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On the shape of solution sets of systems of (functional) equations
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Abstract. Solution sets of systems of linear equations over fields are characterized as being
affine subspaces. But what can we say about the “shape” of the set of all solutions of other
systems of equations? We study solution sets over arbitrary algebraic structures, and we
give a necessary condition for a set of n-tuples to be the set of solutions of a system of
equations in n unknowns over a given algebra. In the case of Boolean equations we obtain
a complete characterization, and we also characterize solution sets of systems of Boolean
functional equations.
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1. Introduction

A basic fact from undergraduate linear algebra: solution sets of systems of
homogeneous linear equations in n variables over a field K are precisely the
subspaces of the vector space Kn, i.e., sets of n-tuples that are closed un-
der linear combinations. Similarly, solution sets of systems of arbitrary linear
equations are characterized by being closed under affine combinations. In this
paper we propose an abstract framework that encompasses the aforementioned
two well-known situations and allows us to study sets of solutions of systems of
equations in great generality. Our aim is to determine the “shape” of solution
sets by giving necessary and sufficient conditions for a set of tuples to arise
as the set of all solutions of a system of equations. We establish a universal
necessary condition, and prove that it is also sufficient for Boolean equations,
i.e., for equations over the two-element set {0, 1}. We also present examples
showing that this is not the case for domains with at least three elements. For
functional equations such a general framework was established in [2]; here we
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prove that the necessary condition found there actually characterizes sets of
solutions of Boolean functional equations.

To make this more precise, let us fix a nonempty set A and a set F of
operations on A that we are allowed to use in our equations (for example,
the unary operation ax (a ∈ K) and the binary operation x + y as well as
constants c ∈ K in the case of linear equations over a field K). Since we
can use these operations several times, we can build composite operations (for
example a1x1 + · · ·+ anxn + c). This means that every equation in n variables
can be written as f(x1, . . . , xn) = g(x1, . . . , xn), where f and g are obtained as
compositions of operations from F . The set of all such operations is denoted
by [F ], and it is called the clone generated by F (see Sect. 2 for the precise
definitions). Elements of the clone [F ] are also called term functions of the
algebraic structure A = (A;F ), and our equations are the same as equations
over A in the sense of universal algebra. However, in universal algebra the
focus is on (the complexity of) finding one solution or deciding if there is a
solution at all, whereas here we study the structure of the set of all solutions.

If two sets of operations generate the same clone, then they produce the
same equations, thus it is natural to speak about equations over a clone C.
This leads to the main problem of this paper: given a clone C, characterize sets
T ⊆ An that can appear as the set of all solutions of a system of equations over
C. After introducing the required notions and notations in Sect. 2, we give a
general necessary condition in Sect. 3 (see Theorem 3.1). More precisely, we
prove that for every clone C, one can assign a clone C∗ (called the centralizer
of C) such that if T ⊆ An is the set of all solutions of a system of equations
over C, then T is closed under C∗. In certain special cases, such as in the case
of (homogeneous) linear equations (see Example 3.2), being closed under C∗ is
sufficient for being the solution set of a system of C-equations. Unfortunately,
as we show in Example 3.3, there are other “non-linear” clones for which this is
not true. However, we will prove in Sect. 4 that for Boolean functions (i.e., for
A = {0, 1}) the condition given in Theorem 3.1 is sufficient. Thus we obtain a
complete characterization of solution sets of systems of Boolean equations in
terms of closure conditions, which is similar in spirit to the “linear” examples
mentioned in the first paragraph (Theorem 4.1). We will use this result in
Sect. 5 to characterize solution sets of systems of Boolean equations, solving
the main problem of [2] in the Boolean case (Theorem 5.1).

2. Preliminaries

2.1. Operations and clones

Let A be an arbitrary set with at least two elements. By an operation on A
we mean a map f : An → A; the nonnegative integer n is called the arity
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of the operation f . (We allow nullary operations: since A0 is a singleton, an
operation of arity zero can be naturally identified with the unique element in
its image set.) The set of all operations on A is denoted by OA. Operations
on A = {0, 1} are called Boolean functions, and we will also use the notation
Ω = O{0,1} for the set of all Boolean functions (see the Appendix for some
background on Boolean functions). For a set F ⊆ OA of operations, by F (n)

we mean the set of n-ary members of F . In particular, O(n)
A stands for the set

of all n-ary operations on A.
We will denote tuples by boldface letters, and we will use the corresponding

plain letters with subscripts for the components of the tuples. For example,
if a ∈ An, then ai denotes the i-th component of a, i.e., a = (a1, . . . , an). In
particular, if f ∈ O(n)

A , then f(a) is a short form for f(a1, . . . , an). In accor-
dance with the above, we denote the n-tuple (1, 1, . . . , 1) by 1, and similarly
the n-tuple (0, 0, . . . , 0) by 0 (the length of the tuple shall be clear from the
context). If t(1), . . . , t(m) ∈ An and f ∈ O(m)

A , then f(t(1), . . . , t(m)) denotes
the n-tuple obtained by applying f to the tuples t(1), . . . , t(m) componentwise:

f(t(1), . . . , t(m)) =
(
f(t(1)1 , . . . , t

(m)
1 ), . . . , f(t(1)n , . . . , t(m)

n )
)
.

We say that T ⊆ An is closed under C, if for all m ∈ N, t(1), . . . , t(m) ∈ T and
for all f ∈ C(m) we have f(t(1), . . . , t(m)) ∈ T .

Let f ∈ O(n)
A and g1, . . . , gn ∈ O(k)

A . By the composition of f with g1, . . . , gn

we mean the operation h ∈ O(k)
A defined by

h(x) = f
(
g1(x), . . . , gn(x)

)
for all x ∈ Ak.

If a class C ⊆ OA of operations is closed under composition and contains
the projections (x1, . . . , xn) �→ xi for all 1 ≤ i ≤ n ∈ N, then C is said
to be a clone (notation: C ≤ OA). Notable examples include all continuous
operations on a topological space, all monotone operations on an ordered set,
all polynomial operations of a ring (or any algebraic structure), etc. (see also
Example 2.1). For an arbitrary set F of operations on A, there is a least
clone [F ] containing F , called the clone generated by F . The elements of this
clone are those operations that can be obtained from members of F and from
projections by finitely many compositions.

The set of all clones on A is a lattice under inclusion; the greatest element
of this lattice is OA, and the least element is the trivial clone consisting of
projections only. There are countably infinitely many clones on the two-element
set; these have been described by Post [4], hence the lattice of clones on {0, 1}
is called the Post lattice. In the Appendix we present the Post lattice and we
define Boolean clones that we need in the proof of our main results. If A is a
finite set with at least three elements, then there is a continuum of clones on
A, and it is a very difficult open problem to describe all clones on A even for
|A| = 3.
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2.2. Centralizer clones

We say that the operations f ∈ O(n)
A and g ∈ O(m)

A commute (notation: f ⊥ g)
if

f
(
g(a11, a12, . . . , a1m), . . . , g(an1, an2, . . . , anm)

)

= g
(
f(a11, a21, . . . , an1), . . . , f(a1m, a2m, . . . , anm)

)

holds for all aij ∈ A (1 ≤ i ≤ n, 1 ≤ j ≤ m). This can be visualized as
follows: for every n × m matrix Q = (aij), first applying g to the rows of Q
and then applying f to the resulting column vector yields the same result as
first applying f to the columns of Q and then applying g to the resulting row
vector:

a11 . . . a1m

...
...

an1 . . . anm

g−−−−→

⏐
⏐
�f

⏐
⏐
�f

g−−−−→

Denoting by cj ∈ An (j = 1, . . . , m) the j-th column vector of Q, we can
express the commutation property more compactly:

f(g(c1, . . . , cm)) = g(f(c1), . . . , f(cm)). (2.1)

It is easy to verify that if f, g1, . . . , gn all commute with an operation h,
then the composition f(g1, . . . , gn) also commutes with h. This implies that
for any F ⊆ OA, the set F ∗ := {g ∈ OA | f ⊥ g for all f ∈ F} is a clone, called
the centralizer of F . Clones arising in this form are called primitive positive
clones; such clones seem to be quite rare: there are only finitely many primitive
positive clones over any finite set [1]. It is useful to note that if C = [F ], then
C∗ = F ∗. This implies that in order to compute the centralizer of a clone C, it
is sufficient to determine the operations commuting with a (preferably small)
generating set of C.

Example 2.1. Let K be a field, and let L be the clone of all operations over K
that are represented by a linear polynomial:

L := {a1x1 + · · · + akxk + c | k ≥ 0, a1, . . . , ak, c ∈ K}.

Since L is generated by the operations x + y, ax (a ∈ K) and the constants
c ∈ K, the centralizer L∗ consists of those operations f over K that commute
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with x + y and ax (i.e., f is additive and homogeneous), and also commute
with the constants (i.e., f(c, . . . , c) = c for all c ∈ K):

L∗ := {a1x1 + · · · + akxk | k ≥ 1, a1, . . . , ak ∈ K and a1 + · · · + ak = 1}.

Similarly, one can verify that L∗
0 = L0 for the clone

L0 := {a1x1 + · · · + akxk | k ≥ 0, a1, . . . , ak ∈ K}.

2.3. Equations and solution sets

Let us fix a clone C ≤ OA and a natural number n. By an n-ary equation over
C (C-equation for short) we mean an equation of the form f(x1, . . . , xn) =
g(x1, . . . , xn), where f, g ∈ C(n). We will often simply write this equation as a
pair (f, g). A system of C-equations is a finite set of C-equations of the same
arity:

E :=
{
(f1, g1), . . . , (ft, gt)

}
, where fi, gi ∈ C(n) (i = 1, . . . , t).

We define the set of solutions of E as the set

Sol(E) :=
{
a ∈ An | fi(a) = gi(a) for i = 1, . . . , t

}
.

For a ∈ An we denote by EqC(a) the set of C-equations satisfied by a:

EqC(a) :=
{
(f, g) | f, g ∈ C(n) and f(a) = g(a)

}
.

Let T ⊆ An be an arbitrary set of tuples. We denote by EqC(T ) the set of
C-equations satisfied by T :

EqC(T ) :=
⋂

a∈T

EqC(a).

Example 2.2. Considering the “linear” clones of Example 2.1, L-equations are
linear equations and L0-equations are homogeneous linear equations.

3. A general necessary condition

Looking for a characterization of solution sets by means of closure conditions,
we would like to determine operations under which solution sets of C-equations
are closed. The following theorem shows that the solution set is always closed
under operations in the centralizer C∗.

Theorem 3.1. For any clone C ≤ OA, the set of all solutions of a system of
C-equations is closed under C∗.
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Proof. Let C ≤ OA be a clone and let E be a system of n-ary C-equations
with solution set T = Sol(E) ⊆ An. Let Φ ∈ C∗ be an arbitrary m-ary oper-
ation, and let t(1), . . . , t(m) ∈ T ; we need to prove that Φ(t(1), . . . , t(m)) ∈ T .
Consider an arbitrary equation f(x1, . . . , xn) = g(x1, . . . , xn) from E . Since
t(1), . . . , t(m) are solutions of E , we have f(t(j)) = g(t(j)) for j = 1, . . . , m.
This implies that

Φ(f(t(1)), . . . , f(t(m))) = Φ(g(t(1)), . . . , g(t(m))). (3.1)

Let us consider the n × m matrix Q = (t(j)i ) obtained by writing the tuples
t(j) next to each other as column vectors. Then the left hand side of (3.1)
is obtained by applying f to the columns of Q and then applying Φ to the
resulting row vector. Since Φ and f commute, we get the same by applying
first Φ row-wise and then applying f column-wise, and the result in this case
is f(Φ(t(1), . . . , t(m))) (cf. also (2.1)). Rewriting similarly the right hand side
of (3.1), we can conclude that

f(Φ(t(1), . . . , t(m))) = g(Φ(t(1), . . . , t(m))).

This means that the tuple Φ(t(1), . . . , t(m)) also satisfies the equation (f, g).
This holds for every equation of E , thus we have Φ(t(1), . . . , t(m)) ∈ T . �
Example 3.2. Let us consider once more the case of linear equations (we use
the notation of Examples 2.1 and 2.2 ). A set of tuples (vectors) T ⊆ Kn is
closed under the clone L∗ if and only if T is an affine subspace of Kn, and T
is closed under L∗

0 = L0 if and only if T is a subspace of Kn. Thus in this case
T is the solution set of a system of L-equations (L0-equations) if and only if
T is closed under L∗ (L∗

0).

Theorem 3.1 gives a necessary condition for a set T ⊆ An to be the set of
all solutions of a system of C-equations. In the case of (homogeneous) linear
equations this condition is sufficient as well (see the example above). In the
next section we prove that if A is a two-element set then for every clone
C ≤ OA, every set of tuples that is closed under C∗ is the solution set of some
system of C-equations. However, for a three-element underlying set this is not
always the case.

Example 3.3. Let us consider the (nonassociative) binary operation f (x, y) =
x ⊗ y on A = {0, 1, 2} defined by the following operation table:

⊗ 0 1 2

0 0 0 0

1 0 0 1

2 0 1 0

Observe that x ⊗ x = 0 and x ⊗ 0 = 0 ⊗ x = 0 hold identically, hence the
only unary operations in the clone C = [f ] are g0 (x) = 0 and g1 (x) = x.
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Therefore, the only nontrivial C-equation of arity n = 1 is (g0, g1), whose
solution set is {0}. Thus there are only two subsets T ⊆ A that are solution
sets of (systems of) unary C-equations, namely T = {0} and T = {0, 1, 2}.
However, the set {0, 1} is also closed under C∗. Indeed, if Φ ∈ C∗ is an m-ary
operation and a1, . . . , am ∈ {0, 1}, then, observing that ai = ai ⊗ 2, we can
compute Φ (a) = Φ (a1, . . . , am) as follows:

Φ (a) = Φ (a1 ⊗ 2, . . . , am ⊗ 2) = Φ (a) ⊗ Φ(2) = f (Φ (a) ,Φ(2)) . (3.2)

Since the range of f contains only the elements 0 and 1, we see that the right
hand side of (3.2) belongs to {0, 1}. We can conclude that the set {0, 1} is
closed under C∗, yet it is not the solution set of any system of C-equations.

4. Boolean equations

In this section we consider exclusively Boolean equations, that is, from now on
our underlying set is A = {0, 1}. We will use the notation of the Appendix; in
particular, Ω = O{0,1} stands for the set of all Boolean functions. By proving
a converse of Theorem 3.1, we will establish the following characterization of
solution sets of Boolean equations.

Theorem 4.1. For any Boolean clone C ≤ Ω and T ⊆ {0, 1}n, the following
two conditions are equivalent:

(i) there is a system E of C-equations such that T = Sol(E);
(ii) T is closed under C∗.

The implication (i) =⇒ (ii) follows from Theorem 3.1, so we only need to
prove that (ii) implies (i). Since all Boolean clones are known (see the Appen-
dix), we could do this one by one for every single Boolean clone. However, many
clones have the same centralizer, therefore, as the following remark shows, it
suffices to prove Theorem 4.1 for a few clones (note that this remark is valid
for any set A, not just for the two-element set).

Remark 4.2. Let C1 ≤ C2 ≤ OA and C∗
1 = C∗

2 = C. Assume that Theorem 4.1
is true for C1, and let T ⊆ An be closed under C. Then there is a system of
C1-equations such that T = Sol(E). From C1 ⊆ C2 it follows that E is also a
system of C2-equations. Thus Theorem 4.1 holds for C2 as well.

We can further reduce the number of cases by considering Boolean functions
up to duality. The dual of f ∈ Ω(n) is the Boolean function fd defined by
fd(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn), and the dual of a Boolean clone C is
Cd = {fd | f ∈ C}. Note that dualizing means just interchanging 0 and 1,
hence if Theorem 4.1 holds for C, then it is obviously valid for Cd, too.

Considering the observations above as well as the list of centralizers of
Boolean clones given in the Appendix, it suffices to prove the implication
(ii) =⇒ (i) of Theorem 4.1 for the following 18 cases:
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1. L∗ = L01, L∗
0 = L0, L∗

01 = L, SL∗ = SL;
2. M∗ = [x], (U∞M)∗ = [0], (U∞

01 M)∗ = [0, 1], S∗ = [¬], SM∗ = Ω(1);
3. Λ∗ = Λ01, Λ0

∗ = Λ0, Λ1
∗ = Λ1, Λ01

∗ = Λ;
4. (Ω(1))∗ = S01, [¬]∗ = S, [0, 1]∗ = Ω01, [0]∗ = Ω0, [x]∗ = Ω.
We will present the proof through a sequence of 18 lemmas. These are grouped
into four subsections by the methods used in their proofs, according to the
numbering above.

4.1. Linear clones

Lemma 4.3. If T ⊆ {0, 1}n is closed under the clone L0
∗ = L0, then there

exists a system E of L0-equations such that T = Sol(E).

Proof. This is a special case of Example 3.2 for the two-element field. �

Lemma 4.4. If T ⊆ {0, 1}n is closed under the clone L01
∗ = L, then there

exists a system E of L01-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone L01
∗ = L. Since T is closed

under L = [x + y, 1], it is a subspace in {0, 1}n, and we also have 1 ∈ T .
Therefore there exists a system of homogeneous linear equations E such that
the set of solutions of E is exactly T . It only remains to verify that E is
equivalent to a system of L01-equations. Recall that L01 = {x1 + · · · + xn |
n is odd}.

An equation in E is of the form xi1 + xi2 + · · · + xim = 0. Since 1 ∈ T , the
tuple 1 satisfies this equation, hence it follows that 2 | m. Adding xi1 to both
sides, we obtain the equivalent equation xi2 + · · · + xim = xi1 . Since there is
an odd number of variables on both sides, this is an L01-equation. �

Lemma 4.5. If T ⊆ {0, 1}n is closed under the clone L∗ = L01, then there
exists a system E of L-equations such that T = Sol(E).

Proof. This is a special case of Example 3.2 for the two-element field. �

Lemma 4.6. If T ⊆ {0, 1}n is closed under the clone SL∗ = SL, then there
exists a system E of SL-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone SL∗ = SL. Note that

SL = [x + y + z, x + 1] = {x1 + · · · + xn + c | n is odd, and c ∈ {0, 1}}.

Since SL ⊇ L01 we see that T is an affine subspace in {0, 1}n, hence there
exists a system E of linear equations such that T = Sol(E). Moreover, since
x + 1 ∈ SL, we have x ∈ T ⇒ ¬x ∈ T . It only remains to verify that E is
equivalent to a system of SL-equations.

An equation in E is of the form xi1 + xi2 + · · · + xim = c. Since x ∈ T
implies that ¬x ∈ T , it follows that 2 | m. Our equation is equivalent to
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xi2 + · · · + xim = xi1 + c, and since on both sides of the equation there is an
odd number of variables, it follows that this is an SL-equation. �

4.2. Clones with unary centralizers

Lemma 4.7. If T ⊆ {0, 1}n is closed under the clone M∗ = [x], then there
exists a system E of M -equations such that T = Sol(E).

Proof. Note that every subset of {0, 1}n is closed under [x]. For every T �

{0, 1}n, we have

T =
⋂

v/∈T

Tv, (4.1)

where Tv = {0, 1}n\{v}. Therefore it suffices to show that for every v ∈
{0, 1}n, there exists an M -equation (f, g) such that Tv = Sol({(f, g)}).

Let v ∈ {0, 1}n be an arbitrary n-tuple. Let f and g be the following
functions:

f(x) =

{
1, if x > v;
0, otherwise,

and g(x) =

{
1, if x ≥ v;
0, otherwise.

Figure 1 shows a schematic view of the Hasse diagram of {0, 1}n. The grey
color indicates points where the value of the corresponding function is 1; on
the remaining tuples the values are 0. It is easy to see that f, g ∈ M and that
for all v ∈ {0, 1}n, we have f(x) = g(x) if and only if x �= v, therefore the set
of solutions of f(x) = g(x) is indeed Tv. �

Figure 1. The functions f and g in the proof of Lemma 4.7
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Lemma 4.8. If T ⊆ {0, 1}n is closed under the clone (U∞M)∗ = [0], then there
exists a system E of U∞M -equations such that T = Sol(E).

Proof. A set T ⊆ {0, 1}n is closed under [0] if and only if 0 ∈ T . Thus, similarly
to the proof of Lemma 4.7, it suffices to show that for every v ∈ {0, 1}n\{0}
there exists a U∞M -equation (f, g) such that Tv = Sol({(f, g)}). (We can
exclude v = 0 from the intersection (4.1) because 0 ∈ T .)

Let v ∈ {0, 1}n\{0} be an arbitrary n-tuple, and let f and g be the same
functions as defined in the proof of Lemma 4.7. We have seen that f and g
are monotone and Sol({(f, g)}) = Tv. Hence it only remains to verify that
f, g ∈ U∞, that is, there exists k ∈ N such that for all x ∈ {0, 1}n, if f(x) = 1
(g(x) = 1), then xk = 1. We may assume (after a permutation of coordinates)
that v is of the form (0, 0, . . . , 0, 1, 1, . . . , 1). Since v �= 0, at least one 1 appears
in v, i.e., vn = 1. If f(x) = 1, then x > v, hence xn = 1, thus f ∈ U∞.
Similarly, xn = 1 whenever g(x) = 1, so g ∈ U∞. �
Lemma 4.9. If T ⊆ {0, 1}n is closed under the clone (U∞

01 M)∗ = [0, 1], then
there exists a system E of U∞

01 M -equations such that T = Sol(E).

Proof. The proof is almost identical to those of the previous two lemmas. Here
we have 0,1 ∈ T , hence we can assume that v /∈ {0,1}, and we only need to
show that in this case the functions f and g defined in the proof of Lemma 4.7
are 0-preserving as well as 1-preserving. By the definition of the functions f
and g, it is obvious that f(0) = 0 and g(1) = 1. Moreover, v �= 0 implies that
g(0) = 0 and v �= 1 implies that f(1) = 1. Thus f, g ∈ U∞

01 M , as claimed. �
Lemma 4.10. If T ⊆ {0, 1}n is closed under the clone S∗ = [¬], then there
exists a system E of S-equations such that T = Sol(E).

Proof. For every T � {0, 1}n that is closed under the clone [¬], we have

T =
⋂

v/∈T

Tv,

where Tv = {0, 1}n\{v,¬v}. (Note that we are changing the notation of the
previous three lemmas.) Therefore it suffices to show that for every v ∈ {0, 1}n

there exists an S-equation (f, g) such that Tv = Sol({(f, g)}).
Let v ∈ {0, 1}n be an arbitrary n-tuple, and let f ∈ S be an arbitrary

n-ary self-dual function. Define the function g by

g(x) =

{
f(x), if x /∈ {v,¬v};
¬f(x), if x ∈ {v,¬v}.

Clearly, the set of solutions of f(x) = g(x) is indeed Tv, and it is straightfor-
ward to verify that g is self-dual. �
Lemma 4.11. If T ⊆ {0, 1}n is closed under the clone SM∗ = Ω(1), then there
exists a system E of SM -equations such that T = Sol(E).
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Proof. Using the notation of Lemma 4.10, we need to show that for every v ∈
{0, 1}n\{0,1} there exists an SM -equation (f, g) such that Tv = Sol({(f, g)}).
(We exclude 0 and 1 since T is closed under Ω(1) = [0, 1,¬x].)

Let v ∈ {0, 1}n\{0,1}, and let h ∈ SM be an arbitrary n-ary self-dual
monotone function. Define the function f by

f(x) =

⎧
⎪⎨

⎪⎩

0, if x ≤ v or x < ¬v;
1, if x > v or x ≥ ¬v;
h(x), otherwise.

Since v �= 0,1, the tuples v and ¬v are incomparable, hence the three cases
in the definition of f are mutually exclusive and thus f is well defined. Define
the function g by

g(x) =

{
f(x), if x /∈ {v,¬v};
¬f(x), if x ∈ {v,¬v}.

Let H be the set of tuples x ∈ {0, 1}n that are incomparable to both v and
¬v. (Note that H is closed under negation.) The colors on Figure 2 indicate
the value of the corresponding function as in the proof of Lemma 4.7. The
striped area represents the set H. From the definition of the function g it is
clear that the set of solutions of f(x) = g(x) is indeed Tv.

It only remains to verify that f, g ∈ SM , that is, f and g are both monotone
and self-dual. We present the details for f only; the proof for g is similar.

Let x and y be arbitrary n-tuples with x ≤ y. To verify that f ∈ M , we
consider four cases:

1. If x,y ∈ H, then f(x) = h(x) ≤ h(y) = f(y), as h ∈ SM .
2. If x,y /∈ H, then from the definition of the function f we have f(x) ≤ f(y).
3. If x ∈ H and y /∈ H, then y is comparable to v or ¬v. If f(y) = 1, then

obviously f(x) ≤ f(y). If f(y) = 0, then y ≤ v or y < ¬v. However, in
this case x ≤ y implies that x is comparable to v or to ¬v, contradicting
the assumption x ∈ H.

4. The case x /∈ H, y ∈ H can be verified similarly to the previous case.

For self-duality, let x ∈ {0, 1}n be an arbitrary n-tuple; we need to show that
f(x) = ¬f(¬x). We distinguish two cases:

1. If x /∈ H, then ¬x /∈ H. If f(x) = 0, then either x ≤ v or x < ¬v. In the
first case, we have ¬x ≥ ¬v, and in the second case, we have ¬x > v. In
both cases, f(¬x) = 1. Similarly, f(x) = 1 implies that f(¬x) = 0.

2. If x ∈ H, then ¬x ∈ H, therefore f(x) = h(x) = ¬h(¬x) = ¬f(¬x), as
h ∈ SM . �
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Figure 2. The functions f and g in the proof of Lemma 4.11

4.3. Clones generated by conjunctions and constants

Lemma 4.12. If T ⊆ {0, 1}n is closed under the clone Λ∗ = Λ01, then there
exists a system E of Λ-equations such that T = Sol(E).

Proof. Note that Λ = [x ∧ y, 0, 1], and that Λ01 = [x ∧ y]. Let T ⊆ {0, 1}n

be closed under the clone Λ∗ = Λ01, and let E = EqΛ(T ). We will show that
T = Sol(E). Since T ⊆ Sol(E) is trivial, it suffices to prove that v ∈ Sol(E)
implies v ∈ T for all v ∈ {0, 1}n.

Let v ∈ Sol(E), and suppose first that v �= 0,1. We may assume without
loss of generality that v is of the form (1, 1, . . . , 1, 0, 0, . . . , 0), where v1 =
· · · = vk = 1 and vk+1 = · · · = vn = 0 (k ∈ {1, . . . , n− 1}). Let us consider the
following Λ-equation:

x1 ∧ · · · ∧ xk = x1 ∧ · · · ∧ xk ∧ xk+1. (4.2)

It is clear that v does not satisfy (4.2), thus the equation (4.2) does not appear
in E . Hence, there exists an n-tuple t(1) ∈ T such that t(1) does not satisfy (4.2),
i.e., t

(1)
1 = · · · = t

(1)
k = 1 and t

(1)
k+1 = 0. Similarly, for all m ∈ {1, . . . , n − k} we

may consider the Λ-equation

x1 ∧ · · · ∧ xk = x1 ∧ · · · ∧ xk ∧ xk+m. (4.3)

Just like (4.2), the equation (4.3) does not appear in E , thus there exists
t(m) ∈ T such that t

(m)
1 = · · · = t

(m)
k = 1 and t

(m)
k+m = 0. We know that T

is closed under the clone Λ01, in particular, T is closed under conjunctions.
Therefore t(1), . . . , t(n−k) ∈ T implies that

t(1) ∧ · · · ∧ t(n−k) = (1, 1, . . . , 1, 0, 0, . . . , 0) = v ∈ T.
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It only remains to consider the cases v = 0 and v = 1. If v = 0 satisfies E ,
then let us consider the following Λ-equations for all i ∈ {1, . . . , n}:

xi = 1. (4.4)

Since v = 0 does not satisfy (4.4), this equation does not belong to E . Thus T

contains a counterexample t(i) to (4.4) such that t
(i)
i = 0. Therefore we have

t(1) ∧ · · · ∧ t(n) = (0, 0, . . . , 0) = v ∈ T.

If v = 1 satisfies E , then we consider the following Λ-equation:

x1 ∧ · · · ∧ xn = 0. (4.5)

Similarly as above, T contains a counterexample to (4.5), and the only such
counterexample is 1. �

Lemma 4.13. If T ⊆ {0, 1}n is closed under the clone Λ0
∗ = Λ0, then there

exists a system E of Λ0-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ0
∗ = Λ0, and define E

as E = EqΛ0
(T ). If v ∈ Sol(E) and v �= 0, then the same argument as in

Lemma 4.12 proves that v ∈ T . It only remains to consider the case v = 0.
Since T is closed under the clone Λ0 and 0 ∈ Λ0, it follows that 0 ∈ T . �

Lemma 4.14. If T ⊆ {0, 1}n is closed under the clone Λ1
∗ = Λ1, then there

exists a system E of Λ1-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ1
∗ = Λ1, and define E

as E = EqΛ1
(T ). If v ∈ Sol(E) and v �= 1, then the same argument as in

Lemma 4.12 proves that v ∈ T . Since T is closed under the clone Λ1 and
1 ∈ Λ1, it follows that 1 ∈ T . �

Lemma 4.15. If T ⊆ {0, 1}n is closed under the clone Λ01
∗ = Λ, then there

exists a system E of Λ01-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ01
∗ = Λ, and define E

as E = EqΛ01
(T ). If v ∈ Sol(E) and v �= 0,1, then the same argument as

in Lemma 4.12 proves that v ∈ T . Since T is closed under the clone Λ and
0,1 ∈ Λ, it follows that 0,1 ∈ T . �

4.4. Unary clones

Lemma 4.16. If T ⊆ {0, 1}n is closed under the clone [x]∗ = Ω, then there
exists a system E of [x]-equations such that T = Sol(E).
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Proof. Let T ⊆ {0, 1}n be closed under the clone [x]∗ = Ω, and let E =
Eq[x](T ). We will show that T = Sol(E). Since T ⊆ Sol(E) is trivial, it suffices
to prove that v ∈ Sol(E) implies v ∈ T for all v ∈ {0, 1}n.

Let v ∈ Sol(E), and let T = {t(1), . . . , t(m)}, where m = |T |. Let us consider
the matrix Q = (t(j)i ) ∈ {0, 1}n×m whose j-th column vector is t(j). Let
ri = (t(1)i , . . . , t

(m)
i ) be the i-th row of Q, and let R = {r1, . . . , rn} be the set

of row vectors of Q. Define the m-ary function Φ by

Φ(x) =

{
vi, if x = ri;
0, if x /∈ R.

Note that Φ is defined in such a way that v = Φ(t(1), . . . , t(m)). However,
we need to verify that Φ is a well-defined function. Assume that ri = rj and
vi �= vj for some i, j ∈ {1, . . . , n}. From ri = rj it follows that T satisfies the
[x]-equation xi = xj , hence this equation belongs to E . On the other hand, v
satisfies E , thus vi = vj , which is a contradiction. Therefore the function Φ
is well defined, and obviously Φ ∈ Ω. The set T is closed under the clone Ω,
hence v = Φ(t(1), . . . , t(m)) ∈ T . �

Lemma 4.17. If T ⊆ {0, 1}n is closed under the clone [0]∗ = Ω0, then there
exists a system E of [0]-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone [0]∗ = Ω0, let E = Eq[0](T ),
and assume that v ∈ Sol(E). Define Q, ri, R and Φ as in the proof of
Lemma 4.16. The proof of Lemma 4.16 shows that Φ is well defined; we only
need to verify that Φ ∈ Ω0. If 0 /∈ R, then Φ(0) = 0 follows from the definition
of Φ. If ri = 0 for some i, then the [0]-equation xi = 0 holds in T , thus (xi, 0) ∈
E . Therefore v satisfies this equation as well, hence Φ(0) = Φ(ri) = vi = 0.
This shows that Φ ∈ Ω0, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as T is
closed under Ω0. �

Lemma 4.18. If T ⊆ {0, 1}n is closed under the clone [0, 1]∗ = Ω01, then there
exists a system E of [0, 1]-equations such that T = Sol(E).

Proof. The proof is almost identical to that of Lemma 4.17; we just need to
modify the definition of Φ so that Φ(1) = 1 if 1 /∈ R. Taking equations of the
form xi = 0 and xi = 1 into account, we can prove that Φ ∈ Ω01, and then
v = Φ(t(1), . . . , t(m)) ∈ T follows, as T is closed under Ω01. �

Lemma 4.19. If T ⊆ {0, 1}n is closed under the clone [¬]∗ = S, then there
exists a system E of [¬]-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone [¬]∗ = S, let E = Eq[¬](T ),
and assume that v ∈ Sol(E). Define Q, ri and R as in the proof of Lemma 4.16
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and let R′ = {¬r1, . . . ,¬rn}. Let h ∈ S be an arbitrary m-ary self-dual func-
tion and define the function Φ ∈ Ω(m) by

Φ(x) =

⎧
⎪⎨

⎪⎩

vi, if x = ri;
¬vi, if x = ¬ri;
h(x), if x /∈ R ∪ R′.

We show that the function Φ is well defined. We distinguish two cases:

1. If ri = rj and vi �= vj for some i, j ∈ {1, . . . , n}, then T satisfies the [¬]-
equation xi = xj , hence this equation belongs to E . On the other hand, v
satisfies E , thus vi = vj , which is a contradiction.

2. If ri = ¬rj and vi �= ¬vj for some i, j ∈ {1, . . . , n}, then T satisfies the [¬]-
equation xi = ¬xj , hence this equation appears in E . On the other hand,
v satisfies E , thus vi = ¬vj , which is a contradiction.

It only remains to verify that Φ ∈ S. Let a be an arbitrary n-tuple. If
a /∈ R ∪ R′, then Φ(a) = h(a) = ¬h(¬a) = ¬Φ(¬a), since the function h is
self-dual. If a = ri for some i ∈ {1, . . . , n}, then ¬a = ¬ri, thus Φ(¬a) = ¬vi =
¬Φ(a). This shows that Φ ∈ S, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as
T is closed under S. �

Lemma 4.20. If T ⊆ {0, 1}n is closed under the clone (Ω(1))∗ = S01, then there
exists a system E of Ω(1)-equations such that T = Sol(E).

Proof. Let T ⊆ {0, 1}n be closed under the clone (Ω(1))∗ = S01, let E =
EqΩ(1)(T ), and assume that v ∈ Sol(E). Define Q, ri, R and R′ as in the proof
of Lemma 4.19, and let us also define Φ in the same way as there, but this time
choosing the function h from S01. We can follow the same argument as before,
but we also need to verify that Φ ∈ Ω01. If 0 /∈ R ∪ R′, then Φ(0) = 0, since
h ∈ S01. If 0 ∈ R, and 0 = ri, then the Ω(1)-equation xi = 0 holds in E , thus
vi = 0. Therefore, from the definition of the function Φ, we have Φ(0) = 0. If
0 ∈ R′, and 0 = ¬ri, then the Ω(1)-equation ¬xi = 0 holds in E , thus ¬vi = 0,
hence Φ(0) = 0. This proves that Φ ∈ Ω0, and a similar argument shows that
Φ ∈ Ω1. Therefore Φ ∈ S01, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as T
is closed under S01. �

5. Boolean functional equations

A framework for functional equations was presented in [2], which includes
many classical functional equations as special cases (see the examples in [2]).
The problem of characterizing solution sets of functional equations was posed
there, and a general necessary condition was also established, which is similar
to our Theorem 3.1. Here we prove that for Boolean functions that condition
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is also sufficient, thus we obtain a complete characterization of solution sets of
Boolean functional equations.

First let us recall the abstract definition of a functional equation proposed
in [2]. Let A and B be clones on sets A and B, respectively. A (B,A) -equation
is a functional equation of the form

u(f(g11, . . . , g1n), . . . , f(gr1, . . . , grn))
= v(f(h11, . . . , h1n), . . . , f(hs1, . . . , hsn)), (5.1)

where r, s, n ≥ 0, u ∈ B(r), v ∈ B(s), each gij and hij is a function in A(m),
m ≥ 0, and f is an n-ary function symbol. Observe that if we interpret the
function symbol f by a function f : An → B, then each side of (5.1) becomes
an m-ary function from A to B. If these two functions coincide, then f is a
solution of the equation. We can define systems of functional equations and
solution sets in a natural way (similarly to Sect. 2.3).

The following theorem gives the promised characterization of solution sets
of functional equations in the case of Boolean functions (i.e., for A = B =
{0, 1}).

Theorem 5.1. A class K of n-ary Boolean functions is the solution set of a
system of (B,A)-equations if and only if the following two conditions hold:

(A) for every f ∈ K and ϕ ∈ (A∗)(1) we have f(ϕ(x1), . . . , ϕ(xn)) ∈ K, and
(B) for every � ≥ 0, f1, . . . , f� ∈ K and Φ ∈ (B∗)(�) we have Φ(f1, . . . , f�) ∈ K.

The “only if” part was proved in Proposition 5 of [2] for arbitrary functions
(not only for Boolean functions). For the “if” part, we need to show that if
K ⊆ Ω(n) satisfies the two conditions of the theorem, then it is the set of
all solutions of some system of (B,A)-equations, or, using the terminology of
[2], K is definable by (B,A)-equations. We present the proof through several
lemmas. First we show how to use our Theorem 4.1 and condition (B) to find
a system of functional equations (but not (B,A)-equations yet) whose solution
set is K.

Lemma 5.2. If K ⊆ Ω(n) satisfies condition (B), then there is a system of
(B, [0, 1])-equations such that K = Sol(E).

Proof. Let N = 2n, and let {a1, . . . ,aN} = {0, 1}n. To every function f ∈ Ω(n)

we can assign a tuple �f ∈ {0, 1}N by listing all the values of the function:
�f := (f(a1), . . . , f(aN )). Condition (B) implies that the set

−→K :=
{

�f
∣
∣ f ∈

K} ⊆ {0, 1}N is closed under the clone B (cf. Example 6 of [2]). Therefore,
by Theorem 4.1,

−→K is definable by a system of B-equations. Let (u, v) be one
of the defining equations of

−→K (where u, v ∈ B(N)), and let us rewrite it as a
functional equation:

u(f(a1), . . . , f(aN )) = v(f(a1), . . . , f(aN )). (5.2)
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For example, if n = 2, then (5.2) takes this form:

u(f(0, 0), f(0, 1), f(1, 0), f(1, 1)) = v(f(0, 0), f(0, 1), f(1, 0), f(1, 1)).

Rewriting all the defining equations of
−→K this way, we get a system E of

functional equations such that Sol(E) = K. Regarding the entries of the tuples
ai in (5.2) as constant functions (which play the role of the functions gij and
hij in (5.1)), we see that (5.2) is a (B, [0, 1])-equation and thus E is a system
of (B, [0, 1])-equations. �

The next step in the proof is to translate the system E of (B, [0, 1])-equations
found in Lemma 5.2 into a system of (B,A)-equations. Condition (A) will play
a key role during this translation. Using the list of centralizer clones given in
the Appendix, it is easy to compute (A∗)(1) for each Boolean clone A (one may
also use the Post lattice to compute the unary part of A∗ as the intersection
A∗ ∩ Ω(1)). Up to duality, we have the following possibilities (in the second
and the third item k = 2, 3, . . . ,∞):

1. (A∗)(1) = {x} for A = Ω, M, L, Λ, Ω(1), [0, 1];
2. (A∗)(1) = {x, 0} for A = Ω0, M0, L0, Uk, UkM, Λ0, [0];
3. (A∗)(1) = {x, 0, 1} for A = Ω01, M01, Uk

01, Uk
01M, Λ01;

4. (A∗)(1) = {x,¬} for A = S, SL, [¬];
5. (A∗)(1) = {x, 0, 1,¬} for A = S01, SM, L01, [x].

Similarly to Remark 4.2, it is useful to observe that if A1 ≤ A2 and
(A∗

1)
(1) = (A∗

2)
(1), then condition (A) is the same for A1 and A2, and if a

class K is definable by (B,A1)-equations, then K is also definable by (B,A2)-
equations. This means that in each of the five lists of clones above, it suffices
to prove Theorem 5.1 for the last clone A in the list, since it is contained in the
previous ones (one can verify this with the help of the Post lattice). In the first
list this l(e)ast(!) clone is [0, 1], hence we have nothing to do: the (B, [0, 1])-
equations of Lemma 5.2 are already (B,A)-equations. Thus we only have four
cases, and we deal with them one by one in the following four lemmas.

Lemma 5.3. Let K ⊆ Ω(n), A = [0], and B ≤ Ω. If K satisfies conditions (A)
and (B), then K is definable by (B,A)-equations.

Proof. First let us note that condition (A) with ϕ(x) = 0 means that f ∈
K implies that the constant function f (0), regarded as an n-ary function,
also belongs to K. According to Lemma 5.2, there is a system E of (B, [0, 1])-
equations such that K = Sol(E), and every equation in E is of the form (5.2)
with u, v ∈ B(N). If E is one such equation, then let Ẽ denote the equation
obtained from E by replacing each occurrence of 1 in the tuples ai by x. For
example, if n = 2, then Ẽ is of the form

u(f(0, 0), f(0, x), f(x, 0), f(x, x)) = v(f(0, 0), f(0, x), f(x, 0), f(x, x)).
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Since 0, x ∈ A, the functional equation Ẽ is a (B,A)-equation. We claim that
K is the set of all solutions of the system Ẽ :=

{
Ẽ

∣
∣ E ∈ E}

.
For each E ∈ E , the equation Ẽ is formally stronger than E: if a function f

satisfies Ẽ, then, setting x = 1 in Ẽ, we see that f also satisfies E. This shows
that Sol(Ẽ) ⊆ Sol(E) = K. Conversely, assume that f ∈ K and let Ẽ ∈ Ẽ ; we
may assume without loss of generality that E is of the form (5.2). Clearly, f

satisfies Ẽ in the case x = 1; we need to verify that f satisfies Ẽ for x = 0 as
well, i.e.,

u(f(0), . . . , f(0)) = v(f(0), . . . , f(0)). (5.3)
Let g ∈ Ω(n) be the constant function defined by g(x1, . . . , xn) = f (0). As
observed at the beginning of the proof, f ∈ K implies that g ∈ K. Since
K = Sol(E), the function g satisfies every equation in E . In particular, g satisfies
E, and this means exactly that (5.3) holds. This proves that f satisfies each
equation Ẽ ∈ Ẽ , hence f ∈ Sol(Ẽ). Thus, we have shown that K ⊆ Sol(Ẽ), and
this completes the proof. �

Lemma 5.4. Let K ⊆ Ω(n), A = Λ01, and B ≤ Ω. If K satisfies conditions (A)
and (B), then K is definable by (B,A)-equations.

Proof. We start with the system E of (B, [0, 1])-equations defining K, which
was constructed in the proof of Lemma 5.2. For each equation E ∈ E , let Ẽ be
the equation obtained from E by replacing each occurrence of 0 by x ∧ y and
each occurrence of 1 by x in the tuples ai. For example, if n = 2, then Ẽ is of
the form

u(f(x ∧ y, x ∧ y), f(x ∧ y, x), f(x, x ∧ y), f(x, x))
= v(f(x ∧ y, x ∧ y), f(x ∧ y, x), f(x, x ∧ y), f(x, x)). (5.4)

Since x, x ∧ y ∈ A, the set Ẽ :=
{
Ẽ

∣
∣ E ∈ E}

is a system of (B,A)-equations.
Just like in the proof of the previous lemma, it is clear that Sol(Ẽ) ⊆ K. To

prove the reverse inclusion, let f ∈ K and Ẽ ∈ Ẽ [again, E is assumed to be in
the form (5.2)]. We need to verify that f satisfies Ẽ. If x = 0, then Ẽ reduces
to (5.3), which is true since K satisfies (A) with ϕ(x) = 0 ∈ (A∗)(1). Similarly,
(A) with ϕ(x) = 1 ∈ (A∗)(1) shows that Ẽ is valid for x = y = 1. Finally, if
x = 1 and y = 0, then Ẽ holds because f satisfies E. Thus f ∈ Sol(Ẽ), and
this proves that K ⊆ Sol(Ẽ). �

Lemma 5.5. Let K ⊆ Ω(n), A = [¬], and B ≤ Ω. If K satisfies conditions (A)
and (B), then K is definable by (B,A)-equations.

Proof. Similarly to the proofs of the previous two lemmas, we translate the
system E of (B, [0, 1])-equations from Lemma 5.2 into a system of (B,A)-
equations. This time, we replace 0 with x and 1 with ¬x in every tuple ai in
every equation in E . Let us illustrate this again in the case n = 2:
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u(f(x, x), f(x,¬x), f(¬x, x), f(¬x,¬x))
= v(f(x, x), f(x,¬x), f(¬x, x), f(¬x,¬x)).

Since x,¬x ∈ A, we obtain a system Ẽ of (B,A)-equations this way, and we
need to show that K ⊆ Sol(Ẽ), as the other containment is obvious.

Assume that f ∈ K and let Ẽ ∈ Ẽ . If x = 0 then Ẽ is equivalent to E,
which is satisfied by f , as f ∈ K = Sol(E). If x = 1, then Ẽ takes the form

u(f(¬a1), . . . , f(¬aN )) = v(f(¬a1), . . . , f(¬aN )).

This equation for f = f is the same as E for the function f = g, where
g(x1, . . . , xn) = f(¬x1, . . . ,¬xn). Condition (A) with ϕ(x) = ¬x shows that
g ∈ K = Sol(E), hence g satisfies E, and this implies that f satisfies Ẽ for
x = 1. �

Lemma 5.6. Let K ⊆ Ω(n), A = [x], and B ≤ Ω. If K satisfies conditions (A)
and (B), then K is definable by (B,A)-equations.

Proof. The proof is very similar to the previous ones, so we omit the details.
We translate E to a system Ẽ of (B,A)-equations by replacing every 0 by x and
every 1 by y. Let Ẽ ∈ Ẽ and f ∈ K. To prove that f satisfies Ẽ, we consider
four cases: for x = 0, y = 1 we get back E; for x = 0, y = 0 we use (A) with
ϕ(x) = 0; for x = 1, y = 1 we use (A) with ϕ(x) = 1; for x = 1, y = 0 we use
(A) with ϕ(x) = ¬x. �

Appendix

The Post lattice

E.L. Post proved that there are countably infinitely many Boolean clones (i.e.,
clones over the set {0, 1}), and described them explicitly in [4]. We define
only those clones that we use in this paper; see [5] for the explanation of the
notation used in the Post lattice shown in Figure 3.

• Ω is the clone of all Boolean functions: Ω = O01.
• Ω0 and Ω1 denote the clones of 0-preserving and 1-preserving functions,

respectively: Ω0 = {f ∈ Ω | f(0) = 0}, Ω1 = {f ∈ Ω | f(1) = 1}.
• Ω01 is the clone of idempotent functions: Ω01 = Ω0 ∩ Ω1.
In general, if C is a clone, then let C0 = C ∩ Ω0, C1 = C ∩ Ω1, and

C01 = C0 ∩ C1.
• Ω(1) is the clone of all essentially unary functions: Ω(1) = [x,¬x, 0, 1].
• M is the clone of monotone functions: M = {f ∈ Ω | x ≤ y ⇒ f(x) ≤

f(y)}.
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Figure 3. The Post lattice

• U∞ = {f ∈ Ω(n) | n ∈ N0,∃k ∈ {1, . . . , n} : f(x) = 1 =⇒ xk = 1},
and U∞M = U∞ ∩ M, U∞

01 M = U∞ ∩ Ω01 ∩ M .
• S is the clone of self-dual functions: S = {f ∈ Ω | ¬f(¬x) = f(x)}.
• Λ = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [0, 1] = [∧, 0, 1]
• Λ0 = Λ ∩ Ω0 = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [0] = [∧, 0]
• Λ1 = Λ ∩ Ω1 = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [1] = [∧, 1]
• Λ01 = Λ ∩ Ω01 = {x1 ∧ · · · ∧ xn | n ∈ N} = [∧]
• L = {x1 + · · · + xn + c | c ∈ {0, 1}, n ∈ N0} = [x + y, 1]
• L0 = L ∩ Ω0 = {x1 + · · · + xn | n ∈ N0} = [x + y]
• L01 = L ∩ Ω01 = {x1 + · · · + xn | n is odd} = [x + y + z]
• SL = S∩L =

{
x1+· · ·+xn+c | n is odd, and c ∈ {0, 1}} = [x+y+z, x+1]

Centralizer clones of Boolean clones

If a clone D is the centralizer of some clone C, then D is said to be a primitive
positive clone. All primitive positive Boolean clones are given in [3], but the
centralizers of the other (not primitive positive) clones are not given there.
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However, using the Post lattice, one can determine the centralizers of these
clones by straightforward calculations. We omit the details and give only the
list of all Boolean clones together with their centralizers.
• [x] = Ω∗ = M∗

• [0] = Ω0
∗ = M0

∗ = (Uk)∗ = (UkM)∗ (for any k ∈ {2, 3, . . . ,∞})
• [1] = Ω1

∗ = M1
∗ = (W k)∗ = (W kM)∗ (for any k ∈ {2, 3, . . . ,∞})

• [0, 1] = Ω01
∗ = M01

∗ = (Uk
01)

∗ = (Uk
01M)∗ = (W k

01)
∗ = (W k

01M)∗ (for any
k ∈ {2, 3, . . . ,∞})

• [¬] = S∗, Ω(1) = S01
∗ = SM∗

• L01 = L∗, L0 = L0
∗, L1 = L1

∗, L = L01
∗, SL = SL∗

• Λ01 = Λ∗, Λ0 = Λ0
∗, Λ1 = Λ1

∗, Λ = Λ01
∗

• V01 = V ∗, V0 = V0
∗, V1 = V1

∗, V = V01
∗

• S01 = (Ω(1))∗, S = [¬]∗

• Ω01 = [0, 1]∗, Ω0 = [0]∗, Ω1 = [1]∗, Ω = [x]∗
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