′
s. This means, by the definition of σ̃′,

that there exists t ∈ ((γ × R′) ∩ δ�)s such that r = pr1,...,q(t); there-
fore t = (r1, . . . , rq, r

′
1, . . . , r

′
m) for some r′ ∈ R′

s. Since t ∈ δ�, we have
r′ = prh(1),...,h(m) r. But now

r′ = prh(1),...,h(m) r = prh(1),...,h(m) fr(Xw)

= fr(prh(1),...,h(m) Xw) = fr(M) /∈ R′
s.

This gives us the desired contradiction. �
Theorem 4.16. Let A = (As)s∈S be an S-sorted set in which every set As is
finite. Let Q ⊆ QA. Then [Q]mc = mInv mPol Q. Consequently, Q is minor-
closed if and only if Q = mInv mPol Q.

Proof. For any operation f , we have that mInv{f} is minor-closed. Thus,
f ∈ mPol Q if and only if f ∈ mPol[Q]mc, hence mPol Q = mPol[Q]mc =: F .
Applying Lemma 4.15 to the minor-closed class [Q]mc, we obtain

[{(χw,ΓF (χw)) | w ∈ W (S)}]mc ⊆ [Q]mc.

On the other hand, Lemma 4.14 implies that

mInv F = [{(χw,ΓF (χw)) | w ∈ W (S)}]mc.

Therefore, we have mInv F ⊆ [Q]mc. We can conclude that

[Q]mc ⊆ mInv mPol[Q]mc = mInv mPol Q = mInv F ⊆ [Q]mc,

where the first inclusion follows from the fact that mInv mPol is a closure
operator. �
Remark 4.17. We developed the Galois theory of minor-closed classes of mul-
tisorted operations under the assumption that the components As of the S-
sorted set A = (As)s∈S are finite. Should we like to abandon the finiteness
assumption, it would seem necessary to introduce certain local closure con-
ditions, much in the same way as in Couceiro and Foldes’s [2] extension of
Pippenger’s Galois theory to arbitrary, possibly infinite sets. This remains
beyond the scope of the current paper.

5. Reflections and invariant relation pairs

We are now going to generalize the notion of reflection (see Barto, Opršal and
Pinsker [1]) to the multisorted setting.

Definition 5.1. Let A and B be S-sorted sets. A reflection of A into B is a
pair (h, h′) of SB-sorted mappings h = (hs)s∈SB

, h′ = (h′
s)s∈SB

, hs : Bs → As,
h′

s : As → Bs. Note that reflections of A into B exist if and only if SB ⊆ SA.
For, if SB ⊆ SA, then As and Bs are nonempty for all s ∈ SB and there
clearly exist maps hs : Bs → As and h′

s : As → Bs. If SB � SA, then there is
s ∈ SB\SA, whence As = ∅ and Bs �= ∅, so there is no map hs : Bs → As.

Assume that A and B are S-sorted sets with SB ⊆ SA and (h, h′) is a
reflection of A into B. If (w, s) ∈ W (S) × S is a declaration that is reasonable
in both A and B and f : Aw → As, then we can define the (h, h′)-reflection
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of f to be the map f(h,h′) : Bw → Bs that is the empty map if Bw = ∅ and is
otherwise given by the rule

f(h,h′)(b1, . . . , bn) = h′
s(f(hw1(b1), . . . , hwn

(bn)))

for all (b1, . . . , bn) ∈ Bw, which we may write in a simpler way as f(h,h′)(b) =
h′

s(f(hw(b))) for all b ∈ Bw. This is illustrated by the commutative diagram
shown below.

Aw As

Bw Bs
f(h,h′)

hw

f

h′
s

Let F ⊆ FA be a set of S-sorted operations on A. If dec(f) is reasonable
in B for all f ∈ F , then the (h, h′)-reflection of F is defined as F(h,h′) :=
{f(h,h′) | f ∈ F}.

Proposition 5.2. Let A and B be S-sorted sets. Let F ⊆ FA, and let (h, h′) be
a reflection of A into B such that F(h,h′) is defined. If F is minor-closed, then
F(h,h′) is minor-closed.

Proof. Let g ∈ F(h,h′), with dec(g) = (w, s). Then g = f(h,h′) for some f ∈
F

(w,s)
A . Any minor of g is of the form gu

λ , where u = u1 . . . um ∈ W (S) is a word
such that {w1, . . . , wn} ⊆ {u1, . . . , um} and λ : [n] → [m] is a map satisfying
wi = uλ(i) for all i ∈ [n] (see Definition 3.2). Then for all (b1, . . . , bm) ∈ Bu,

gu
λ(b1, . . . , bm) = g(bλ(1), . . . , bλ(n)) = f(h,h′)(bλ(1), . . . , bλ(n))

= h′
s(f(hw1(bλ(1)), . . . , hwn

(bλ(n))))

= h′
s(f

u
λ (hu1(b1), . . . , hum

(bm))) = (fu
λ )(h,h′)(b1, . . . , bm).

Since F is minor-closed, we have fu
λ ∈ F . Hence gu

λ = (fu
λ )(h,h′) ∈ F(h,h′). �

Suppose F ⊆ FA is a minor-closed class. Proposition 5.2 asserts that any
reflection F(h,h′) is minor-closed. Theorem 4.10 guarantees that there exists
a set Q ⊆ QB of relation pairs such that F(h,h′) = mPol Q, but the obvious
question is how to find such a set Q if we are given mInv F . We are now going
to describe how the invariant relation pairs of S-sorted operations are affected
by reflections.

Definition 5.3. Let A and B be S-sorted sets, let h : A → B be an S′-sorted
mapping for some S′ ⊆ S, let R be an m-ary S-sorted relation on A, and let
T be an m-ary S-sorted relation on B. The direct image h(R) of R under h
and the inverse image h−1(T ) of T under h are defined as follows. If m ≥ 1,
then h(R) := (hs(Rs))s∈S and h−1(T ) := (h−1

s (Ts))s∈S , where

hs(Rs) := {(hs(a1), . . . , hs(am)) ∈ Bm
s | (a1, . . . , am) ∈ Rs},

h−1
s (Ts) := {(a1, . . . , am) ∈ Am

s | (hs(a1), . . . , hs(am)) ∈ Ts},
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for s ∈ S′, and hs(Rs) := ∅, h−1
s (Ts) := ∅ for s ∈ S \ S′. If m = 0, then

h(R) := R and h−1(T ) := T .

Proposition 5.4. Let A and B be S-sorted sets, (R,R′) ∈ QA, (T, T ′) ∈ QB,
and let (h, h′) be a reflection of A into B. Assume that (w, s) is reasonable in
both A and B, and let f ∈ F (w,s)

A . Then the following statements hold.

(i) If f � (R,R′) then f(h,h′) � (h−1(R), h′(R′)).
(ii) If f(h,h′) � (T, T ′) then f � (h(T ), h′−1(T ′)).
(iii) If F ⊆ FA and dec(f) is reasonable in B for all f ∈ F , then

mInv F(h,h′) = {(T, T ′) ∈ QB | (h(T ), h′−1(T ′)) ∈ mInv F}.

Proof. (i) The claim clearly holds if (R,R′) is nullary, so we assume that
(R,R′) has arity at least 1. Assume that f � (R,R′) and M ≺w h−1(R).
Then M = (a1, . . . ,an), where ai ∈ h−1

wi
(Rwi

) for i ∈ [n]. Then hwi
(ai) ∈ Rwi

for all i ∈ [n], so hw(M) := (hw1(a1), . . . , hwn
(an)) ≺w R. Since f � (R,R′),

we have f(hw(M)) ∈ R′
s. Thus f(h,h′)(M) = h′

s(f(hw(M))) ∈ h′
s(R

′
s), and we

conclude that f(h,h′) � (h−1(R), h′(R′)).
(ii) Again, the case of nullary relations is clear, so we assume that (T, T ′)

has arity at least 1. Assume that f(h,h′) � (T, T ′) and M ≺w h(T ). Then
M = (a1, . . . ,an), where ai ∈ hwi

(Twi
) for i ∈ [n]. Then for each i there exists

bi ∈ Twi
such that ai = hwi

(bi). Consequently, (b1, . . . ,bn) ≺w T . Since
f(h,h′) � (T, T ′), we have f(h,h′)(b1, . . . ,bn) ∈ T ′

s. Since

f(h,h′)(b1, . . . ,bn) = h′
s(f(hw1(b1), . . . , hwn

(bn)))

= h′
s(f(a1, . . . ,an)) = h′

s(f(M)),

we have f(M) ∈ h′
s
−1(T ′

s), and we conclude that f � (h(T ), h′−1(T ′)).
(iii) The inclusion

mInv F(h,h′) ⊆ {(T, T ′) ∈ QB | (h(T ), h′−1(T ′)) ∈ mInv F}

follows immediately from part (ii). In order to prove the converse inclu-
sion, assume that (T, T ′) ∈ QB satisfies (h(T ), h′−1(T ′)) ∈ mInv F . Then
(h−1(h(T )), h′(h′−1(T ′))) ∈ mInv F(h,h′) by part (i). Since T ⊆ h−1(h(T ))
and T ′ ⊇ h′(h′−1(T ′)) and since mInv F(h,h′) is closed under restrictions
of antecedents and extensions of consequents, we have that (T, T ′) ∈
mInv F(h,h′). �
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