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Reflection-closed varieties of multisorted
algebras and minor identities
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Abstract. The notion of reflection is considered in the setting of multi-
sorted algebras. The Galois connection induced by the satisfaction rela-
tion between multisorted algebras and minor identities provides a charac-
terization of reflection-closed varieties: a variety of multisorted algebras
is reflection-closed if and only if it is definable by minor identities. Minor-
equational theories of multisorted algebras are described by explicit clo-
sure conditions. It is also observed that nontrivial varieties of multisorted
algebras of a non-composable type are reflection-closed.
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1. Introduction

Motivated by considerations of the complexity of constraint satisfaction prob-
lems, Barto et al. [2] introduced an algebraic construction called reflection.
Given an algebra A = (A,FA) of type τ , a set B, and maps h1 : B → A and
h2 : A → B, we can define an algebra B = (B,FB) of type τ in which the
operations are given by the rule

fB(x1, . . . , xn) := h2(fA(h1(x1), . . . , h1(xn))). (1.1)

The algebra B is called a reflection of A. Reflections are a common generaliza-
tion of subalgebras and homomorphic images. It was shown in [2, Corollary 5.4]
that the classes of algebras closed under reflections and products are precisely
the classes defined by height-1 identities.
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Multisorted (or heterogeneous) algebras generalize the notion of an alge-
bra so as to include functions that take arguments and values from possi-
bly different sets. Much of the general theory of usual one-sorted (also called
homogeneous) algebras applies to multisorted algebras, and the basics of the
theory of multisorted algebras were established as early as in the 1960’s and
1970’s. In particular, subalgebras, morphisms, congruences, direct products,
and free algebras were defined in the setting of multisorted algebras in the
papers by Higgins [7] and Birkhoff and Lipson [3]. Furthermore, Higgins [7]
defined varieties of multisorted algebras and proved Birkhoff’s HSP theorem
for multisorted algebras. Further considerations on varieties are included, e.g.,
in the paper by Taylor [9].

The defining equality (1.1) of reflections allows an immediate generaliza-
tion from algebras to multisorted algebras in which the carrier comprises two
sets A and B and the operations are functions f : An → B of several arguments
from A to B (“2-algebras”; see Example 2.13 (5)). With a little modification of
the definition, the notion of reflection can be further generalized to arbitrary
multisorted algebras (see Section 4).

In this paper, we consider reflections of multisorted algebras and ask for a
characterization of reflection-closed varieties. As it turns out, the right notion
for such a characterization are the so-called minor identities (also known as
height-1 identities or primitive identities), i.e., identities of a special form,
where all terms have exactly one occurrence of a function symbol. We thus
set out to investigate the Galois connection Mod–mId induced by the rela-
tion of satisfaction between multisorted algebras and minor identities. Anal-
ogously to the first Birkhoff theorem, the Galois closures of this Galois con-
nection are precisely the reflection-closed varieties of multisorted algebras, i.e.,
Mod mIdK = RPK. (For usual one-sorted algebras, this was proved by Barto
et al. [2].) We also characterize by explicit closure conditions the minor-equa-
tional theories of multisorted algebras, i.e., the closed sets of minor identities
of the Galois connection Mod–mId. (For usual one-sorted algebras, this was
done by Čupona and Markovski [5].)

We also discuss how reflection-closed varieties and usual varieties of mul-
tisorted algebras are related to each other. These notions can be quite different
in general, but for varieties of multisorted algebras of a so-called non-compos-
able type, the only varieties that are not reflection-closed are in a certain sense
trivial.

The main results of this paper were first announced in the 94th Work-
shop on General Algebra (AAA94), held in conjunction with the 5th Novi Sad
Algebraic Conference (NSAC 2017), in Novi Sad, Serbia, during June 15–18,
2017.

2. Multisorted algebras

We will start with recalling the definitions of basic concepts in the theory of
multisorted sets and multisorted algebras. We will mainly follow the notation
and terminology used in the book by Wechler [10].
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Definition 2.1. We denote by N the set of nonnegative integers and by N+ the
set of positive integers. For n ∈ N, let [n] := {1, . . . , n}. Note that [0] = ∅.

Definition 2.2. We write tuples (a1, a2, . . . , an) interchangeably as words
a1a2 . . . an. The set of all words over a set S is denoted by W (S). The empty
word is denoted by ε. The length of a word w ∈ W (S) is the number of letters
in w and it is denoted by |w|. Thus, |w1w2 . . . wn| = n. For s ∈ S, the number
of occurrences of s in w is denoted by |w|s.

Definition 2.3. Let S be a set of elements called sorts. An S-indexed family
of sets is called an S-sorted set. Given S-sorted sets A = (As)s∈S and B =
(Bs)s∈S , we say that A is an (S-sorted) subset of B and we write A ⊆ B if
As ⊆ Bs for all s ∈ S. The union and intersection of S-sorted sets A and B
are defined componentwise: A∪B := (As ∪Bs)s∈S and A∩B := (As ∩Bs)s∈S .
For any subset S′ ⊆ S, we denote by A|S′ the S-sorted subset of A given by

(A|S′)s :=

{
As, if s ∈ S′,
∅, if s /∈ S′.

When we make statements such as “let A be an S-sorted set”, it is understood
that the member of the family A indexed by s ∈ S is denoted by As.

Definition 2.4. Let A be an S-sorted set. If As �= ∅, then we say that sort s is
essential in A; otherwise sort s is inessential in A. Let SA := {s ∈ S | As �= ∅}
be the set of essential sorts in A. It follows immediately from the definitions
that A|SA

= A and SA|S′ ⊆ S′ for any S′ ⊆ S.

Definition 2.5. Let A and B be S-sorted sets. An S-sorted mapping f from
A to B, denoted by f : A → B, is a family (fs)s∈S of maps fs : As → Bs. If
x ∈ As and there is no risk of confusion about the sort s, we may write f(x)
instead of fs(x).

Definition 2.6. For an S-sorted set A = (As)s∈S and w = w1w2 . . . wn ∈ W (S),
let Aw := Aw1 × Aw2 × . . . × Awn

. Note that Aε = {∅}.

Definition 2.7. A pair (w, s) ∈ W (S) × S is called a declaration over S. Let A
be an S-sorted set. A declaration (w, s) with w = w1 . . . wn is reasonable in A if
As = ∅ implies Awi

= ∅ for some i, or, equivalently, if Aw �= ∅ implies As �= ∅.
Note that the declaration (ε, s) is reasonable in A if and only if As �= ∅.

An S-sorted operation on A is any function f : Aw → As for some dec-
laration (w, s) that is reasonable in A. Note that it is possible that Aw = ∅,
in which case f is just the empty function ∅ → As. The word w is called the
arity of f and the element s is called the (output) sort of f . The elements of S
occurring in the word w are called the input sorts of f . We denote the decla-
ration, arity, sort, and the set of input sorts of f by dec(f), ar(f), sort(f), and
inp(f), respectively. If |w| = n, then we also say that f has numerical arity n,
or that f is n-ary.

Definition 2.8. A (multisorted similarity) type is a triple τ = (S,Σ,dec), where
S is a set of sorts, Σ is a set of function symbols, and dec is a mapping dec:
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Σ → W (S) × S. If f ∈ Σ and dec(f) = (w, s), we say that f has arity w and
sort s. Using the same notation as for functions, we denote the arity, sort and
the set of input sorts of a function symbol f by ar(f), sort(f), and inp(f),
respectively. For w ∈ W (S), s ∈ S, we write Σ(w,s) := {f ∈ Σ | dec(f) =
(w, s)}, Σs := {f ∈ Σ | sort(f) = s}.

A (multisorted) algebra of type τ is a system A = (A,ΣA), where A =
(As)s∈S is an S-sorted set, called the carrier (or universe) of A, and ΣA =
(fA)f∈Σ is a family of S-sorted operations on A, each fA of declaration dec(f).
It is implicit in the definition that dec(f) is reasonable in A for every f ∈ Σ.
Denote by Alg(τ) the class of all multisorted algebras of type τ .

Remark 2.9. One can find in the literature different definitions of multisorted
algebras that differ in whether or not the sets As in the carrier (As)s∈S of an
algebra may be empty. Following the approach taken by Higgins [7], we allow
carriers with empty components.

Definition 2.10. Let A = (A,ΣA) and B = (B,ΣB) be multisorted algebras of
type τ = (S,Σ,dec). We say that B is a subalgebra of A if B ⊆ A and for every
f ∈ Σ(w,s), the operation fB equals the restriction of fA to Bw. Running the
risk of being a bit sloppy, we may designate subalgebras of A simply by their
carrier sets and make statements such as “B is a subalgebra of A” when we
mean that B is the carrier of a subalgebra of A.

It is possible that some components Bs of the carrier of B are empty.
However, if ΣA contains a nullary operation which selects an element a ∈ As,
then we require that a ∈ Bs.

If C is an S-sorted subset of A, then the subalgebra of A generated by
C, denoted by 〈C〉A, is the smallest subalgebra B = (B,ΣB) of A such that
C ⊆ B.

Definition 2.11. Let A = (A,ΣA) and B = (B,ΣB) be algebras of type τ =
(S,Σ,dec). A homomorphism of A to B is an S-sorted mapping ϕ : A → B
such that for every f ∈ Σ(w,s) with w = w1 . . . wn, it holds that

fB(ϕw1(a1), . . . , ϕwn
(an)) = ϕs(fA(a1, . . . , an)),

for all (a1, . . . , an) ∈ Aw. If every ϕs is a surjective map onto Bs, then B is
referred to as a homomorphic image of A.

Definition 2.12. Let Γ be an index set of a family of multisorted algebras
Aγ = ((Aγ,s)s∈S , (fAγ )f∈Σ) of type τ = (S,Σ,dec), γ ∈ Γ. The direct product∏

γ∈Γ Aγ is the algebra B = (B,ΣB) of type τ , where Bs =
∏

γ∈Γ Aγ,s and

fB((aγ,1)γ∈Γ, . . . , (aγ,n)γ∈Γ) = (fAγ (aγ,1, . . . , aγ,n))γ∈Γ.

If Aγ = A for all γ ∈ Γ, then we speak of the Γ-th direct power of A, and we
write AΓ for

∏
γ∈Γ A.

Note that the empty product
∏

γ∈∅ Aγ is the algebra (Bs,ΣB) where
Bs = {∅} for all s ∈ S. We will denote the empty product by

∏
∅.

Example 2.13. Examples of multisorted algebras include the following.



Reflection-closed varieties of multisorted algebras Page 5 of 22  70 

(1) If the set S of sorts is a singleton, then S-sorted sets, mappings, opera-
tions, algebras, etc., correspond to the usual ones. Every algebra in the
usual sense can be viewed as a multisorted algebra of type τ = (S,Σ,dec)
where |S| = 1. Such algebras are called one-sorted (or homogeneous).

(2) Given a multisorted similarity type τ = (S,Σ,dec), we can construct the
canonical trivial algebra S = (S̃,ΣS) of type τ , in which the carrier S̃ =
(S̃s)s∈S consists of one-element sets only, S̃s := {s} for every s ∈ S, and
for any f ∈ Σ(w,s), the operation fS is trivially defined as the constant
map w �→ s.

(3) Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y = (Ys)s∈S

be an S-sorted set in which the components are pairwise disjoint and also
disjoint from the function symbols Σ. The elements of Y are referred to
as variables. We often encounter the S-sorted standard set of variables,
namely, X = (Xs)s∈S where Xs = {xs

i | i ∈ N}.
The S-sorted set Tτ (Y ) = (T s

τ (Y ))s∈S of terms of type τ over Y is
defined as follows. Each set T s

τ (Y ) of terms of type τ over Y of sort s is
the least set of words over Σ∪Y such that Ys ⊆ T s

τ (Y ) and for all function
symbols f ∈ Σ(w,s) and for all (t1, . . . , tn) ∈ (Tτ (Y ))w, the word ft1 . . . tn
belongs to T s

τ (Y ). For better readability, we may add some punctuation
marks and write f(t1, . . . , tn) instead of ft1 . . . tn.

The terms of type τ over Y carry a multisorted algebra Tτ (Y ) =
(Tτ (Y ),ΣTτ (Y )) of type τ in which the operations are defined as fol-
lows. For each f ∈ Σ(w,s), let fTτ (Y )(t1, . . . , tn) := ft1 . . . tn for all
(t1, . . . , tn) ∈ (Tτ (Y ))w. The algebra Tτ (Y ) is called the term algebra
of type τ over Y .

(4) An operation on a set A (an ordinary set, not an S-sorted set) is a map
f : An → A for some n ∈ N+, called the arity of f . The i-th n-ary
projection on A is the operation prn

i : An → A, (a1, . . . , an) �→ ai. The
composition of f : An → A with g1, . . . , gn : Am → A is the operation
f(g1, . . . , gn) : Am → A given by the rule

f(g1, . . . , gn)(a) := f(g1(a) , . . . , gn(a)) ,

for all a ∈ Am. The set of all n-ary operations on A is denoted by O(n)
A ,

and OA :=
⋃

O(n)
A . A clone on a set A is a set C ⊆ OA of operations on

A that contains all projections and is closed under composition.
Clones on A are sometimes viewed as multisorted algebras. Namely,

let

S := N+,

Σ := {Cn,m | n,m ∈ N+} ∪ {en,i | n, i ∈ N+, 1 ≤ i ≤ n} ,

dec (Cn,m) :=
(
n m . . . m︸ ︷︷ ︸

n

,m
)
,

dec (en,i) := (ε, n) ,
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and define the algebra F = (F,ΣF) of type τ = (S,Σ,dec), where F =
(Fn)n∈N+ with Fn := O(n)

A , and

CF
n,m(f, g1, . . . , gn) :=f(g1, . . . , gn) ,

eFn,i := prn
i .

The subalgebras of F are then in one-to-one correspondence with the
clones on A in an obvious way.

(5) A 2-algebra is a multisorted algebra of type τ = (S,Σ,dec), where S =
{1, 2} and for every f ∈ Σ, dec(f) = (1 . . . 1︸ ︷︷ ︸

n

, 2) for some n ∈ N. In other

words, the carrier of a 2-algebra comprises two sets A and B, and the
operations are functions f : An → B of several arguments from A to B.

Let us make a simple but very useful observation about the subalgebras
of the canonical trivial algebra S = (S̃,ΣS) of type τ = (S,Σ,dec) (see Exam-
ple 2.13(2)). We first introduce the shorthand S̃′ := S̃|S′ , for any subset S′ ⊆ S

(for notation, see Definition 2.3), i.e., S̃′ is the S-sorted set with S̃′
s = {s} if

s ∈ S′ and S̃′
s = ∅ if s /∈ S′. Obviously, for subsets S′ and S′′ of S, the

set inclusion S′ ⊆ S′′ holds if and only if S̃′ ⊆ S̃′′ holds. In the sequel, we
will often slightly abuse the notation and write 〈S′〉S to mean the unique set
S′′ ⊆ S such that 〈S̃′〉S = S̃′′. We will keep the formally correct notation in
the following lemma and its proof.

Lemma 2.14. For a multisorted algebra A = (A,ΣA) of type τ = (S,Σ,dec),
S̃A is a subalgebra of the canonical trivial algebra S = (S̃,ΣS) of type τ , i.e.,
〈S̃A〉S = S̃A.

Proof. Since A is an algebra, the declaration of every f ∈ Σ is reasonable
in A. Clearly SA = S

S̃A
, so the declaration of every f ∈ Σ is reasonable in

S̃A, too. Moreover, for each f ∈ Σ(w,s), the uniquely determined operation
(S̃A)w → (S̃A)s coincides with the restriction of fS to S̃A. Therefore S̃A is a
subalgebra of S. �

3. Minor terms and minor identities

As we have seen in Example 2.13(3), terms can be defined in the multisorted
setting in the expected way: the output sorts of the terms t1, . . . , tn must
match with the input sorts of the function symbol f when a complex term
f(t1, . . . , tn) is formed. However, the notion of identity (or equation) requires
a bit of care. It is not sufficient to define an identity simply as a pair of terms.
One also has to specify the variables that are to be valuated when one decides
whether an identity is satisfied by an algebra. This sounds superfluous, and
it is indeed so in the case of one-sorted algebras, but for multisorted algebras
this makes a difference. Namely, an identity would be trivially satisfied by an
algebra A = (A,F ) if there is a variable of sort s to which a value must be
assigned but the set As is empty. If there is no such variable, then the identity
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may or may not be satisfied by A, depending on whether the two terms of
the identity get the same value in all assignments of values to variables. For
further discussion and examples on this, see Wechler [10, Section 4.1.1].

As explained above, for a reasonable definition of an identity in the mul-
tisorted setting, it is necessary to specify the variables to which values are
assigned. What really matters here are the sorts of such variables. For this
reason, we have chosen to indicate only the sorts of the variables that are val-
uated, not the variables themselves. Consequently, our definition of an identity
is slightly, but not in any essential way different from what is commonly seen
in the literature (e.g., Adámek, Rosický, Vitale [1], Manca, Salibra [8, Defini-
tion 1.9], Wechler [10, Section 4.1.1]).

Definition 3.1. Let A = (A,ΣA) be an algebra of type τ = (S,Σ,dec) and let
Y be an S-sorted set of variables. A valuation of Y in A is an S-sorted mapping
β : Y → A. (Note that valuations β : Y → A exist if and only if SY ⊆ SA.)
The map β admits a unique homomorphic extension β# : Tτ (Y ) → A (see
Example 2.13(3)). For a term t ∈ Tτ (Y ), we call β#(t) the value of t in A
under β.

Definition 3.2. Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y
be an S-sorted set of variables. An identity of sort s of type τ over variables
Y is a triple (S′, t1, t2), where S′ ⊆ S and t1, t2 ∈ T s

τ (Y |S′). We will use a
more suggestive notation for identities and write t1 ≈S′ t2 for (S′, t1, t2). We
say that t1 ≈S′ t2 is valuated on sorts S′. We denote the set of all identities of
sort s of type τ over Y by IDs

τ (Y ), and we set IDτ (Y ) :=
⋃

s∈S IDs
τ (Y ).

An algebra A = (A,ΣA) of type τ is said to satisfy the identity t1 ≈S′ t2
if β#(t1) = β#(t2) for all valuation maps β : Y |S′ → A. In this case we also
write A |= t1 ≈S′ t2. Note that A satisfies t1 ≈S′ t2 vacuously if Ys �= ∅ and
As = ∅ for some s ∈ S′.

Remark 3.3. In the literature (e.g., [1,8,10]), identities are often written as
∀Y ′(t1 = t2), where Y ′ is a subset of the S-sorted set Y of variables and t1
and t2 are terms. Using this notation, an identity t1 ≈S′ t2 (according to our
Definition 3.2, where a set S′ is given instead of a set of variables) would be
written as ∀Y |S′(t1 = t2).

Lemma 3.4. Let A ∈ Alg(τ), and let t1 ≈S′ t2 ∈ IDs
τ (Y ). If A |= t1 ≈S′ t2,

then A |= t1 ≈S′′ t2 for all S′′ with S′ ⊆ S′′ ⊆ S.

Proof. For every valuation β : Y |S′′ → A, we have

β#(t1) = (β|S′)#(t1) = (β|S′)#(t2) = β#(t2).

Thus, if there exists a valuation β : Y |S′′ → A, then A |= t1 ≈S′ t2 implies
that A |= t1 ≈S′′ t2. If there is no such valuation, then A |= t1 ≈S′′ t2
vacuously. �

Remark 3.5. A valuation β : Y |S′′ → A exists if and only if Ys �= ∅ =⇒ As �=
∅ for every s ∈ S′′. If this is the case, then the converse of Lemma 3.4 is also
true (i.e., A |= t1 ≈S′ t2 if and only if A |= t1 ≈S′′ t2).
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Definition 3.6. Terms containing exactly one function symbol are called minor
terms. We denote by MT s

τ (Y ) the set of all minor terms of sort s of type
τ = (S,Σ,dec) over Y , and we set MT τ (Y ) :=

⋃
s∈S MT s

τ (Y ).
In other words, a general minor term t ∈ MT s

τ (Y ) is of the form
f(σ(1), . . . , σ(n)), where f ∈ Σ with dec(f) = (w, s), w = w1 . . . wn, and
σ : [n] → Y is a map respecting the sorts, i.e., satisfying σ(i) ∈ Ywi

for all
i ∈ [n]. We denote this term by fσ. The value of fσ in A under a valuation
β : Y → A is β#(fσ) = fA(β(σ(1)), . . . , β(σ(n))) = fA(β ◦ σ).

Note that constants f ∈ Σ are also minor terms, corresponding to the
case n = 0. Recall that [0] = ∅, so fσ = f for every σ : [0] → Y and for any
valuation β : Y → A we have β#(f) = fA.

An identity t1 ≈S′ t2 is called a minor identity if both t1 and t2 are
minor terms. Minor identities are also known as height-1 identities (see Barto
et al. [2]) or primitive identities (see Čupona, Markovski [4,5] and Čupona et
al. [6]). We denote by MIDs

τ (Y ) the set of all minor identities of sort of type
τ over Y , and we set MIDτ (Y ) :=

⋃
s∈S MIDs

τ (Y ).

Definition 3.7. The satisfaction relation induces a Galois connection between
multisorted algebras and identities of type τ . For a class K ⊆ Alg(τ) of algebras
of type τ and for a set J ⊆ IDτ (Y ) of identities of type τ , let

IdY K := {t1 ≈S′ t2 ∈ IDτ (Y ) | ∀A ∈ K : A |= t1 ≈S′ t2},

mIdY K := {t1 ≈S′ t2 ∈ MIDτ (Y ) | ∀A ∈ K : A |= t1 ≈S′ t2},

ModJ := {A ∈ Alg(τ) | ∀t1 ≈S′ t2 ∈ J : A |= t1 ≈S′ t2}.

When Y is the standard set of variables X, then we write Id K and mIdK for
IdX K and mIdX K, respectively.

By Birkhoff’s theorem for (multisorted) algebras, ModJ is a variety for
any set J ⊆ IDτ (Y ) of identities. We call a variety V a minor variety if
V = ModJ for some set J ⊆ MIDτ (Y ) of minor identities. Minor varieties
of one-sorted algebras were investigated by Čupona and Markovski [4,5] and
Čupona et al. [6].

Example 3.8. As a concrete example of minor varieties, we present here the
minor varieties of groupoids (one-sorted algebras with a single binary opera-
tion), which were determined by Čupona et al. [6]. It is easy to verify that
every minor identity in the language of groupoids is equivalent to one of the
following:

xy ≈ xy, xy ≈ yx, xx ≈ yy, xy ≈ xz, xy ≈ zy, xy ≈ zu, (3.1)

where we have written identities as is usual in the classical framework and the
binary operation as juxtaposition. Therefore, there are six varieties defined by
a single minor identity:
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K

C UL R

G

CU

Figure 1. Minor varieties of groupoids

G := Mod{xy ≈ xy} (all groupoids),

C := Mod{xy ≈ yx} (commutative groupoids),

U := Mod{xx ≈ yy} (unipotent groupoids),

L := Mod{xy ≈ xz} (left unars),

R := Mod{xy ≈ zy} (right unars),

K := Mod{xy ≈ zu} (constant groupoids).

The only new variety that can be formed as the intersection of any of the
above is CU := Mod{xy ≈ yx, xx ≈ yy} (commutative unipotent groupoids).
The lattice of minor varieties of groupoids is represented by the Hasse diagram
shown in Figure 1.

Example 3.9. As another example, we determine the minor variety generated
by the variety of groups. Recall that a group is a one-sorted algebra (A; ·, −1, e)
of type (2, 1, 0) satisfying the identities

x · (y · z) ≈ (x · y) · z, e · x ≈ x, x · e ≈ x, x · x−1 ≈ e, x−1 · x ≈ e.

Every minor identity in the language of groups is equivalent to one of the
groupoid identities listed in (3.1) or one of the following:

xy ≈ z−1, xy ≈ x−1, xy ≈ y−1, xx ≈ y−1, xx ≈ x−1, xy ≈ e,

xx ≈ e, x−1 ≈ y−1, x−1 ≈ x−1, x−1 ≈ e, e ≈ e.

(3.2)
As trivial identities, x−1 ≈ x−1 and e ≈ e are equivalent to xy ≈ xy. It is
an easy exercise to find, for each one of the nontrivial identities listed in (3.1)
and (3.2), an example of a group that does not satisfy that identity. Hence the
only minor identities satisfied by the variety of groups are the trivial ones, and
we conclude that the minor variety generated by the variety of groups is the
variety of all algebras of type (2, 1, 0).
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Example 3.10. Our last example involves multisorted algebras that are not
one-sorted, and it aims at illustrating the role of empty components in carriers
of algebras, as well as the importance of specifying the sorts on which identities
are valuated. Consider the algebraic similarity type τ = (S,Σ,dec) with S =
{s, t}, Σ = {·, ∗} and dec(·) = (ss, s), dec(∗) = (st, t). Algebras of type τ
satisfying the identity x ∗ (y ∗ u) ≈S (x · y) ∗ u are called groupoid actions.
Groupoid actions that additionally satisfy the identity x · (y · z) ≈{s} (x · y) · z
are called semigroup actions. (Note that the defining identities of groupoid
actions and semigroup actions are not minor identities.)

Let us determine the minor varieties of algebras of type τ . To this end,
we introduce some notation. For a variety V of groupoids, as in Example 3.8,
let us denote by V∗ the set of all algebras A of type τ such that (As, ·) is in
V. Let T be the class of all algebras A of type τ such that At = ∅.

Let J be a set of identities in the language of groupoids (usual one-
sorted), and let J ′ ⊆ J . Define

I := {t1 ≈{s} t2 | t1 ≈ t2 ∈ J ′} ∪ {t1 ≈{s,t} t2 | t1 ≈ t2 ∈ J \J ′}.

An algebra A of type τ satisfies the set I of identities if and only if (As, ·) |=
t1 ≈ t2 for every t1 ≈ t2 ∈ J ′ and (As, ·) |= t1 ≈ t2 or At = ∅ for every
t1 ≈ t2 ∈ J \J ′. This condition is equivalent to the following: (As, ·) |= t1 ≈ t2
for every t1 ≈ t2 ∈ J , or At = ∅ and (As, ·) |= t1 ≈ t2 for every t1 ≈ t2 ∈ J ′.
In other words, A |= I if and only if A ∈ V∗ ∪ (V ′∗ ∩ T ), where V := ModJ
and V ′ := ModJ ′ are varieties of groupoids.

Consequently, the varieties of algebras of type τ defined by identities of
sort s are of the form �V,V ′� := V∗ ∪ (V ′∗ ∩ T ), where V, V ′ are varieties of
groupoids such that V ⊆ V ′. We can deduce from Figure 1 that there are 20
varieties of type τ that are defined by minor identities of sort s, and they are
shown in Figure 2.

It is easy to verify that every minor identity of type τ of sort t is equivalent
to one of the following:

x ∗ u ≈S x ∗ u, x ∗ u ≈S x ∗ v, x ∗ u ≈S y ∗ u, x ∗ u ≈S y ∗ v.

Therefore, there are four varieties defined by a single minor identity of sort t:

M := Mod(x ∗ u ≈S x ∗ u), N := Mod(x ∗ u ≈S x ∗ v),

O := Mod(x ∗ u ≈S y ∗ u), P := Mod(x ∗ u ≈S y ∗ v).

Intersections of these four varieties do not yield any new varieties. These vari-
eties are shown in Figure 3.

We conclude that the minor varieties of type τ are of the form X ∩ Y,
where X is a variety defined by minor identities of sort s (see, Figure 2) and Y
is a variety defined by minor identities of sort t (see, Figure 3). Consequently,
the total number of minor varieties of type τ is 20 · 4 = 80, and the lattice
of minor varieties is isomorphic to the direct product of the lattices shown in
Figures 2 and 3.
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by identities of sort s
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Figure 3. Minor varieties of the groupoid action type defined
by identities of sort t

4. Reflections

We are now going to generalize the notion of reflection (see Barto et al. [2]) to
the multisorted setting.

Definition 4.1. Let A and B be S-sorted sets. A reflection of A into B is a
pair (h, h′) of SB-sorted mappings h = (hs)s∈SB

, h′ = (h′
s)s∈SB

, hs : Bs → As,
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h′
s : As → Bs. Note that reflections of A into B exist if and only if SB ⊆ SA.

For, if SB ⊆ SA, then As and Bs are nonempty for all s ∈ SB and there
clearly exist maps hs : Bs → As and h′

s : As → Bs. If SB � SA, then there is
s ∈ SB\SA, whence As = ∅ and Bs �= ∅, so there is no map hs : Bs → As.

Assume that A and B are S-sorted sets with SB ⊆ SA and (h, h′) is a
reflection of A into B. If (w, s) ∈ W (S) × S is a declaration that is reasonable
in both A and B and f : Aw → As, then we can define the (h, h′)-reflection of
f to be the map f(h,h′) : Bw → Bs given by the rule

f(h,h′)(b1, . . . , bn) = h′
s(f(hw1(b1), . . . , hwn

(bn)))

for all (b1, . . . , bn) ∈ Bw, which we write simply as f(h,h′)(b) = h′
s(f(hw(b)))

for all b ∈ Bw. This is illustrated by the commutative diagram shown below.
Note that if Bwi

= ∅ for some i ∈ {1, . . . , n}, then f(h,h′) = ∅.

Aw As

Bw Bs
f(h,h′)

hw

f

h′
s

Let A = (A,ΣA) and B = (B,ΣB) be algebras of type τ = (S,Σ,dec). If
(h, h′) is a reflection of A into B and for all f ∈ Σ it holds that fB = (fA)(h,h′),
then B is called the (h, h′)-reflection of A. (Note that for every f ∈ Σ, the
declaration dec(f) of fA and fB is reasonable in both A and B, because A and
B are algebras.) We say that B is a reflection of A if B is an (h, h′)-reflection
of A for some reflection (h, h′) of A into B.

For a class K of multisorted algebras of type τ , let RK, HK, SK and
PK denote the classes of all reflections, homomorphic images, subalgebras and
products of algebras of K, respectively.

Lemma 4.2 (cf. [2, Lemma 4.4]). Let K be a class of multisorted algebras of
type τ . Then the following statements hold.

(1) HK ⊆ RK and SK ⊆ RK.
(2) RRK ⊆ RK.
(3) PRK ⊆ RPK.

Proof. (1) Assume that B = (B,ΣB) ∈ HK. Then there exists an algebra
A = (A,ΣA) ∈ K such that B is a homomorphic image of A. Let ϕ be
a homomorphism of A to B, with each ϕs : As → Bs surjective. Then there
exist mappings hs : Bs → As such that ϕs◦hs = idBs

. Then for each f ∈ Σ(w,s)

with w = w1 . . . wn and for all (b1, . . . , bn) ∈ Bw, we have

fB(b1, . . . , bn) = fB(ϕw1(hw1(b1)), . . . , ϕwn
(hwn

(bn)))

= ϕs(fA(hw1(b1), . . . , hwn
(bn))).
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We clearly have SB = SA because the homomorphism ϕ is surjective. Setting
h = (hs)s∈SB

and h′ = (ϕs)s∈SB
, we conclude that B is an (h, h′)-reflection of

A. Thus HK ⊆ RK.
Assume then that B = (B,ΣB) ∈ SK. Then there exists an algebra A =

(A,ΣA) ∈ K such that B is a subalgebra of A. Then clearly SB ⊆ SA. Let h =
(hs)s∈SB

and h′ = (h′
s)s∈SB

where each hs : Bs → As is the inclusion map of
Bs into As and each h′

s : As → Bs is an arbitrary extension of the identity map
on Bs. Then for each f ∈ Σ(w,s) with w = w1 . . . wn, and for all (b1, . . . , bn) ∈
Bw, we clearly have fB(b1, . . . , bn) = h′

s(f
A(hw1(b1), . . . , hwn

(bn)), so B is an
(h, h′)-reflection of A. Thus SK ⊆ RK.

(2) Assume that C ∈ RRK. Then there exist algebras B ∈ RK and A ∈ K
such that C is a reflection of B, witnessed by (h, h′) = ((hs)s∈SC

, (h′
s)s∈SC

)
where hs : Cs → Bs and h′

s : Bs → Cs, and B is a reflection of A, witnessed
by (k, k′) = ((ks)s∈SB

, (k′
s)s∈SB

) where ks : Bs → As and k′
s : As → Bs. Then

SC ⊆ SB ⊆ SA, so we can define a reflection (�, �′) of A into C using the SC-
sorted maps � = (�s)s∈SC

where each �s : Cs → As is given by �s := ks ◦hs and
�′ = (�′

s)s∈SC
where each �′

s : As → Cs is given by �′
s := h′

s ◦ k′
s. Furthermore,

for every f ∈ Σ(w,s) with w = w1 . . . wn, we have

fC(c1, . . . , cn) = h′
s(f

B(hw1(c1), . . . , hwn
(cn)))

= h′
s(k

′
s(f

A(kw1(hw1(c1)), . . . , kwn
(hwn

(cn)))))

= �′
s(f

A(�w1(c1), . . . , �wn
(cn)))

for all (c1, . . . , cn) ∈ Cw. We conclude that C is a reflection of A. Thus RRK ⊆
RK.

(3) Assume that C ∈ PRK. Then C =
∏

γ∈Γ Bγ for some algebras Bγ =
(Bγ ,ΣBγ ), and each Bγ is a reflection of some Aγ = (Aγ ,ΣAγ ) ∈ K, witnessed
by ((hγ,s)s∈SBγ

, (h′
γ,s)s∈SBγ

), where hγ,s : Bγ,s → Aγ,s, h′
γ,s : Aγ,s → Bγ,s.

Observe that if Cs =
∏

γ∈Γ Bγ,s �= ∅, then Bγ,s �= ∅ for every γ ∈ Γ.
Therefore SC ⊆ SBγ

⊆ SAγ
for every γ ∈ Γ. Define the SC-sorted maps

h = (hs)s∈SC
and h′ = (h′

s)s∈SC
, where hs :

∏
γ∈Γ Bγ,s →

∏
γ∈Γ Aγ,s and

h′
s :

∏
γ∈Γ Aγ,s →

∏
γ∈Γ Bγ,s are defined componentwise in terms of the hγ,s

and h′
γ,s as hs((bγ)γ∈Γ) = (hγ,s(bγ))γ∈Γ and h′

s((aγ)γ∈Γ) = (h′
γ,s(aγ))γ∈Γ.

Then, for every operation f ∈ Σ(w,s) with w = w1 . . . wn and for all tuples
((b1,γ)γ∈Γ, . . . , (bn,γ)γ∈Γ) ∈ (

∏
γ∈Γ Bγ)w, we have

f
∏

Bγ ((b1,γ)γ∈Γ, . . . , (bn,γ)γ∈Γ) = (fBγ (b1,γ , . . . , bn,γ))γ∈Γ

= (h′
γ,s(f

Aγ (hγ,w1(b1,γ), . . . , hγ,wn
(bn,γ))))γ∈Γ

= h′
s((f

Aγ (hγ,w1(b1,γ), . . . , hγ,wn
(bn,γ)))γ∈Γ)

= h′
s(f

∏
Aγ ((hγ,w1(b1,γ))γ∈Γ, . . . , (hγ,wn

(bn,γ))γ∈Γ))

= h′
s(f

∏
Aγ (hw1((b1,γ)γ∈Γ), . . . , hwn

((bn,γ)γ∈Γ))).

This shows that the algebra C =
∏

γ∈Γ Bγ is the (h, h′)-reflection of the prod-
uct

∏
γ∈Γ Aγ . Thus C ∈ RPK, so PRK ⊆ RPK. �
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Remark 4.3. Note that the converse of the inclusion of Lemma 4.2(3), namely
RPK ⊆ PRK, does not hold in general. For example, take K := ∅. Then
P∅ = {

∏
∅}. Since for any S-sorted set A = (As)s∈S , an algebra with carrier

A can be obtained as a reflection of
∏

∅ (the proof of this assertion is essentially
included in the proof of Theorem 6.3, implication (1) =⇒ (3)), it follows that
RPK contains algebras with arbitrary carrier sets. On the other hand, R∅ = ∅,
whence PR∅ = {

∏
∅}. Thus RP∅ � PR∅.

In order to give also a nonempty counterexample, let A = ({0, 1}; fA)
and B = ({a, b, c}; fB) where fA and fB are the identity functions on the
corresponding sets. We define maps h and h′ as follows:

h : B → A2, a �→ (0, 0), b �→ (0, 1), c �→ (1, 0);

h′ : A2 → B, (0, 0) �→ a, (0, 1) �→ b, (1, 0) �→ c, (1, 1) �→ c.

Then B is the (h, h′)-reflection of A2, hence B ∈ RP{A}. On the other hand,
if B were in PR{A}, then B would be a reflection of A, since, having a prime
number of elements, it cannot be a proper product. However, B cannot be a
reflection of A, because the range of fB is larger than the range of fA. We
can conclude that B /∈ PR{A}, thus RP{A} � PR{A}.

The following proposition shows that it would, in principle, be sufficient to
consider multisorted algebras with carriers in which the same set is associated
to every essential sort (i.e., As = At for all s, t ∈ SA). Every S-sorted algebra
is reflection-equivalent to such an algebra with a single carrier set. This comes,
however, at the cost of the carrier sets becoming possibly much larger than in
the given algebra.

Proposition 4.4. Let A = (A,ΣA) be an algebra of type τ = (S,Σ,dec). Then
there exists an algebra B = (B,ΣB) of type τ such that SA = SB, Bi = Bj for
all i, j ∈ SB, and A and B are reflections of each other.

Proof. Let C be a set of cardinality greater than or equal to the cardinality
of each of the sets Ai, i ∈ S (for example, we may choose C :=

⋃
i∈S Ai). For

i ∈ S, let Bi := C if i ∈ SA and let Bi := ∅ if i /∈ SA. Then clearly SA = SB .
For each i ∈ SA, let h′

i : Ai → C be an injection, and let hi : C → Ai be a
pseudoinverse of h′

i, i.e., a map such that hi(h′
i(a)) = a for all a ∈ Ai. Such

maps h′
i and hi exist because |Ai| ≤ |C|. Let h := (hs)s∈SB

, h′ := (h′
s)s∈SB

.
Let B := (B,ΣB), with fB := (fA)(h,h′) for each f ∈ Σ (for notation, see
Definition 4.1). Then B is an (h, h′)-reflection of A by definition. Furthermore,
for each f ∈ Σ, say, of declaration (w1 . . . wn, s), it holds that

(fB)(h′,h)(a1, . . . , an) = hs(h′
s(f

A(hw1(h
′
w1

(a1)), . . . , hwn
(h′

wn
(an)))))

= fA(a1, . . . , an),

that is, fA = (fB)(h′,h) for every f ∈ Σ. In other words, A is an (h′, h)-
reflection of B. �
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5. The Galois connection mId–Mod

It is known from the classical Birkhoff theorem for (multisorted) algebras that
HSP-closed classes are equational classes. By Lemma 4.2, RP-closed classes
are also HSP-closed and therefore must be characterizable by identities. In
this section we prove that the “right” kind of identities for this setting are the
minor identities: Mod mIdK = RPK for every class K ⊆ Alg(τ) of multisorted
algebras. For the proof we need the following technical lemma, which essentially
states that (under some reasonable assumptions) the validity of an identity
does not change if we rename the variables and extend the set of variables.

For a term t, denote by var(t) the S-sorted set of variables occurring in
t, i.e., var(t) = (vs)s∈S where vs is the set of variables of sort s occurring in t.

Lemma 5.1. Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y be
an S-sorted set of variables. Let μ := t1 ≈S′ t2 ∈ MIDs

τ (Y ), and assume that
S′ ⊆ SY . Let Y ′ := var(t1) ∪ var(t2). Let Z be an S-sorted set of variables
such that S′ ⊆ SZ and there exists an injective S-sorted map δ : Y ′ → Z. Let
t′1 and t′2 be terms in MT s

τ (Z) that are obtained from t1 and t2, respectively,
by replacing each occurrence of a variable symbol y ∈ Y ′ by δ(y), and let
μ′ := t′1 ≈S′ t′2 ∈ MIDs

τ (Z). Then for every algebra A = (A,ΣA) of type τ , it
holds that A |= μ if and only if A |= μ′.

Proof. Assume first that A |= t1 ≈S′ t2. We want to show that A |= t′1 ≈S′ t′2.
If S′

� SA, then A |= t′1 ≈S′ t′2 holds vacuously (note that S′ ⊆ SZ), so we
may assume that S′ ⊆ SA. Let β : Z|S′ → A be a valuation map, and define
γ : Y |S′ → A by the rule

γs(x) =

{
βs(δs(x)), if x ∈ Y ′

s

as, if x ∈ Ys\Y ′
s ,

where as is an arbitrary fixed element of As. It is clear that β#(t′1) = γ#(t1)
and β#(t′2) = γ#(t2). Since A |= t1 ≈S′ t2, we have γ#(t1) = γ#(t2). Conse-
quently, β#(t′1) = β#(t′2), and we conclude that A |= t′1 ≈S′ t′2.

The proof of the converse implication is very similar. Assume that A |=
t′1 ≈S′ t′2. We want to show that A |= t1 ≈S′ t2. We may assume that S′ ⊆
SA, for otherwise A |= t1 ≈S′ t2 holds vacuously (note that S′ ⊆ SY ). Let
γ : Y |S′ → A be a valuation map, and define β : Z|S′ → A by the rule

βs(x) =

{
γ(y), if x = δs(y) for y ∈ Y ′

s ,
as, otherwise,

where as is an arbitrary fixed element of As. Again, it is clear that β#(t′1) =
γ#(t1) and β#(t2) = γ#(t2). Since A |= t′1 ≈S′ t′2, we have β#(t′1) = β#(t′2).
Consequently, γ#(t1) = γ#(t2), and we conclude that A |= t1 ≈S′ t2. �

Theorem 5.2. Let K ⊆ Alg(τ). Then Mod mIdK = RPK.

Proof. For any set J of minor identities, the inclusion P(Mod J ) ⊆ Mod J
holds by the classical (multisorted) Birkhoff theorem. In order to show that
R(Mod J ) ⊆ ModJ , let B ∈ R(Mod J ); then B is an (h, h′)-reflection of
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some A ∈ ModJ for some h : B → A and h′ : A → B. We need to show that
B |= fσ ≈S′ gπ for every fσ ≈S′ gπ ∈ J . For every β : X|S′ → B, we have

β#(fσ) = fB(β ◦ σ) = h′(fA(h ◦ β ◦ σ)) = h′(fA
σ (h ◦ β))

= h′(gAπ (h ◦ β)) = h′(gA(h ◦ β ◦ π)) = gB(β ◦ π) = β#(gπ),

where the fourth equality holds because A |= fσ ≈S′ gπ, whence
fA

σ (h ◦ β) = (h ◦ β)#(fσ) = (h ◦ β)#(gπ) = gAπ (h ◦ β). We have proved the
inclusion RPK ⊆ Mod mIdK.

It remains to show Mod mIdK ⊆ RPK. Assume that B = (B,ΣB) is an
algebra of type τ = (S,Σ,dec) satisfying every minor identity that holds in K.
We want to show that B ∈ RPK.

Let Y = (Ys)s∈S be the S-sorted set of variables with Ys := Bs × {s} for
all s ∈ S (i.e., we take the variable symbols to be the disjoint union of the sets
Bs), and let

N := {t1 ≈SY
t2 ∈ MIDτ (Y ) | K �|= t1 ≈SY

t2}
be the set of minor identities over Y valuated on the set SY that do not hold
in K.

We first consider the case N �= ∅. Then for each ν ∈ N , say ν = fσ ≈SY

gπ with f ∈ Σ(w,s), σ : [n] → Y with |w| = n, g ∈ Σ(u,s), π : [m] → Y with
|u| = m, there exists a counterexample Aν = (Aν ,ΣAν ) ∈ K that does not
satisfy ν. This means that there exists a valuation map βν : Y |SY

→ Aν such
that fAν (βν ◦ σ) �= gAν (βν ◦ π); hence SY ⊆ SAν

. Now let P :=
∏

ν∈N Aν

be the product of all the counterexamples. Then P = (P,ΣP) and SP =⋂
ν∈N SAν

⊇ SY . Note that P ∈ PK.
For every y ∈ Ys with s ∈ SY , the tuple y := (βν(y))ν∈N is an element

of Ps. Let h = (hs)s∈SY
where each hs : Bs → Ps is the map b �→ (b, s)

(note that (b, s) ∈ Ys). For each s ∈ SY , let Zs := {fP(y1, . . . , yn) | f ∈
Σ(w,s), (y1, . . . , yn) ∈ Yw} ⊆ Ps. Now we shall define maps h′

s : Ps → Bs, for
s ∈ SB and we set h′ = (h′

s)s∈SB
such that B is an (h, h′)-reflection of P. For

any z ∈ Ps\Zs, the value h′
s(z) can be chosen arbitrarily in Bs. For an element

fP(y1, . . . , yn) ∈ Zs, where yi := (bi, wi) with bi ∈ Bwi
(i = 1, . . . , n), define

h′
s(f

P(y1, . . . , yn)) := fB(b1, . . . , bn) according to the reflection property (cf.
Definition 4.1).

We have to verify that h′
s is well defined. Suppose, to the contrary, that

fP(y1, . . . , yn) = gP(z1, . . . , zm) but fB(b1, . . . , bn) �= gB(c1, . . . , cm) for some
f ∈ Σ(w,s), g ∈ Σ(u,s), (y1, . . . , yn) ∈ Pw, (z1, . . . , zm) ∈ Pu, where yi :=
(bi, wi) for bi ∈ Bwi

(i = 1, . . . , n) and zi := (ci, ui) for ci ∈ Bui
(i = 1, . . . , m).

From the latter it follows that B does not satisfy the minor identity μ :=
fσ ≈SY

gπ ∈ MIDs
τ (Y ), where σ : [n] → Y , i �→ yi and π : [m] → Y , i �→ zi.

Write Y ′ := var(fσ)∪var(gπ), and let δ : Y ′ → X be an injective map to the set
X of standard variables. Let μ′ := f ′

σ ≈SY
g′

π ∈ MIDs
τ (X), where f ′

σ and g′
π are

the minor terms in MT s
τ (X) that are obtained from fσ and gπ by replacing each

occurrence of a variable symbol y ∈ Y ′ by δ(y). Since B �|= μ, it follows from
Lemma 5.1 that B �|= μ′. Since B ∈ Mod mIdK, this implies K �|= μ′, whence
K �|= μ by Lemma 5.1. Therefore μ ∈ N . Then, by the definition of Aμ and
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βμ, we have fAμ(βμ(y1), . . . βμ(yn)) �= gAμ(βμ(z1), . . . , βμ(zm)). This means
that the μ-th coordinates of the tuples fP(y1, . . . , yn) and gP(z1, . . . , zm) are
different, contradicting our assumption. We conclude that B ∈ RP ⊆ RPK.

Finally, we must consider the case N = ∅, i.e., K satisfies every minor
identity fσ ≈SY

gπ where fσ, gπ ∈ MT s
τ (Y ) for some s ∈ S. Let f ∈ Σ(w,s),

g ∈ Σ(u,s), (a1, . . . , an) ∈ Bw, (b1, . . . , bm) ∈ Bu, and define σ : [n] → Y ,
σ(i) = (ai, wi) and π : [m] → Y , π(i) = (bi, ui). Let β : Y |SY

→ B, β((x, s)) =
x. Since B |= fσ ≈SY

gπ, we have β#(fσ) = β#(gπ). Therefore,

fB(a1, . . . , an) = fB(β ◦ σ) = β#(fσ) = β#(gπ) = gB(β ◦ π) = gB(b1, . . . , bn).

Since the choice of f , g and the ai and bi was arbitrary, it follows that there
exist constants cs ∈ Bs (s ∈ SB) such that every function fB of sort s is
constant cs. Let D = (D,ΣD) :=

∏
∅ be the empty product of algebras in K.

Then D ∈ PK. As noted in Definition 2.12, Ds equals the singleton {∅} for
every s ∈ S. Define h = (hs)s∈SB

and h′ = (h′
s)s∈SB

where hs : Bs → Ds,
b �→ ∅ for all b ∈ Bs and h′

s : Ds → Bs, ∅ �→ cs. Then for each f ∈ Σ(w,s) with
w = w1 . . . wn, we have fB(a1, . . . , an) = cs = h′

s(f
D(hw1(a1), . . . , hwn

(an))).
Therefore B is an (h, h′)-reflection of D. Thus B ∈ RPK. �

Theorem 5.2 characterizes the closed classes of algebras corresponding
to the Galois connection mId–Mod as the classes that are closed under reflec-
tions and direct products. Next we describe the Galois closed classes of minor
identities in terms of closure conditions, which are analogous to the classical
characterization of equational theories as fully invariant congruences of free
algebras. In order to state the result, we make use of the canonical trivial
algebra S of type τ defined in Example 2.13(2). Recall also Lemma 2.14 and
the notational shorthand 〈S′〉S involving subalgebras of S introduced in the
paragraph preceding Lemma 2.14.

Theorem 5.3. Let J ⊆ MIDτ (X) be a set of minor identities of type τ =
(S,Σ,dec) over X. Then J = mId ModJ if and only if J satisfies the follow-
ing conditions:
(1) For every S′ ⊆ S and s ∈ S, the set

J (S′)
s := {(fσ, gπ) | fσ ≈S′ gπ ∈ J , sort(f) = sort(g) = s}

is an equivalence relation on MT s
τ (X|S′).

(2) If t1 ≈S′ t2 ∈ J and S′ ⊆ S′′, then t1 ≈S′′ t2 ∈ J (“sort expansion”).
(3) If t1 ≈S′ t2 ∈ MIDτ (X) and t1 ≈〈S′〉S t2 ∈ J , then t1 ≈S′ t2 ∈ J (“sort

contraction”).
(4) If fσ ≈S′ gπ ∈ J , then fλ◦σ ≈S′ gλ◦π ∈ J for all λ : X|S′ → X|S′

(“closure under minors”).

Proof. We will prove the equivalent statement that a set J ⊆ MIDτ (X) of
minor identities is of the form J = mId K for some set K ⊆ Alg(τ) of algebras
if and only if J satisfies conditions (1)–(4).

Assume first that J = mIdK for some K ⊆ Alg(τ). It is easy to verify
that condition (1) holds. Condition (2) holds by Lemma 3.4.
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Let t1 ≈S′ t2 ∈ MIDτ (X) and assume that t1 ≈〈S′〉S t2 ∈ J . Sup-
pose, to the contrary, that t1 ≈S′ t2 /∈ J . Then there exists an algebra
A = (A,ΣA) ∈ K such that A �|= t1 ≈S′ t2, i.e., there exists a valuation
β : X|S′ → A such that β#(t1) �= β#(t2). This is possible only if S′ ⊆ SA,
which implies 〈S′〉S ⊆ 〈SA〉S = SA by Lemma 2.14. Consequently, there exist
maps X|〈S′〉S → A, and for any extension γ : X|〈S′〉S → A of β, it holds
that γ#(t1) = β#(t1) �= β#(t2) = γ#(t2). Therefore A �|= t1 ≈〈S′〉S t2, so
t1 ≈〈S′〉S t2 /∈ J , a contradiction. We conclude that condition (3) holds.

Let then (fσ, gπ) ∈ J (S′)
s and λ : X|S′ → X|S′ . Then for every valuation

map β : X|S′ → A, we have β#(fλ◦σ) = f(β ◦ λ ◦ σ) = (β ◦ λ)#(fσ) =
(β ◦ λ)#(gπ) = g(β ◦ λ ◦ π) = β#(gλ◦π). Consequently, (fλ◦σ, gλ◦π) ∈ J (S′)

s ,
that is, condition (4) holds.

For the converse implication, assume that J satisfies conditions (1)–(4).
For each δ = fσ ≈S′ gπ ∈ MIDτ (X)\J , we will construct an algebra Fδ ∈
Alg(τ) such that Fδ |= J but Fδ �|= δ. Taking K to be the set of all such
“separating” algebras Fδ, for every δ ∈ MIDτ (X)\J , we have J = mId K.

Let δ = fσ ≈S′ gπ ∈ MIDτ (X)\J . Let S′′ := 〈S′〉S. Define the algebra
Fδ = (F,ΣFδ ) of type τ as follows. Let q := sort(f) = sort(g). For s ∈ S, let

Fs :=

⎧⎪⎨
⎪⎩

∅, if s ∈ S\S′′,
Xs, if s ∈ S′′\{q},

Xq ∪ MT q
τ (X|S′′)/J (S′′)

q , if s = q.

Note that the quotient MT q
τ (X|S′′)/J (S′′)

q appearing in the definition of Fq is
a well-defined object, because J (S′′)

q is an equivalence relation on MT q
τ (X|S′′)

by condition (1). We will denote the J (S′′)
q -equivalence class of a term t ∈

MT q
τ (X|S′′) by [t]. For d ∈ Σ(w,s), the operation dFδ : Fw → Fs is defined

by the following rules (for notation, see Definition 2.7). If inp(d) � S′′, then
dFδ = ∅. If inp(d) ⊆ S′′ and s �= q, then dFδ(α) = xs

1 for all α ∈ Fw. If
inp(d) ⊆ S′′ and s = q, then dFδ(α) = [dϕ◦α], where ϕ : F → X is given by
xs

i �→ xs
i for any xs

i ∈ X|S′′ and [t] �→ xq
1 for any [t] ∈ MT q

τ (X|S′′)/J (S′′)
q .

Note that SF = S′′ = 〈S′〉S, from which it follows by Lemma 2.14 that the
declaration of every d ∈ Σ is reasonable in F , so the algebra Fδ is well defined.

We show first that Fδ �|= δ. Let β : X|S′ → F be the inclusion map x �→ x.
Then β#(fσ) = fFδ(β ◦ σ) = [fϕ◦β◦σ] = [fσ] and β#(gπ) = gFδ(β ◦ π) =
[gϕ◦β◦π] = [gπ]. Since fσ ≈S′′ gπ /∈ J by condition (3), we have [fσ] �= [gπ],
and we conclude that Fδ �|= δ.

Finally we show that Fδ |= J . Let dρ ≈T d′
ρ′ ∈ J . If sort(d) �= q, then Fδ

obviously satisfies the identity dρ ≈T d′
ρ′ . Assume that sort(d) = sort(d′) = q.

If T � S′′ = SF , then Fδ |= dρ ≈T d′
ρ′ holds vacuously. Thus we may assume

that T ⊆ S′′. Let β : X|T → F . By condition (2) we have dρ ≈S′′ d′
ρ′ ∈ J , and

by condition (4) we have dϕ◦β◦ρ ≈S′′ d′
ϕ◦β◦ρ′ ∈ J . Then

β#(dρ) = dFδ(β ◦ ρ) = [dϕ◦β◦ρ] = [d′
ϕ◦β◦ρ′ ] = d′Fδ(β ◦ ρ′) = β#(d′

ρ′).

Thus Fδ satisfies dρ ≈T d′
ρ′ . We conclude that Fδ |= J . �
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Remark 5.4. Theorem 5.2 was proved in the case of usual one-sorted algebras
by Barto et al. [2, Corollary 5.4]. As for Theorem 5.3, sort expansion and
sort contraction play no role when |S| = 1, and the theorem reduces to the
description of closed sets of minor identities given by Čupona and Markovski [5,
Theorem 2.1].

6. How are HSP and RP related?

It is clear from Lemma 4.2 that every RP-closed class is also HSP-closed. The
converse is not true, and we would like to describe which HSP-closed classes
are not RP-closed. For similarity types of a special form that does not admit
compositions of terms, we can provide a complete description: the HSP-closed
classes that are not RP-closed are somewhat “trivial” in this case. For arbitrary
similarity types, a characterization eludes us.

Definition 6.1. A multisorted similarity type τ = (S,Σ,dec) is non-composable
if S can be partitioned into two subsets I and O such that for every f ∈ Σ,
it holds that inp(f) ⊆ I and sort(f) ∈ O. A type is composable if it is not
non-composable.

Examples of non-composable similarity types include all types of 2-alge-
bras, as introduced in Example 2.13(5).

Definition 6.2. The height of a term t, denoted by h(t), is defined inductively
as follows:
(1) Variable symbols have height 0, i.e., h(x) = 0 for all x ∈ Ys, s ∈ S.
(2) If t = f , where f ∈ Σ and dec(f) = (ε, s) (constant), then h(t) = 1.
(3) If t = f(t1, . . . , tn), where f ∈ Σ, dec(f) = (w1 . . . wn, s), n ≥ 1, and

t1, . . . , tn are terms, then h(t) = max(h(t1), . . . , h(tn)) + 1.

Theorem 6.3. Let τ = (S,Σ,dec) be a non-composable similarity type, and
let K ⊆ Alg(τ) be an HSP-closed class of algebras. Then the following are
equivalent.
(1) K is R-closed.
(2) For all s ∈ S, K �|= xs

1 ≈S xs
2.

(3) For all s ∈ S, there exists A ∈ K such that SA = S and |As| ≥ 2.

Proof. (1) =⇒ (3) Assume that K is R-closed. Since HSPK = K, we have
P = (P,ΣP) :=

∏
∅ ∈ K. Let A = (As)s∈S be an S-sorted set with |As| ≥ 2

for all s ∈ S, let h : A → P , h′ : P → A be arbitrary maps, and let A be
the (h, h′)-reflection of P; hence A ∈ RK ⊆ K. The required condition is then
satisfied by A for every s ∈ S.

(3) =⇒ (2) An algebra A = (A,ΣA) with SA = S and |As| ≥ 2 clearly
does not satisfy the identity xs

1 ≈S xs
2. Since K contains such an algebra for

every s ∈ S, it follows that K �|= xs
1 ≈S xs

2 for all s ∈ S.
(2) =⇒ (1) Assume that K �|= xs

1 ≈S xs
2 for all s ∈ S. Let J := IdK; since

K is HSP-closed, we have K = ModJ . We need to show that every identity in
J is satisfied by all reflections of every algebra in K. Let μ := t1 ≈S′ t2 ∈ J .
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If t1 = t2, then μ is satisfied by every algebra in Alg(τ). Therefore we may
assume that t1 �= t2. Since τ is non-composable, the terms t1 and t2 have
height at most 1. Consider the different possibilities. If h(t1) = h(t2) = 0, then
μ = xs

i ≈S′ xs
j with i �= j. It is clear that then K |= xs

1 ≈S′ xs
2, from which it

follows by Lemma 3.4 that K |= xs
1 ≈S xs

2. This contradicts our assumption
and shows that this case is impossible. If h(t1) = h(t2) = 1, then μ is a minor
identity, and RK |= μ holds by Theorem 5.2. Finally, if h(t1) �= h(t2), say
h(t1) = 1 and h(t2) = 0, then μ = fσ ≈S′ xs

i for some f ∈ Σ(w,s). Note that
s /∈ inp(f), because τ is non-composable. Then in fact fσ ≈S′ xs

j ∈ J for
every j ∈ N. By symmetry and transitivity, we get xs

1 ≈S′ xs
2 ∈ J . As above,

this leads to a contradiction and shows that this last case is impossible. We
conclude that RK ⊆ K. �

Remark 6.4. Note that the proofs of the implications (1) =⇒ (3) =⇒ (2) of
Theorem 6.3 did not rely on the assumption that τ is non-composable, and
it is also easy to see that (2) and (3) are actually equivalent for every type τ
(whether it is composable or not). Hence the crucial part is (3) =⇒ (1) (or,
equivalently, (2) =⇒ (1)), and we will prove in the next proposition that this
implication actually characterizes non-composable types.

Proposition 6.5. Let τ be a similarity type. If for every HSP-closed class K ⊆
Alg(τ), the conditions (1)–(3) of Theorem 6.3 are equivalent, then τ is non-
composable.

Proof. We prove the contrapositive. Assume that τ is composable. Then there
exist w = w1 . . . wn, u = u1 . . . um ∈ W (S), s ∈ S and i ∈ [n] such that
Σ(w,s) �= ∅ and Σ(u,wi) �= ∅. Without loss of generality, we may assume that
i = 1. Let f ∈ Σ(w,s) and g ∈ Σ(u,w1), let S′ := inp(f) ∪ inp(g), and let

μ := f(g(y1, . . . , ym), z2, . . . , zn) ≈S′ f(g(y′
1, . . . , y

′
m), z′

2, . . . , z
′
n),

where y1, . . . , ym, z2, . . . , zn, y′
1, . . . , y

′
m, z′

2, . . . , z
′
n are pairwise distinct vari-

ables with yi, y
′
i ∈ Xui

, zi, z
′
i ∈ Xwi

, and let K := Modμ.
Define an S-sorted algebra A = (A,ΣA) of type τ as follows. The carrier

is A = (As)s∈S with As := {0, 1, 2} for all s ∈ S. Define fA : Aw → As and
gA : Au → Aw1 by the rules

fA(a1, . . . , an) := ψ(a1), where ψ: 0 �→ 0, 1 �→ 0, 2 �→ 2,

gA(a1, . . . , am) := ϕ(a1), where ϕ: 0 �→ 0, 1 �→ 1, 2 �→ 0.

The other operations in ΣA can be defined in an arbitrary way. Since Im g =
{0, 1}, we have

fA(gA(a1, . . . , am), c2, . . . , cn) = ψ(gA(a1, . . . , am)) = 0

for all a1, . . . , am, c2, . . . , cn ∈ {0, 1, 2}. Hence A |= μ, i.e., A ∈ K. Thus
condition (3) of Theorem 6.3 is satisfied with A for every s ∈ S.
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Let B := A, i.e., Bs := As = {0, 1, 2} (s ∈ S). Let B = (B,ΣB) be
the (h, h′)-reflection of A with hs : Bs → As, 0 �→ 2, 1 �→ 1, 2 �→ 0 and
h′

s : As → Bs, x �→ x. Then

fB(b1, . . . , bn) = h′(fA (h (b11) , . . . , h(bn))
)

= ψ(h (b1)) =

⎧⎪⎨
⎪⎩

2, if b1 = 0,
0, if b1 = 1,
0, if b1 = 2,

gB(b1, . . . , bm) = h′(gA (h (b1) , . . . , h(bm))
)

= ϕ(h (b1)) =

⎧⎪⎨
⎪⎩

0, if b1 = 0,
1, if b1 = 1,
0, if b1 = 2.

Consequently,

fB
(
gB(b1, . . . , bm) , c2, . . . , cn

)
= ψ(h(ϕ(h (b1)))) =

⎧⎪⎨
⎪⎩

2, if b1 = 0,
0, if b1 = 1,
2, if b1 = 2.

Hence fB(gB(b1, . . . , bm), c2, . . . , cn) �= fB(gB(b′
1, . . . , b

′
m), c′

2, . . . , c
′
n) if b1 = 0

and b′
1 = 1. Therefore B �|= μ, i.e., B /∈ K, so K is not R-closed, that is,

condition (1) of Theorem 6.3 does not hold. We conclude that conditions (1)–
(3) of Theorem 6.3 are not equivalent for K. �

Remark 6.6. According to Theorem 6.3, the only HSP-varieties of a non-com-
posable type τ that are not RP-varieties are the ones satisfying an identity of
the form xs

1 ≈S xs
2 for some s ∈ S. Using identities of this form, we can express

the fact that a sort s is trivial in an algebra A = (A,ΣA), in the sense that
As is empty or a singleton.
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