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We consider a lattice-based model in multiattribute decision making, where preferences

are represented by global utility functions that evaluate alternatives in a lattice struc-

ture (which can account for situations of indifference as well as of incomparability).
Essentially, this evaluation is obtained by first encoding each of the attributes (nomi-

nal, qualitative, numeric, etc.) of each alternative into a distributive lattice, and then

aggregating such values by lattice functions. We formulate version spaces within this
model (global preferences consistent with empirical data) as solutions of an interpolation

problem and present their complete descriptions accordingly. Moreover, we consider the

computational complexity of this interpolation problem, and show that up to 3 attributes
it is solvable in polynomial time, whereas it is NP complete over more than 3 attributes.

Our results are then illustrated with a concrete example.

Keywords: Multiple criteria analysis; complexity theory; preference modelling; Sugeno
integral; decision under uncertainty.

1. Motivation

We consider a problem rooted in supervised learning and stated as an interpolation

problem for functions f : X→ L, where X is a set of objects (or alternatives) and L

is a set of labels: Given a finite S ⊆ X×L, decide whether there exists an f : X→ L

interpolating S, i.e., such that f(a) = b for every (a, b) ∈ S. Our motivation is
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found in the field of decision making, more specifically, in the qualtitative approach

to preference modeling and learning (prediction and elicitation).

As the starting point, we take the decomposable model to represent preferences

over a set X = X1 × · · · × Xn of alternatives (e.g., houses to buy) described by

n attributes xi ∈ Xi (e.g., price, size, location, color). In this setting, preference

relations � are represented by “overall utility functions” U : X → L valued in a

scale L (also called the “evaluation space”) using the following rule:

x � y if and only if U(x) ≤ U(y).

This representation of preference relations is usually refined by taking into account

“local preferences” �i on each Xi, modeled by mappings ϕi : Xi → L called “local

utility functions”, which are then merged through an aggregation function A : Ln →
L into an overall utility function U :

U(x) = A(ϕ1(x1), . . . , ϕn(xn)). (1)

Loosely speaking, A merges the local preferences in order to obtain a global prefer-

ence on the set of alternatives. In the qualitative setting, the aggregation function

of choice is the Sugeno integral[25, 26] that can be regarded as an idempotent lat-

tice polynomial function [6, 19], and the resulting global utility function (1) is then

called a pseudo-polynomial function [10] or a Sugeno utility function [9] in the case

when A is a Sugeno integral and the local utility functions are order-preserving.

This observation brings the concept of Sugeno integral to domains more general

than scales (linearly ordered sets) such as distributive lattices and Boolean algebras.

Apart from the theoretic interest, such a generalization is both natural and useful

as it allows incomparability amongst alternatives, a situation that is most common

in real-life situations. Preferences modelled by (1) were axiomatized by different

approaches in [1, 4, 17].

The interest of considering the interpolation problem in this model-based set-

ting becomes apparent when dealing with supervised learning of preference relations

in the qualitative setting, and which leads naturally to the following extension of

the interpolation problem: Given a finite S ⊆ X × L, find all pseudo-polynomial

functions U : X → L that interpolate S. In other words, given a data set S

consisting of pairs (a, b) of alternatives together with their evaluations, we would

like to determine all models (1) that are consistent with S; in the terminology of

machine learning (see, e.g., [3, 20]) the set of all such models is called the version

space.

A complete solution of the interpolation problem thus provides an explicit

description of version spaces in the multicriteria setting. Solutions to particular

instances have been presented in the literature. In particular, the problem of cover-

ing a set of data by a set of Sugeno integrals was considered in the linearly ordered

case [22, 23] where conditions that guarantee the existence of a Sugeno integral

interpolating a set of data were provided. Essentially, the set of interpolating Sugeno
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integrals (if they exist) was characterized as being upper and lower bounded by

particular Sugeno integrals (easy to build from data). These results were then gen-

eralized in two different directions. In [21] an approach by “splines” was proposed,

which enables elicitation of families of generalized Sugeno integrals from pieces of

data where local and global evaluations may be imprecisely known, whereas in [5, 11]

lattice theoretic approaches were proposed not only to determine existence but also

to provide explicit descriptions of all possible lattice polynomials interpolating a

given data set S.

In the current paper we solve the above mentioned pseudo-polynomial interpola-

tion problem and thus describe version spaces for models (1). An important special

case is the case of quasi-polynomial functions [7, 8], where X1 = · · · = Xn = X is

an arbitrary set (not necessarily ordered) and ϕ1 = · · · = ϕn = ϕ : X → L. Such

a framework is pertaining to decision under uncertainty and it is used to model

situations where we need to take into account different states of a given world.

The paper is organized as follows. In Sec. 2, we recall basic notions and termi-

nology in lattice theory, and present results and constructions pertaining to inter-

polation by lattice polynomial functions. Extensions of the interpolation problem

by pseudo- and quasi-polynomial functions are then proposed and solved in Sec. 3.

For the sake of simplicity we present the solution in the setting of decision under

uncertainty (interpolation by quasi-polynomials), but our method can be applied

also in the multicriteria setting (interpolation by pseudo-polynomials). These results

are then illustrated in Sec. 4 by a concrete example. In Sec. 5, we prove that for

n ≥ 4 it is an NP-complete problem to decide if the interpolation problem has a

solution, while for n ≤ 3 it can be decided in polynomial time. We conclude the

paper in Sec. 6, where we indicate ongoing work and suggest other directions of

future research.

Before proceeding, we would like to stress the fact that, despite being motivated

by a problem rooted in preference learning (see [13] for general background and a

thorough treatment of the topic), our setting differs from the standard setting in

machine learning. This is mainly due to the fact that we aim to describe utility-

based preference models that are consistent with existing data (version spaces)

rather than aiming to learn utility-based models by optimization (minimizing loss

measures and coefficients) such as in, e.g., the probabilistic approach of [2] or the

approach based on the Choquet integral of [27], and that naturally accounts for

errors and inconsistencies in the learning data. Another difference is that, in the

latter, data is supposed to be given in the form of feature vectors (thus assuming that

local utilities over attributes are known a priori), an assumption that removes the

additional difficulty that we face, namely, that of describing local utility functions

that enable models based on the Sugeno integral that are consistent with existing

data. It is also worth noting that we do not assume any structure on attributes

and that we allow incomparabilities in the evaluation space L, which thus subsumes

preferences that are not necessarily rankings.
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2. Preliminaries

Throughout this paper let L be a distributive lattice. Recall that a polynomial

function over L is a mapping p : Ln → L that can be expressed as a combination

of the lattice operations ∧ and ∨, projections and constants. In the case when L is

bounded, i.e., with a least and a greatest element, polynomial functions p : Ln → L

can be represented in disjunctive normal form (DNF for short) by

p(y) =
∨

I⊆[n]

(
cI ∧

∧

i∈I
yi

)
, where y = (y1, . . . , yn) ∈ Ln. (2)

Here, and throughout the paper, we denote the set {1, 2, . . . , n} by [n]. One can

assume without loss of generality that the coefficients cI ∈ L are monotone in

the sense that cI ≤ cJ whenever I ⊆ J . Under this monotonicity assumption the

coefficients of the DNF of the polynomial function p are uniquely determined.

As mentioned in Sec. 1, a natural model for supervised preference learning is the

following interpolation problem, where a multivariable partial function on a lattice

is to be interpolated by lattice polynomial functions.

Polynomial Interpolation Problem. Let L be a distributive lattice. Given an

arbitrary finite set D ⊆ Ln and g : D → L, find all polynomial functions p : Ln → L

such that p|D = g.

Unlike in the case of interpolation by real polynomial functions, solutions do

not necessarily exist, and it is a nontrivial problem to determine the necessary and

sufficient conditions for the existence of an interpolating lattice polynomial function.

Goodstein’s theorem [15] provides a solution in the special case when the domain of

g is the hypercube D = {0, 1}n, where 0 and 1 are the least and greatest elements

of the bounded distributive lattice L: a function g : {0, 1}n → L can be interpolated

by a polynomial function p : Ln → L if and only if g is monotone, and in this case

p is unique. This result was generalized in [11] by allowing L to be an arbitrary

(possibly unbounded) distributive lattice and by considering functions g : D → L,

where D = {a1, b1} × · · · × {an, bn} with ai, bi ∈ L and ai < bi, for each i ∈ [n].

To describe the general solution of the Polynomial Interpolation Problem, which

was given in [5], we need to recall that by the Birkhoff-Priestley representation

theorem [12] we can embed any distributive lattice L into a Boolean algebra B,

which can be assumed to be a subalgebra of the power set P(Ω) of a set Ω. For the

sake of canonicity, we assume that L generates B, so that B is uniquely determined

up to isomorphism. The complement of an element a ∈ B is denoted by a′. (See

Fig. 1 for an example.)

Given a function g : D → L, we define the following two elements in B for each

I ⊆ [n]:

c−I :=
∨

a∈D

(
g(a) ∧

∧

i/∈I

a′i

)
and c+I :=

∧

a∈D

(
g(a) ∨

∨

i∈I
a′i

)
.
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(a) L5 (b) B(L5)

Fig. 1. A distributive lattice and its Boolean algebra.

Observe that I ⊆ J implies c−I ≤ c−J and c+I ≤ c+J . Let p− and p+ be the polynomial

functions over B given by these two systems of coefficients:

p−(y) :=
∨

I⊆[n]

(
c−I ∧

∧

i∈I
yi

)
and p+(y) :=

∨

I⊆[n]

(
c+I ∧

∧

i∈I
yi

)
.

As it turns out [5], p− and p+ are the least and greatest polynomial functions

over B whose restriction to D coincides with g (whenever such a polynomial function

exists). This yields the following explicit description of all possible interpolating

polynomial functions over the Boolean algebra B.

Theorem 1 ([5]). Let L be a distributive lattice, and let B be the Boolean algebra

generated by L. Let g : D → L be a function defined on a finite set D ⊆ Ln, and let

p : Bn → B be a polynomial function over B given by (2).

Then the following conditions are equivalent :

(i) p interpolates g, i.e., p|D = g;

(ii) c−I ≤ cI ≤ c+I for all I ⊆ [n];

(iii) p− ≤ p ≤ p+.

From Theorem 1 it follows that a necessary and sufficient condition for the

existence of a polynomial function p : Bn → B such that p|D = g is c−I ≤ c+I ,

for every I ⊆ [n]. Moreover, if for every I ⊆ [n], there is cI ∈ L such that c−I ≤
cI ≤ c+I , then and only then there is a polynomial function p : Ln → L such

that p|D = g. For the special type of interpolation problem considered in [11], the

condition for the existence of a solution was given by simple lattice inequalities,

without referring to the Boolean algebra generated by the lattice. In the case when

L is a finite chain such a condition was given in [23], where, rather than polynomial

functions, the interpolating functions where assumed to be Sugeno integrals, i.e.,

idempotent polynomial functions (see [18, 19]). One can also obtain the solution

of the Polynomial Interpolation Problem over L in this case from Theorem 1 by

describing explicitly the Boolean algebra generated by a finite chain. This yields
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the following result, which basically reformulates Theorem 3 in [23] in the language

of lattice theory [5].

Theorem 2 ([23]). Let L be a finite chain, and let g : D → L be a function defined

on a subset D ⊆ Ln. Then there is a polynomial function p : Ln → L such that

p|D = g if and only if

∀a,b ∈ D : g(a) < g(b)⇒ ∃i ∈ [n] : ai ≤ g(a) < g(b) ≤ bi. (3)

In contrast to the above mentioned special cases, in general it is not possible

to avoid the use of the Boolean algebra generated by L, as it is illustrated by the

following example.

Example 3 ([5]). Let L5 be the five-element lattice shown in Fig. 1(a), and let

B(L5) be the Boolean algebra generated by L5 (see Fig. 1(b)). Let D = {a,b},
where a = (1, c), b = (c, a) and consider g : D → L5 defined by

g(a) = 1 and g(b) = a. (4)

As coefficients c−I and c+I we obtain

c−∅ = 0, c−{1} = c′, c−{2} = 0, c−{1,2} = 1,

c+∅ = a, c+{1} = b′, c+{2} = 1, c+{1,2} = 1.

We see that c−I ≤ c+I holds for each I ⊆ [2], hence this interpolation problem

has a solution over B(L5) (in fact, it has 32 solutions), by Theorem 1. On the other

hand, no element of L5 lies between c−{1} and c+{1}, hence there is no solution over L5.

3. Generalized Lattice Interpolation

As mentioned in the introduction, the motivation for considering the interpolation

problem is rooted in the qualitative approach to preference modeling, where prefer-

ence relations � over a set X1 × · · · ×Xn of alternatives described by n attributes

are represented by overall utility functions U : X1 × · · · × Xn → L valued in an

ordered set L, by the rule:

x � y if and only if U(x) ≤ U(y).

Preferences on the attributes Xi are in turn modeled by local utility functions

ϕi : Xi → L, which are then aggregated through a lattice polynomial p : Ln → L

thus giving rise to refined models

U(x) = p(ϕ1(x1), . . . , ϕn(xn)), (5)

which we referred to as pseudo-polynomial functions.

The interest of considering the interpolation problem in this setting becomes

apparent when dealing with preference relations that are partially defined. This

situation of incomplete information pertains to preference learning, where the

set of interpolating pseudo-polynomial functions constitutes its version space.

This motivates the following extension of the interpolation problem (stated as
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Problem 5.1 in [11]):

Pseudo-polynomial Interpolation Problem. Let X1, . . . , Xn be finite sets and

L a finite distributive lattice. Given C ⊆ X1 × · · · × Xn and a partial function

f : C → L, find all pseudo-polynomial functions U : X1 × · · · ×Xn → L such that

U |C = f .

As mentioned in Sec. 1, uncertainty can be modeled by special kinds of pseudo-

polynomials, where X1 = · · · = Xn = X and ϕ1 = · · · = ϕn = ϕ. The resulting

global utilty functions U : Xn → L are so-called quasi-polynomial functions:

U(x) = p(ϕ(x1), . . . , ϕ(xn)). (6)

The corresponding interpolation problem can be formulated as follows:

Quasi-polynomial Interpolation Problem. Let X be a finite set and L a finite

distributive lattice. Given C ⊆ Xn and a partial function f : C → L, find all

quasi-polynomial functions U : Xn → L such that U |C = f .

We present the solution of the Pseudo-polynomial Interpolation Problem in two

steps. First, in Sec. 3.1 we show how to find the appropriate polynomials p provided

that the local utility functions ϕ1, . . . , ϕn are given. Then, in Sec. 3.2 we give an

algorithm to construct all possible local utility functions that could appear in an

interpolation. To simplify the formalism, in Sec. 3.2 we consider the special case

of quasi-polynomials, but our method can be easily adapted to the more general

problem of pseudo-polynomial interpolation, see Remark 9.

3.1. Interpolation with known local utility functions

Assume that the local utility functions ϕi : Xi → L are given; our goal is to find all

polynomial functions p over L such that the pseudo-polynomial function U given by

(5) interpolates f . Let us consider an arbitrary polynomial function p over B in its

disjunctive normal form (2). The corresponding pseudo-polynomial function U =

p(ϕ1, . . . , ϕn) interpolates f if and only if p(ϕ1(a1), . . . , ϕn(an)) = f(a1, . . . , an) for

all a ∈ C, i.e., if p interpolates the function g : D → L defined on the set

D = {(ϕ1(a1), . . . , ϕn(an)) : a ∈ C}

by

g(ϕ1(a1), . . . , ϕn(an)) = f(a1, . . . , an).

Using the construction of Sec. 2 for this interpolation problem, we can define

coefficients c−I,ϕ1,...,ϕn
and c+I,ϕ1,...,ϕn

for every I ⊆ [n] as follows:

c−I,ϕ1,...,ϕn
:=

∨

a∈C

(
f(a) ∧

∧

i/∈I

ϕi(ai)
′

)
and c+I,ϕ1,...,ϕn

:=
∧

a∈C

(
f(a) ∨

∨

i∈I
ϕi(ai)

′

)
.
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Denoting the corresponding polynomial functions by p−ϕ1,...,ϕn
and p+ϕ1,...,ϕn

, Theo-

rem 1 yields the following solution for the Pseudo-polynomial Interpolation Problem

with known local utility functions.

Theorem 4. Let X1, . . . , Xn be finite sets, let L be a finite distributive lattice, and

let f : C → L be a function defined on a set C ⊆ X1 × · · · × Xn. For any maps

ϕi : Xi → L(i ∈ [n]) and any polynomial function p : Bn → B over B given by (2),

the following conditions are equivalent :

(i) U = p(ϕ1, . . . , ϕn) interpolates f, i.e., U |C = f ;

(ii) c−I,ϕ1,...,ϕn
≤ cI ≤ c+I,ϕ1,...,ϕn

for all I ⊆ [n];

(iii) p−ϕ1,...,ϕn
≤ p ≤ p+ϕ1,...,ϕn

.

Remark 5. Note that if there exist tuples a,b ∈ C such that f(a) 6= f(b) but

left(ϕ1(a1), . . . , ϕn(an)) = (ϕ1(b1), . . . , ϕn(bn)), then it is clearly impossible to

find an interpolating pseudo-polynomial function (or any kind of function at all).

We invite the reader to verify that this situation cannot occur if condition (ii) of

Theorem 4 is satisfied.

3.2. Interpolation with unknown local utility functions

Now let us consider interpolation by quasi-polynomial functions

U(x) = p(ϕ(x1), . . . , ϕ(xn)),

where the local utility function ϕ : X → L is not known. Our aim is to find

all possible maps ϕ for which an interpolating polynomial exists. Specializing the

results of the previous subsection to the case ϕ1 = · · · = ϕn = ϕ, we see that

the necessary and sufficient condition for the existence of a solution over B is that

the following inequalities hold:

∨

a∈C

(
f(a) ∧

∧

i/∈I

ϕ(ai)
′

)
≤
∧

b∈C

(
f(b) ∨

∨

i∈I
ϕ(bi)

′

)
for all I ⊆ [n]. (7)

This gives a system of inequalities for the unknown values ϕ(a) (a ∈ X). To find

all solutions of this system of inequalities, we make use of the fact that B can be

embedded into the power set of a set Ω. We will encode a map ϕ : X → B by a

system of sets Sω ⊆ X(ω ∈ Ω), where Sω = {a ∈ X : ω ∈ ϕ(a)}. (Note that from

these sets we can uniquely recover the function ϕ as ϕ(a) = {ω ∈ Ω : a ∈ Sω}.) For

each ω ∈ Ω, we define a hypergraph Hω = (X; Eω) with vertex set X and edge set

Eω = {Eω(a,b) : a,b ∈ C such that ω ∈ f(a)\f(b)},

where Eω(a,b) = {ai : bi /∈ Sω} ⊆ X. (Here f(a)\f(b) = f(a) ∧ f(b)′ is the

difference of the sets f(a), f(b) ⊆ Ω.) In the next theorem we will prove that (7)

holds if and only if Sω is a transversal (also called a hitting set or a vertex cover) of

the hypergraph Hω, i.e., Sω intersects every edge of Hω for every ω ∈ Ω.
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Theorem 6. Let X be a finite set, let L be a finite distributive lattice, and let

f : C → L be a function defined on a set C ⊆ Xn. For any map ϕ : X → L, the

following conditions are equivalent :

(i) there exists a polynomial function p : Bn → B such that the quasi-polynomial

function U = p(ϕ, . . . , ϕ) interpolates f , i.e., U |C = f ;

(ii) for all a,b ∈ C, ω ∈ f(a)\f(b) and I ⊆ [n], we have {bi : i ∈ I} ⊆ Sω ⇒ {ai :

i /∈ I} ∩ Sω 6= ∅;
(iii) Sω is a transversal of Hω for each ω ∈ Ω.

Proof. First we prove the equivalence of (i) and (ii). By Theorem 4, condition (i)

is equivalent to (7). The inequality in (7) holds if and only if each joinand on the

left hand side is less than or equal to each meetand on the right hand side:

∀a,b ∈ C ∀I ⊆ [n] : f(a) ∧
∧

i/∈I

ϕ(ai)
′ ≤ f(b) ∨

∨

i∈I
ϕ(bi)

′. (8)

Recall that we have embedded B into the power set of Ω, hence ϕ(ai) and ϕ(bi) in

(8) are thought of as subsets of Ω as well as f(a) and f(b). If ω /∈ f(a), then ω

does not belong to the left hand side of (8), while if ω ∈ f(b), then the right hand

side contains ω. Thus, it suffices to consider elements ω ∈ f(a)\f(b), and therefore

(8) is equivalent to

∀a,b ∈ C ∀ω ∈ f(a)\f(b) ∀I ⊆ [n] : ω ∈
∧

i/∈I

ϕ(ai)
′ ⇒ ω ∈

∨

i∈I
ϕ(bi)

′.

Using De Morgan’s laws and contraposition, we see that this is equivalent to

∀a,b ∈ C ∀ω ∈ f(a)\f(b) ∀I ⊆ [n] : ∀i ∈ I : ω ∈ ϕ(bi)⇒ ∃i /∈ I : ω ∈ ϕ(ai).

Now (ii) is just a reformulation of the condition above using the definition of the

sets Sω.

Next we prove that (ii) implies (iii). Let Eω(a,b) = {ai : bi /∈ Sω} be any edge

of Hω, and let us put I = {i : bi ∈ Sω}. Applying (ii), we obtain an index i /∈ I
such that ai ∈ Sω. Since i /∈ I, we have bi /∈ Sω, and this means that ai ∈ Eω(a,b).

This proves that ai ∈ Eω(a,b)∩Sω for every edge Eω(a,b) of the hypergraph Hω,

hence Sω is a transversal of Hω.

Finally, let us show that (iii) implies (ii). Let a,b ∈ C, ω ∈ f(a)\f(b) and

I ⊆ [n], and assume that {bi : i ∈ I} ⊆ Sω. Since Sω is a transversal of Hω, there

exists a vertex v ∈ Eω(a,b)∩Sω. From v ∈ Eω(a,b) it follows that v = ai for some

i ∈ [n] such that bi /∈ Sω. Since {bi : i ∈ I} ⊆ Sω, we must have i /∈ I, and this

means that v ∈ {ai : i /∈ I} ∩ Sω, as claimed in (ii).

Theorem 6 yields Algorithm 1 for finding all local utility functions ϕ that provide

a quasi-polynomial function interpolating f on C. We start with Sω = ∅, and at

every iteration we extend Sω if necessary to obtain a transversal of Hε. It suffices
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Algorithm 1 Constructing all sets Sω that satisfy the conditions of Theorem 6

1: procedure Extend(Sω) . extends Sω in all possible ways

2: for all transversals T of H̃ω do

3: Sω ← Sω ∪ T
4: compute Ẽω by (9)

5: if Ẽω = ∅ then . Sω is a transversal of H̃ω

6: output Sω

7: else if ∅ ∈ Ẽω then . H̃ω has an empty edge

8: output fail

9: else . Sω might extend to a transversal

10: Extend(Sω)

11: end if

12: end for

13: end procedure

14: Sω ← ∅
15: compute Ẽω by (9)

16: Extend(Sω)

to consider only those edges of Hω that are disjoint from Sω. Let Ẽω be the set of

these edges, and let H̃ω = (X; Ẽω) be the corresponding hypergraph:

Ẽω = {Eω(a,b) : a,b ∈ C such that ω ∈ f(a)\f(b) and Eω(a,b) ∩ Sω = ∅}. (9)

We add a transversal of H̃ω to Sω and then we recompute Ẽω by (9). We iterate

these steps until Sω either becomes a transversal of Hω (i.e., Ẽω = ∅) or one of the

edges becomes empty (i.e., ∅ ∈ Ẽω). In the latter case Hω has no transversal at all,

and this cannot be resolved by continuing the iteration, since the edges Eω(a,b)

can only get smaller as Sω is being extended. We will eventually reach one of the

terminating conditions Ẽω = ∅ or ∅ ∈ Ẽω. Indeed, if the algorithm does not terminate

by finding a vertex cover of Hω, then sooner or later Sω will contain all the elements

b1, . . . , bn (as X is finite), which implies that Eω(a,b) = ∅ for all a,b.

Remark 7. In order to make sure that we find all solutions, we must try every

transversal of H̃ω in line 2 of the algorithm in every iteration, and proceed with these

extensions recursively, in a depth-first search manner. If we would like to find just

one solution (if there is one at all), then it is sufficient to add a minimal transversal

of H, but still we must try every minimal transversal in every iteration, leading to

an exponential running time. The example of Sec. 4 below shows that this cannot be

avoided, since it is possible that certain transversals lead to a contradiction, while

other transversals give a solution. Also, in Sec. 5 we prove that even deciding the

existence of an interpolating quasi-polynomial function is an NP-complete problem,

hence an effective algorithm cannot be expected unless P = NP.
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To determine the whole version space, i.e., the set of all interpolating quasi-

polynomial functions, one needs to compute all possible systems of sets Sω(ω ∈ Ω),

and then one can define the corresponding local utility functions ϕ : X → B by

ϕ(a) = {ω ∈ Ω : a ∈ Sω}. After computing all such maps ϕ, one can select those

for which ϕ(a) ∈ L holds for all a ∈ X. Then using the construction of Sec. 3.1

one can determine the corresponding polynomial functions p for each ϕ. Recall that

the coefficients c−I,ϕ, c
+
I,ϕ belong to B, but we need only the elements of L that lie

between c−I,ϕ and c+I,ϕ.

Example 8. Note that the current setting is strictly more general than that

of the previous section. To illustrate this, let X = {0, a, 1} = L and C =

{(0, 1), (1, 0), (a, a), (1, 1)}. (The ordering on L is 0 < a < 1, i.e., L is a three-

element chain. Then B can be chosen as {0, a, a′, 1} with 0 < a, a′ < 1.) Consider

f : C → L given by

f(a, a) = 0,

f(0, 1) = f(1, 0) = a,

f(1, 1) = 1.

Using Theorem 1, we can verify that there is no polynomial function that would

interpolate f on C (even if considered over the Boolean lattice B extending L).

However, taking ϕ : X → L given by ϕ(0) = ϕ(a) = 0 and ϕ(1) = 1, we get

c−∅,ϕ = c+∅,ϕ = 0,

c−{1},ϕ = c+{1},ϕ = c−{2},ϕ = c+{2},ϕ = a,

c−{1,2},ϕ = c+{1,2},ϕ = 1.

Hence, p = p−ϕ = p+ϕ = (a ∧ x1) ∨ (a ∧ x2) ∨ (1 ∧ x1 ∧ x2), and it is not difficult to

verify that U = p ◦ ϕ indeed interpolates f .

Remark 9. Let U : X1 × · · · × Xn → L be a pseudo-polynomial function of the

form (5). Assume (without loss of generality) that the sets X1, . . . , Xn are pairwise

disjoint, and let X = X1 ∪ · · · ∪ Xn and ϕ = ϕ1 ∪ · · · ∪ ϕn. Consider the quasi-

polynomial function Ũ : Xn → L defined by Ũ(x) = p(ϕ(x1), . . . , ϕ(xn)). Observe

that X1 × · · · × Xn ⊆ Xn and the restriction of Ũ to X1 × · · · × Xn coincides

with U . Thus, every pseudo-polynomial function can be viewed as a restriction of a

quasi-polynomial function. Conversely, if p(ϕ(x1), . . . , ϕ(xn)) is a quasi-polynomial

function over X, then its restriction to X1×· · ·×Xn is a pseudo-polynomial function

corresponding to the local utility functions ϕi = ϕ|Xi
(i = 1, . . . , n). This observa-

tion allows us to use Algorithm 1 almost verbatim to solve the Pseudo-polynomial

Interpolation Problem.
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4. An Example

We illustrate the construction of the version space outlined in the previous section

on a simple example. Although this is only a “toy” example, it might be helpful to

give a concrete interpretation. Assume that we are evaluating patients using four

different medical tests, and we would like to decide the course of action to follow

based on the results of these tests. Our setup is the following:

• L = {0, a, 1}, where 0 means “no action to take”, a means “no treatment is

necessary, but the patient should be monitored” and 1 means “start treatment”.

We take the natural ordering 0 < a < 1 on L.

• X = {P, S, I, N}, where P means “the test is positive”, S means “only slight

abnormality is detected”, I means “the test is inconclusive” and N means “the

test is negative”. We do not need an order structure on X, however, it seems

natural to consider the following partial order: N < S, I < P.

• C = {(S, P, N, S), (P, N, S, S), (N, P, I, I), (S, I, P, N), (I, I, P, S)}, and the function

f : C → L is given by

f(S, P, N, S) = 0, f(S, I, P, N) = 1,

f(P, N, S, S) = a, f(I, I, P, S) = 1,

f(N, P, I, I) = a.

The lattice L can be embedded into the power set of a two-element set Ω =

{ω1, ω2}, hence we have B = P(Ω), and we regard the elements of L as subsets

of Ω:

0 = ∅, a = {ω1}, 1 = {ω1, ω2}.

Note that B = {0, a, a′, 1}, where a′ = {ω2}. One can interpret ω1 as “monitor

patient” and ω2 as “start treatment”. Then a′ would mean “start treatment without

monitoring the patient”, which is naturally excluded from the set of possible options.

Let us compute (some of) the sets Sω1
that satisfy the conditions of Theorem 6.

Starting with Sω1 = ∅, we obtain Ẽω1 =
{
{P, S, I, N}, {P, I, N}, {P, S, N}, {P, S, I}

}

by (9). The hypergraph H̃ω1
=
(
X, Ẽω1

)
has 4 minimal transversals, namely

{P}, {S, I}, {S, N}, {I, N}. Any subset of X containing one of these sets is a transver-

sal; there are altogether 12 transversals, and we should examine each one of them

in order to find all solutions. This is rather tedious, hence we give the details only

for the minimal transversals.

Setting Sω1
= {P}, we obtain Ẽω1

=
{
{I, N}

}
, hence we must add either I or N

to Sω1 . In the former case we get Ẽω1
= ∅, which yields the solution Sω1

= {P, I}. In

the latter case we have Sω1
= {P, N} and Ẽω1

=
{
{S, I}

}
, hence one of S and I must

be added to Sω1 . The case Sω1 = {P, S, N} gives Ẽω1 = {∅}, and the corresponding

hypergraph has no transversals. The case Sω1
= {P, I, N} gives Ẽω1

= ∅, and this

means that there are no edges that need to be covered, i.e., Sω1 = {P, I, N} is a

transversal of Hω. The rest of the computation is shown on Fig. 2. Note that if we
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Sω1 = ∅, Ẽω1 =
{
{P, I, N} , {P, S, N} , {P, S, I} , {P, S, I, N}

}

Sω1 = {P}, Ẽω1 =
{
{I, N}

}

Sω1 = {P, I}, Ẽω1 = ∅ −→ output {P, I}

Sω1 = {P, N}, Ẽω1 =
{
{S, I}

}

Sω1 = {P, S, N}, Ẽω1 =
{
∅
}

−→ output fail

Sω1 = {P, I, N}, Ẽω1 = ∅ −→ output {P, I, N}

Sω1 = {S, I}, Ẽω1 = ∅ −→ output {S, I}

Sω1 = {S, N}, Ẽω1 =
{
{P}, {I}

}

Sω1 = {P, S, I, N}, Ẽω1 = {∅} −→ output fail

Sω1 = {I, N}, Ẽω1 = ∅ −→ output {I, N}

Fig. 2. Computing Sω1 .

had started with Sω1 = {S, N} instead of Sω1 = {P} at the beginning, then we would

have gotten no solutions. This illustrates that one must search the whole tree of

possibilities in order to guarantee that a solution will be found if there is one.

Figure 3 shows the computations for Sω2
, again only working with minimal

transversals. Taking into account non-minimal transversals as well, one obtains all

possible sets Sω1 and Sω2 :

Sω1
: {P, I}, {S, I}, {I, N}, {P, S, I}, {P, I, N};

Sω2
: {P}, {I}, {S, I}, {I, N}, {P, S, I}, {S, I, N}.

Sω2 = ∅, Ẽω2 =
{
{P, S, I} , {P, S, I, N}

}

Sω2 = {P}, Ẽω2 = ∅ −→ output {P}

Sω2 = {S}, Ẽω2 =
{
{I}, {P, I}

}

Sω2 = {S, I}, Ẽω2 = ∅ −→ output {S, I}

Sω2 = {I}, Ẽω2 = ∅ −→ output {I}

Fig. 3. Computing Sω2 .
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There are 30 possibilties for the systems of sets Sω(ω ∈ Ω), hence there are 30 maps

ϕ : X → B for which an interpolating polynomial exists over B. However, if there

is an element u ∈ Sω2\Sω1 , then ϕ(u) = a′ /∈ L. Therefore, it sufficies to consider

the cases where Sω2
⊆ Sω1

, giving 13 local utility functions ϕ : X → L.

If we consider the partial ordering N < S, I < P on X and we look only for order-

preserving maps ϕ, then we have only 3 possibilities. We give the corresponding

polynomial functions p−ϕ and p+ϕ only for these cases (to facilitate readability we

omit the symbol ∧ and use juxtaposition instead):

• Sω1
= {P, S, I}, Sω2

= {P, S, I}: In this case we have

ϕ(P) = 1, ϕ(S) = 1, ϕ(I) = 1, ϕ(N) = 0;

p−ϕ = y1y2y3 ∨ ay1y3y4 ∨ ay2y3y4, p+ϕ = ay3 ∨ y1y2y3.
• Sω1 = {P, I}, Sω2 = {P}: In this case we have

ϕ(P) = 1, ϕ(S) = 0, ϕ(I) = a, ϕ(N) = 0;

p−ϕ = ay1 ∨ a′y3 ∨ y1y3 ∨ y2y3, p+ϕ = ay1 ∨ y3 ∨ y4 ∨ y1y2.
Here p−ϕ involves a′ as a coefficient, hence it is not a polynomial over L. The least

polynomial p over L satisfying p−ϕ ≤ p is obtained by replacing a′ by 1:

p = ay1 ∨ 1y3 ∨ y1y3 ∨ y2y3 = ay1 ∨ y3.
Probably this is the simplest polynomial over L that lies between p−ϕ and p+ϕ ; the

corresponding quasi-polynomial U(x) = aϕ(x1) ∨ ϕ(x3) depends only on x1 and

x3, which shows that the first and the third tests are sufficient in order to choose

the action to take.

• Sω1
= {P, S, I}, Sω2

= {P}: In this case we have

ϕ(P) = 1, ϕ(S) = a, ϕ(I) = a, ϕ(N) = 0;

p−ϕ = a′y3 ∨ y1y2y3 ∨ y1y3y4 ∨ y2y3y4, p+ϕ = y3 ∨ a′y4 ∨ a′y1y2.
Again a′ appears in the polynomials; we need to replce it by 1 in p−ϕ and by 0 in

p+ϕ to all find polynomials p over L such that p−ϕ ≤ p ≤ p+ϕ . After simplification,

we get the polynomial y3 in both cases. This means that for this local utility

function the interpolating quasi-polynomial is unique: U(x) = ϕ(x3); revealing

the fact that the third test alone can determine the recommended action to take.

5. Complexity of Quasi-Polynomial Interpolation

In Sec. 3, we gave an algorithm that constructs all quasi-polynomial functions inter-

polating a given partial function f : C → L (C ⊆ Xn). We noticed that even if

one looks for only one interpolating quasi-polynomial, the algorithm still involves

finding minimal transversals in hypergraphs, which is an NP-complete problem [14].

In this section we prove that this difficulty is not avoidable, as already for n = 4,

it is an NP-complete problem to decide whether an interpolating quasi-polynomial
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exists. However, as we shall see, for n ≤ 3 this problem can be solved in polynomial

time. For background on complexity theory we refer the reader to [14].

We introduce and study the following two decision problems. We call the first one

the n-ary existential pseudo-polynomial interpolation problem for a finite distributive

lattice L with |L| ≥ 2.

Problem Pseudo(n,L): Given finite sets X1, . . . , Xn, a subset C ⊆ X1× · · ·×Xn

and a partial function f : C → L, decide whether there exist an n-ary lattice

polynomial operation p on L and maps

ϕ1 : X1 → L, . . . , ϕn : Xn → L

such that

p(ϕ1(x1), . . . , ϕn(xn)) = f(x1, . . . , xn)

for all (x1, . . . , xn) ∈ C.
The corresponding n-ary existential quasi-polynomial interpolation problem for

L can be formulated as follows.

Problem Quasi(n,L): Given a finite set X, a subset C ⊆ Xn and a partial function

f : C → L, decide whether there exist an n-ary lattice polynomial operation p on

L and a map ϕ : X → L such that

p(ϕ(x1), . . . , ϕ(xn)) = f(x1, . . . , xn)

for all (x1, . . . , xn) ∈ C.
We note that both problems are in the complexity class NP. Indeed, for problem

Pseudo(n,L),

p, ϕ1, . . . , ϕn

is a linear size certificate that witnesses all of the equalities

f(x1, . . . , xn) = p(ϕ1(x1), . . . , ϕn(xn)), (x1, . . . , xn) ∈ C,
in polynomial time. One obtains similarly that Quasi(n,L) is in NP. We also note

that by Remark 9, it follows immediately that Pseudo(n,L) has a polynomial time

reduction to Quasi(n,L).

Our aim is to determine the complexity of Quasi(n,L) for each n. First let us

observe that it is sufficient to consider the case where L is the two-element lattice.

Indeed, if L is any finite distributive lattice, then, as before, we embed L into a

power set P(Ω) of a finite set Ω, and consider the elements ω ∈ Ω separately, as

we did in Sec. 3.2. In this way we can translate Quasi(n,L) to |Ω| many problems

with two-element lattices P({ω}). By Theorem 6, a “global” solution exists if and

only if each one of these “local” problems has a solution. Therefore, in the sequel

we will always assume that L = {0, 1}.
We will examine the complexity of our interpolation problem with the help of

certain constraint satisfaction problems that are related to upsets in the Boolean
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lattice Ln = {0, 1}n. We say that a subset α ⊆ Ln is an upset (order filter) if for all

a1,a2 ∈ Ln, a1 ∈ α and a1 ≤ a2 (in the componentwise ordering) imply a2 ∈ α. We

will denote the complement of α by β, i.e., β = Ln\α. Observe that β is a downset

(order ideal): b1 ∈ β and b1 ≥ b2 imply b2 ∈ β for all b1,b2 ∈ Ln. For every upset

α ⊆ Ln we define a problem P(α) as follows.

Problem P(α). Given a finite set V of variables and sets of n-tuples A,B ⊆ V n,

find an assignment ψ : V → L such that ψ(a) ∈ α for all a ∈ A and ψ(b) ∈ β =

Ln\α for all b ∈ B.

Note that P(α) is a Boolean constraint satisfaction problem, hence, by Schaefer’s

dichotomy theorem for Boolean CSP, it is either in P or it is NP-complete [24].

Lemma 10. Let L = {0, 1} be the two-element lattice, let X be a finite set and

consider a function f : C → L, where C ⊆ Xn. There exists a quasi-polynomial

function interpolating f if and only if P(α) has a solution for some upset α ⊆ Ln

with V = X and

A = {a ∈ C : f(a) = 1}, B = {b ∈ C : f(b) = 0}.

Proof. Let us apply Theorem 6 to the lattice L = {0, 1}. In this case we have

Ω = {ω}, and the elements 0 and 1 of L are represented by the sets ∅ and {ω}. A map

ϕ : X → L can be given by a single set Sω = {a ∈ X : ϕ(a) = 1}, and the hyperedges

of the hypergraph Hω are of the form Eω(a,b) = {ai : bi /∈ Sω} = {ai : ϕ(bi) = 0}
for a,b ∈ C with ω ∈ f(a)\f(b). Since both f(a) and f(b) are either ∅ or {ω}, the

condition ω ∈ f(a)\f(b) is satisfied if and only if f(a) = {ω} = 1 and f(b) = ∅ = 0.

Thus we have

Eω = {{ai : ϕ(bi) = 0} : a,b ∈ C such that f(a) = 1 and f(b) = 0}.

If v ∈ Eω(a,b)∩Sω, then v = ai with ϕ(bi) = 0 (since v ∈ Eω(a,b)) and ϕ(ai) = 1

(since v ∈ Sω). Therefore, the intersection Eω(a,b) ∩ Sω is nonempty iff there is

an i ∈ [n] such that ϕ(ai) = 1 and ϕ(bi) = 0. Note that the latter condition means

that ϕ(a) � ϕ(b) in the componentwise ordering of n-tuples over L = {0, 1}. (We

use the shorthand notation ϕ(a) = (ϕ(a1), . . . , ϕ(an)).) We conclude that Sω is a

transversal of Hω if and only if

∀a,b ∈ C : (f(a) = 1 and f(b) = 0)⇒ ϕ(a) � ϕ(b), (10)

and by Theorem 6, this is equivalent to the existence of an interpolating quasi-

polynomial function with the local utility function ϕ.

(Note that the implication in (10) can be reformulated as ϕ(a) ≤ ϕ(b)⇒ f(a) ≤
f(b). This gives an alternative way of proving that (10) is equivalent to the existence

of a polynomial p such that f(c) = p(ϕ(c)) for all c ∈ C, since lattice polynomial

functions coincide with nondecreasing functions over the two-element lattice.)
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Assume that ϕ satisfies (10), and let α be the least upset containing ϕ(a) for all

a ∈ A:

α := {y ∈ Ln : y ≥ ϕ(a) for some a ∈ A}.
Obviously, we have ϕ(a) ∈ α for all a ∈ A, and (10) implies that ϕ(b) /∈ α for all

b ∈ B. Thus, ϕ is a solution of the problem P(α) with X being the set of variables.

Conversely, if α ⊆ Ln is an arbitrary upset and ϕ is a solution of P(α), then it

is immediate that ϕ satisfies (10).

According to Lemma 10, we can split Quasi(n,L) into finitely many subprob-

lems P(α) with α running through the set of upsets of Ln. If each of these subprob-

lems can be solved in polynomial time, then the whole problem is in P. As the next

theorem shows, this is the case for n ≤ 3.

Theorem 11. If n ≤ 3, then Quasi(n,L), and hence Pseudo(n,L), belongs to the

complexity class P.

Proof. Clearly, it suffices to prove the theorem for n = 3. By Lemma 10, we only

need to show that P(α) is in P for every upset α ⊆ L3. Up to permutations of

variables, we have the 8 cases listed below. For each upset α we give a polymorphism

h of the constraint language {α, β} that shows that P(α) belongs to P by Schaefer’s

dichotomy theorem. (For better readability we write elements of L3 as words.)

α = {111} h = x ∧ y
α = {101, 111} h = x ∧ y
α = {101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {100, 101, 110, 111} h = x ∧ y
α = {011, 101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {011, 100, 101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {010, 011, 100, 101, 110, 111} h = x ∨ y
α = {001, 010, 011, 100, 101, 110, 111} h = x ∨ y

For n ≥ 4 one can find upsets α ⊆ Ln such that P(α) is NP-complete. This does

not yield immediately NP-completeness of the interpolation problem, since there

might be “easy” solutions corresponding to some other upsets. Nevertheless, in the

next theorem we prove that Quasi(n,L) is indeed NP-complete for n ≥ 4.

Theorem 12. If n ≥ 4, then problem Quasi(n,L) is NP-complete.

Proof. Clearly, it suffices to prove the theorem for n = 4. Let α ⊆ {0, 1}4
be the upset consisting of tuples of Hamming weight at least 3, that is, α :=

{0111, 1011, 1101, 1110, 1111}. In this case the constraint language {α, β} admits

only projections as polymorphisms, thus P(α) is NP-complete, by Schaefer’s

dichotomy theorem.
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For every instance of P(α) we construct an instance of the quasi-polynomial

interpolation problem with L = {0, 1} and n = 4 such that the solutions ψ of

the former are in a one-to-one correspondence with the local utility functions ϕ

that solve the latter. So assume that V and A,B ⊆ V 4 are given, as in P(α). Let

X = V ∪̇{0, 1}, C = A∪B ∪̇{0, 1}4 (where ∪̇ denotes disjoint union) and f : C → L4

such that

∀a ∈ A ∪ α : f(a) = 1 and ∀b ∈ B ∪ β : f(b) = 0.

(Note that 0 and 1 belong to both X and L, hence they play the role of “variables”

as well as the role of “values”.) We claim that a map ϕ : X → L satisfies (10), which,

as we have seen in Lemma 10, is equivalent to the existence of an interpolating

quasi-polynomial function, if and only if ϕ(0) = 0 and ϕ(1) = 1, and the restriction

ψ := ϕ|V of ϕ to V is a solution of P(α).

First suppose that ϕ satisfies (10). This immediately implies that ϕ(a) � ϕ(b)

for all a ∈ α and b ∈ β, and it easy to see that this holds if and only if ϕ(0) = 0

and ϕ(1) = 1. Now applying (10) with a ∈ A, b ∈ β, we get ϕ(a) � ϕ(b) = b; in

particular, ϕ(a) 6= b. Since this holds for all b ∈ β, we have that ϕ(a) /∈ β, i.e.,

ϕ(a) ∈ α. A similar argument shows that ϕ(b) ∈ β for all b ∈ B, and this proves

that ψ = ϕ|V is indeed a solution to P(α).

Next assume that ψ is a solution of P(α), and let ϕ : X → L coincide with ψ

on V , and let ϕ(0) = 0, ϕ(1) = 1. Then we have ϕ(a) ∈ α for all a ∈ A ∪ α (if

a ∈ A then by the constraints of P(α), if a ∈ α then by the fact that ϕ(a) = a),

and similarly, ϕ(b) ∈ β for all b ∈ B ∪β. Therefore, if f(a) = 1 and f(b) = 0, then

ϕ(a) ∈ α and ϕ(b) ∈ β, and this implies that ϕ(a) � ϕ(b), hence (10) holds.

This proves that P(α) reduces to Quasi(n,L) in polynomial time, showing that

the latter problem is also NP-complete.

Summarizing Theorems 11 and 12, we obtain the following dichotomy result.

Corollary 13. If n ≤ 3 then the problem of deciding the existence of an interpo-

lating quasi-polynomial function is in P, whereas for n ≥ 4 it is NP-complete.

Remark 14. In order to determine the complexity of Pseudo(n,L), one could

study the following analogue of problem P(α) (here α ⊆ {0, 1}n is an upset, as

before):

Given a finite set V of variables partitioned into n parts V = V1∪̇ · · · ∪̇Vn and

sets of n-tuples A,B ⊆ V1 × · · · × Vn, find an assignment ψ : V → L such that

ψ(a) ∈ α for all a ∈ A and ψ(b) ∈ β = Ln\α for all b ∈ B.

The difference compared to P(α) is that the set V is partitioned into n disjoint

sets, and in the constraints a ∈ A and b ∈ B the i-th coordinate must come from Vi.

Thus the above problem is a subproblem of P(α), where we have some restriction on

the structure of the sets A,B ⊆ V n. Further research is needed to decide whether

this restriction makes the problem easier. Thus, the question if Pseudo(n,L) is

NP-complete remains open for n ≥ 4 and |L| ≥ 2.
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6. Concluding Remarks and Future Work

In this paper, we considered the problem of interpolating empirical data given as

couples consisting of a tuple specified by several attributes, together with its evalu-

ation in a distributive lattice. The interpolating objects are lattice-valued functions,

called quasi- and pseudo-polynomial functions, that can be factorized into a compo-

sition of a lattice polynomial function with possibly different local utility functions

that evaluate each attribute in a distributive lattice. We presented necessary and

sufficient conditions for the existence of quasi- and pseudo-polynomial functions

interpolating a given finite set of examples. In doing so, we actually presented

explicit descriptions of such solutions when they exist. Looking into complexity

issues in computing them, we established a dichotomy result stating that, up to

3 attributes, the existence of an interpolationg quasi-polynomial function can be

decided in polynomial time, whereas this problem for sets of examples over more

than 3 attributes becomes NP-complete. The analogous complexity question for

pseudo-polynomial functions remains open.

Now our framework was motivated by problems typically arising in the quali-

tative approach to multicriteria decision making. The basic aggregation functions

considered, namely, lattice polynomial functions (that include Sugeno integrals),

have neat representations, e.g., by disjunctive normal forms, and played a key role

in the constructions provided. Other noteworthy aggregation functions in decision

making, such as Lovász extensions (that include Choquet integrals), also share simi-

lar representation features. The natural step is to make use of them when considering

analogous interpolation problems for these aggregation models.

Furthermore, simplified notions of Sugeno and Choquet integrals (parametrized

versions arising from the notions of k-maxitivity and k-additivity; see [16] for a gen-

eral reference) have been proposed in the literature and could provide alternatives

to avoid intractable complexity classes when dealing with interpolation problems.

These constitute few topics of our current interest, and that will be tackled in

forthcoming research work.
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