
Posets of minors of functions
in multiple-valued logic

Erkko Lehtonen
Technische Universität Dresden

Institut für Algebra
01062 Dresden, Germany

Email: Erkko.Lehtonen@tu-dresden.de

Tamás Waldhauser
University of Szeged

Bolyai Institute
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Abstract—We study the structure of the partially ordered set
of minors of an arbitrary function of several variables. We give
an abstract characterization of such “minor posets” in terms of
colorings of partition lattices, and we also present infinite families
of examples as well as constructions that can be used to build
new minor posets.

I. INTRODUCTION

Traditionally, multiple-valued logic deals with truth func-
tions of the form 𝑓 : 𝐴𝑛 → 𝐴, where 𝐴 is a finite set of
truth values. We slightly generalize this setup by allowing the
domain and the codomain of the function to be different sets,
and we do not assume that they are finite sets. We investigate
the partially ordered set of functions that can be obtained from
an arbitrary 𝑛-variable function 𝑓 : 𝐴𝑛 → 𝐵 via identifications
of variables. Such functions are called minors of 𝑓 , and they
are naturally partially ordered, since some minors of 𝑓 can
be also minors of each other; we shall use the symbol ↓𝑓
to denote this poset of minors of the function 𝑓 . In fact, the
minor relation is a partial order on the set ℱ𝐴𝐵 of all functions
of several variables from 𝐴 to 𝐵, if we regard functions
differing only in inessential variables and/or in the order of
their variables as equivalent. Our goal is to characterize the
principal ideals ↓𝑓 of this poset up to isomorphism (see
Figure 2). We give the precise definitions in Section II; here
we present only an illustrative example.

Example 1. Let us consider the function 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
𝑥1𝑥3+𝑥2+𝑥4 over the 2-element field. Identifying the first two
variables, we obtain the minor 𝑔 (𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑥, 𝑦, 𝑧) =
𝑥𝑦 + 𝑥 + 𝑧. If we identify the first and the fourth variable,
then we get 𝑓 (𝑥, 𝑦, 𝑧, 𝑥) = 𝑥𝑧 + 𝑦 + 𝑥, which is the same as
𝑔 (𝑥, 𝑧, 𝑦), hence we consider this minor to be the same as (or
equivalent to) 𝑔. On the other hand, identifying the first and
third variables of 𝑓 , we obtain a new minor 𝑓 (𝑥, 𝑦, 𝑥, 𝑧) =
𝑥+𝑦+𝑧, and one can verify that there are no other 3-variable
minors of 𝑓 . Identification of the second and fourth variables
yields the minor ℎ (𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧, 𝑦) = 𝑥𝑧, which has
formally 3 variables, but depends only on 2 of them. Note that
𝑔 (𝑥, 𝑦, 𝑥) = 𝑥𝑦 is equivalent to ℎ, hence ℎ is a minor of 𝑔.
Examining all possible variable identifications, we see that 𝑓
has altogether 6 minors up to equivalence, which form the
poset shown in Figure 1.

Fig. 1.

Looking only at the Hasse diagram of Figure 1 (ignoring the
labels), it is not at all clear, whether there is a function whose
minors give this poset, and this is exactly the problem that we
consider in this paper. After recalling the necessary definitions
and introducing some formalism for minors in Section II, we
present a characterization of such “minor posets” by means of
admissible colorings of partition lattices in Section III. Then,
in Section IV we use this characterization to give some infinite
families of examples of minor posets, and we also present
some operations that allow us to construct new minor posets
from known ones. However, it still remains an open problem
to find a finite bounded poset that is not the poset of minors
of any function, if there is such a poset at all.

II. PRELIMINARIES

A. Posets

For a bounded poset 𝑃 , let ⊥𝑃 and ⊤𝑃 denote its least
and greatest elements; we drop the subscript when there is no
danger of ambiguity. The dual of a poset 𝑃 is the poset 𝑃 𝑑

obtained by reversing the ordering of 𝑃 (drawing the Hasse
diagram of 𝑃 upside down). The interval [𝑎; 𝑏] in 𝑃 is the set
{𝑥 ∈ 𝑃 : 𝑎 ≤ 𝑥 ≤ 𝑏}. The principal ideal generated by 𝑎 ∈ 𝑃
is the interval ↓𝑎 := [⊥𝑃 ; 𝑎], and the principal filter generated
by 𝑎 is the interval [𝑎;⊤𝑃 ].

We denote the 𝑛-element chain by n, and 𝑀𝑛 denotes
the bounded poset (in fact, lattice) of size 𝑛 + 2 with no
comparabilities among its elements except for the top and
bottom elements. The ordinal sum (linear sum) of posets 𝑃
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and 𝑄 is the poset 𝑃 ⊕ 𝑄 obtained by putting 𝑄 “on top
of” 𝑃 . With this notation we have n = 1⊕ ⋅ ⋅ ⋅ ⊕ 1︸ ︷︷ ︸

𝑛

and

𝑀𝑛 = 1⊕ (
1 ⋅∪ ⋅ ⋅ ⋅ ⋅∪1︸ ︷︷ ︸

𝑛

)⊕ 1.

By a coloring of a poset we mean an onto map 𝑐 : 𝑃 → 𝐶,
where 𝐶 is an arbitrary nonempty set, whose elements are
referred to as colors. Given such a coloring, we can introduce
a relation 𝜌 on 𝐶 by 𝑢𝜌𝑣 ⇐⇒ ∃𝑎, 𝑏 ∈ 𝑃 : 𝑎 ≤ 𝑏 and
𝑐 (𝑎) = 𝑢, 𝑐 (𝑏) = 𝑣. If 𝜌 is a partial order (which is not
always the case), we obtain the “poset of colors” (𝐶; 𝜌), and
in this case we will use the symbol ≤ instead of 𝜌. Note that
(𝐶;≤) can be naturally identified with the poset of equivalence
classes with respect to the kernel of the map 𝑐, hence we shall
denote this quotient poset by 𝑃/ ker 𝑐.

B. Partitions

For any nonempty set 𝑉 , let Π𝑉 denote the set of all
partitions of 𝑉 ; if 𝑉 = [𝑛] := {1, . . . , 𝑛} then we simply
write Π𝑛. Each partition 𝛼 ∈ Π𝑉 corresponds naturally to an
equivalence relation 𝜌𝛼 ⊆ 𝑉 ×𝑉 . For notational convenience,
we will sometimes use the same symbol for a partition and
the corresponding equivalence relation, when there is no risk
of ambiguity. For example, we denote the block of 𝛼 ∈ Π𝑉

containing 𝑣 ∈ 𝑉 by 𝑣/𝛼 instead of the more usual notation
𝑣/𝜌𝛼. Similarly, we use the symbol kerℎ not only for the
kernel of a map ℎ : 𝑉 → 𝐴, but also for the corresponding
partition in Π𝑉 .

For 𝛼, 𝛽 ∈ 𝑉 , we say that 𝛼 is a refinement of 𝛽 and 𝛽 is a
coarsening of 𝛼 (denoted by 𝛼 ≤ 𝛽) if every block of 𝛼 is a
subset of some block of 𝛽 (equivalently, 𝜌𝛼 ⊆ 𝜌𝛽). The poset
(Π𝑉 ;≤) is a lattice, where 𝛼∧𝛽 is the partition corresponding
to 𝜌𝛼 ∩ 𝜌𝛽 and 𝛼 ∨ 𝛽 is the partition corresponding to the
transitive closure of 𝜌𝛼 ∪ 𝜌𝛽 . The top element of Π𝑉 is ⊤ =
{𝑉 } and the bottom element is ⊥ = {{𝑣} : 𝑣 ∈ 𝑉 }. If 𝛼 < 𝛽
and there is no partition 𝜉 with 𝛼 < 𝜉 < 𝛽 then 𝛽 is an upper
cover of 𝛼 (𝛼 is a lower cover of 𝛽), and we shall denote
this by 𝛼 ≺ 𝛽. Note that in this case 𝛽 is obtained from 𝛼 by
merging two blocks; in particular, 𝜗 ≺ ⊤ holds if and only if
𝜗 has exactly two blocks.

Ore proved in [4] that every automorphism of Π𝑉 is
induced by a permutation of 𝑉 . It follows immediately that
every isomorphism between partition lattices is induced by a
bijection between the underlying sets. More precisely, let 𝑉
and 𝑊 be nonempty sets, and let 𝜋 : 𝑉 → 𝑊 be a bijection.
For any partition 𝛼 = {𝑉1, . . . , 𝑉𝑘} ∈ Π𝑉 , let 𝜋 (𝛼) =
{𝜋 (𝑉1) , . . . , 𝜋 (𝑉𝑘)} ∈ Π𝑊 . Obviously, 𝜋 : Π𝑉 → Π𝑊 is an
isomorphism. With this notation we can recast Ore’s theorem
in the following form.

Theorem 2 ([4]). For arbitrary sets 𝑉 and 𝑊 , every isomor-
phism between Π𝑉 and Π𝑊 is of the form 𝜋 for some bijection
𝜋 : 𝑉 →𝑊 .

Although Π𝑉 is not a modular lattice if ∣𝑉 ∣ > 3, the follow-
ing special case of the isomorphism theorem for perspective
intervals in modular lattices does hold.

Fact 3. Let 𝛼, 𝛾, 𝜗 ∈ Π𝑉 with 𝛼 ≤ 𝜗 ≺ ⊤ and 𝛼 ≺ 𝛾 ≰ 𝜗. If
one of the blocks of 𝛼 is also a block of 𝜗, then the following
two maps are mutually inverse isomorphisms between the
intervals [𝛼;𝜗] and [𝛾;⊤]:

[𝛼;𝜗] → [𝛾;⊤] , 𝜉 �→ 𝜉 ∨ 𝛾;
[𝛾;⊤] → [𝛼;𝜗] , 𝜉 �→ 𝜉 ∧ 𝜗.

Remark 4. The intervals [𝛼;𝜗] and [𝛾;⊤] in Fact 3 are both
isomorphic to the partition lattice on ∣𝛼∣ − 1 = ∣𝛾∣ elements,
hence from Theorem 2 we see that up to permutations of blocks
of 𝛼, the only isomorphism from [𝛼;𝜗] to [𝛾;⊤] is 𝜉 �→ 𝜉 ∨ 𝛾.

C. Functions and their minors

A function of several variables is a map of the form
𝑓 : 𝐴𝑛 → 𝐵, where 𝐴 and 𝐵 are arbitrary nonempty sets,
and 𝑛 is a natural number, called the arity of 𝑓 . To avoid
degenerate cases, the sets 𝐴 and 𝐵 will be assumed to have at
least two elements. The set of all such functions (of arbitrary
arities) is denoted by ℱ𝐴𝐵 . We say that the 𝑖-th variable of
𝑓 is essential (or that 𝑓 depends on its 𝑖-th variable) if there
exist tuples a,a′ ∈ 𝐴𝑛 differing only in their 𝑖-th coordinate
such that 𝑓 (a) ∕= 𝑓 (a′).

For 𝑓, 𝑔 ∈ ℱ𝐴𝐵 , we say that 𝑔 is a minor of 𝑓 (nota-
tion: 𝑔 ≤ 𝑓 ), if there is a map 𝜎 : [𝑛] → [𝑚] such that
𝑔 (𝑥1, . . . , 𝑥𝑚) = 𝑓

(
𝑥𝜎(1), . . . , 𝑥𝜎(𝑛)

)
, where 𝑛 and 𝑚 denote

the arities of 𝑓 and 𝑔, respectively. It is easy to see that
𝑔 ≤ 𝑓 holds if and only if 𝑔 can be obtained from 𝑓 by
identification of variables, permutation of variables and/or
addition or deletion of inessential variables. The minor relation
is a quasiorder on ℱ𝐴𝐵 , and the corresponding equivalence of
functions is defined and denoted by 𝑓 ≡ 𝑔 ⇐⇒ 𝑓 ≤ 𝑔
and 𝑔 ≤ 𝑓 . Two functions are equivalent if and only if they
can be obtained from each other by permutation of variables
and/or addition or deletion of inessential variables, whereas
to form a proper minor 𝑔 < 𝑓 (meaning 𝑔 ≤ 𝑓 but 𝑔 ∕≡ 𝑓 ),
one must identify at least two essential variables. Considering
functions only up to equivalence, as we shall do in this paper,
one obtains the poset (ℱ𝐴𝐵/≡;≤), which is our main object
of study. The structure of this poset is quite complicated; for
instance, it has been shown in [1] that it contains a copy of
the poset of finite subsets of a countable set (hence a copy of
every finite poset) even in the simplest case 𝐴 = 𝐵 = {0, 1}
(i.e., in the case of Boolean functions). In fact, (ℱ𝐴𝐵/≡;≤) is
universal for the class of countable posets with finite principal
ideals, whenever ∣𝐵∣ ≥ min(3, ∣𝐴∣) [3].

Here we deal with principal ideals of (ℱ𝐴𝐵/≡;≤). The
principal ideal ↓𝑓 generated by a function 𝑓 consists of the
minors of 𝑓 (up to equivalence), hence we call it the poset
of minors of 𝑓 , and we also say that 𝑃 is a minor poset
if there exists a function 𝑓 : 𝐴𝑛 → 𝐵 for some sets 𝐴,𝐵
and for some natural number 𝑛, such that 𝑃 ∼= ↓𝑓 . Clearly
↓𝑓 is a finite poset with largest element 𝑓/ ≡. Although
ℱ𝐴𝐵/ ≡ has no least element (but it has several minimal
elements), every function 𝑓 has a least minor, namely the
unary function 𝑓 (𝑥, . . . , 𝑥); see Figure 2. Therefore, every
minor poset is a finite bounded poset. We shall denote the
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Fig. 2.

class of all minor posets by ℳ, and our main goal is to
characterize members of ℳ by means of a necessary and
sufficient condition that does not refer to the existence of
a suitable function 𝑓 . In Corollary 17 we establish such a
“function-free” characterization; however, this involves quite
an intricate property that is not easy to verify for a concrete
poset. Therefore, in spite of this characterization, it is still not
clear whether all finite bounded posets are minor posets or
not. In Section IV we present some infinite families of minor
posets, and we prove that ℳ is closed under certain poset
constructions.

In order to present the promised characterization, we need to
introduce some more abstract formalism for tuples, functions
and minors (see [5]). An 𝑛-ary function from 𝐴 to 𝐵 can
be viewed as a map 𝑓 : 𝐴𝑉 → 𝐵, where 𝑉 is an arbitrary 𝑛-
element set (whose elements are considered to be the variables
of 𝑓 ), and the elements of 𝐴𝑉 are maps of the form a : 𝑉 → 𝐴
(evaluations of variables). Note that in the special case 𝑉 =
[𝑛], the elements of 𝐴𝑉 can be naturally identified with 𝑛-
tuples, and in this case we get back the usual notion of a
function of several variables. We will formulate our results in
this usual setting, but in the proofs we will also need the more
abstract view of functions allowing arbitrary finite sets as the
set of variables.

For a ∈ 𝐴𝑊 and 𝜎 : 𝑉 → 𝑊 , we can define the
composition a ∘ 𝜎 ∈ 𝐴𝑉 by (a ∘ 𝜎) (𝑣) = a (𝜎 (𝑣)). Minors
of 𝑓 are functions 𝑔 : 𝐴𝑊 → 𝐵 that can be given in the form
𝑔 (a) = 𝑓 (a ∘ 𝜎) for some map 𝜎 : 𝑉 → 𝑊 . If 𝛼 ∈ Π𝑉

is a partition, then let nat𝛼 denote the natural surjection
nat𝛼 : 𝑉 → 𝛼, 𝑣 �→ 𝑣/𝛼. The map nat𝛼 induces a minor
𝑓𝛼 : 𝐴

𝛼 → 𝐵, which is given by 𝑓𝛼 (a) = 𝑓 (a ∘ nat𝛼) for all
a ∈ 𝐴𝛼. Observe that 𝑓𝛼 is obtained from 𝑓 by identifying
variables belonging to the same block of 𝛼. Conversely, for
every map 𝜎 : 𝑉 → 𝑊 , the minor 𝑔 (a) = 𝑓 (a ∘ 𝜎) is
equivalent to 𝑓𝛼 with 𝛼 = ker𝜎. This shows that it suffices
to work with minors of the form 𝑓𝛼, and we shall record this
fact here for reference.

Fact 5. If 𝑓 : 𝐴𝑉 → 𝐵 and 𝑔 : 𝐴𝑊 → 𝐵 are arbitrary
functions, then

𝑔 ≤ 𝑓 ⇐⇒ ∃𝛼 ∈ Π𝑉 : 𝑔 ≡ 𝑓𝛼.

Fig. 3.

III. ADMISSIBLE COLORINGS

According to Fact 5, every minor of an 𝑛-variable function
𝑓 is equivalent to a function 𝑓𝛼 for some 𝛼 ∈ Π𝑛. This means
that we can encode all information about minors of 𝑓 into a
“coloring” 𝑐 of the partition lattice Π𝑛, where the color of
a partition 𝛼 is 𝑐 (𝛼) = 𝑓𝛼/ ≡. Actually, the only relevant
property of this coloring is that two minors receive the same
color if and only if they are equivalent. Clearly, we have
𝛽 ≥ 𝛼 =⇒ 𝑓𝛽 ≤ 𝑓𝛼. The following easy observation
formulates a kind of converse of this statement, showing that
we can recover the poset ↓𝑓 as the quotient of Π𝑛 by the
kernel of the aforementioned coloring 𝑐.

Proposition 6. For every function 𝑓 : 𝐴𝑛 → 𝐵 and for all
𝛼, 𝛽 ∈ Π𝑛, the function 𝑓𝛽 is a minor of 𝑓𝛼 if and only if
there exists a partition 𝛾 ≥ 𝛼 such that 𝑓𝛾 ≡ 𝑓𝛽 .

Proof: The “if” part of the statement is obvious. For the
“only if” part, assume that 𝑓𝛽 ≤ 𝑓𝛼. By Fact 5, this means
that there exists a partition 𝛿 ∈ Π𝛼 such that 𝑓𝛽 ≡ (𝑓𝛼)𝛿 . Let
𝛾 ∈ Π𝑛 be the partition obtained by merging the blocks of
𝛼 that belong to the same block of 𝛿. (More precisely, two
elements 𝑢, 𝑣 ∈ [𝑛] are 𝜌𝛾-related if and only if the 𝛼-blocks
𝑢/𝛼 and 𝑣/𝛼 are 𝜌𝛿-related.) Clearly, 𝛾 ≥ 𝛼 and (𝑓𝛼)𝛿 ≡ 𝑓𝛾 ,
hence 𝑓𝛽 ≡ 𝑓𝛾 .

Corollary 7. For every function 𝑓 : 𝐴𝑛 → 𝐵, the poset of
minors of 𝑓 is dually isomorphic to Π𝑛/ ker 𝑐 for the natural
coloring 𝑐 : Π𝑛 → ↓𝑓, 𝛼 �→ 𝑓𝛼/≡.

Example 8. Let us consider the function 𝑓 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
𝑥1𝑥3 + 𝑥2 + 𝑥4 of Example 1 once more. We have computed
there that 𝑓12/3/4 ≡ 𝑓14/2/3 ≡ 𝑔 > ℎ ≡ 𝑓1/24/3 and 𝑓13/2/4
is incomparable to 𝑔 and ℎ. (Here we use a simplified, but
hopefully clear notation for partitions.) Calculating 𝑓𝛼 for all
the 15 partitions of [4], we get a coloring of Π4 with 6 colors,
as shown in Figure 3. The partial order induced on the 6
colors is the dual of the poset of Figure 1.

Corollary 7 shows that we can obtain each minor poset as a
“poset of colors”, where the order on the colors is induced by a
suitable coloring of a partition lattice. Therefore, our main goal
is to characterize those colorings that can arise from a function.
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We define an abstract property of colorings of partition lattices,
called admissibility (see Definition 10), and in Corollary 17
we prove that admissibility is indeed a necessary and sufficient
condition for the existence of a function 𝑓 such that the given
coloring is induced by 𝑓 (as in Corollary 7).

Proposition 9. Let 𝑐 : Π𝑛 → 𝐶 be a coloring, and let 𝛼, 𝛽, 𝜗 ∈
Π𝑛 such that 𝛼 ≤ 𝜗 ≺ ⊤ and 𝛼 ≺ 𝛽 ≰ 𝜗. Then the following
two conditions are equivalent.

(i) For every 𝛾 ∈ Π𝑛 with 𝛼 ≺ 𝛾 ≰ 𝜗 (in particular, for
𝛾 = 𝛽), the map

𝜑𝛾 : [𝛼;𝜗] → [𝛾;⊤] , 𝜉 �→ 𝜉 ∨ 𝛾
is a color-preserving isomorphism (cf. Fact 3).

(ii) One of the blocks of 𝛼 is also a block of 𝜗 and

∀𝜉 ∈ [𝛼;⊤] : 𝑐 (𝜉) = 𝑐 (𝜉 ∧ 𝜗) .
Definition 10. Let 𝑐 : Π𝑛 → 𝐶 be an arbitrary coloring, and
let 𝛼, 𝛽 ∈ Π𝑛.

(i) We write 𝛼 ∼ 𝛽 if the intervals [𝛼;⊤] and [𝛽;⊤] are
isomorphic as colored posets, i.e., there is an isomor-
phism 𝜑 from [𝛼;⊤] to [𝛽;⊤] such that 𝑐 (𝜉) = 𝑐 (𝜑 (𝜉))
for all 𝜉 ∈ [𝛼;⊤].

(ii) We write 𝛼 ⇝1 𝛽 if 𝛼 ≺ 𝛽 and there is a partition
𝜗 ∈ Π𝑛 with 𝛼 ≤ 𝜗 ≺ ⊤ and 𝛽 ≰ 𝜗 such that the
equivalent conditions of Proposition 9 are satisfied.

Let ⇝ be the reflexive-transitive closure of ⇝1, i.e., 𝛼 ⇝ 𝛽
if and only if there exist partitions 𝛼0, . . . , 𝛼𝑘 ∈ Π𝑛 for some
𝑘 ≥ 0 such that 𝛼 = 𝛼0 ⇝1 𝛼1 ⇝1 ⋅ ⋅ ⋅ ⇝1 𝛼𝑘 = 𝛽 (this
includes the case 𝛼 = 𝛽 when 𝑘 = 0).
We say that the coloring 𝑐 is admissible, if for all 𝛼, 𝛽 ∈ Π𝑛,
we have

𝑐 (𝛼) = 𝑐 (𝛽) =⇒ ∃𝛼′, 𝛽′ ∈ Π𝑛 : 𝛼⇝ 𝛼′ ∼ 𝛽′ ⇝𝛽. (1)

Remark 11. Note that if 𝛼 ∼ 𝛽 or 𝛼⇝ 𝛽, then 𝑐 (𝛼) = 𝑐 (𝛽).
Thus the reverse implication of (1) always holds.

Proposition 12. Let 𝑓 : 𝐴𝑛 → 𝐵 be an arbitrary function, and
let 𝑐 (𝛼) = 𝑓𝛼/ ≡ for all 𝛼 ∈ Π𝑛. Then 𝑐 is an admissible
coloring of Π𝑛.

Proof: Let 𝛼 = {𝑉1, . . . , 𝑉𝑘} ∈ Π𝑛 be an arbitrary
partition of size 𝑘 ≥ 2, and assume that 𝑉1 is an inessential
variable of 𝑓𝛼. Let 𝜗 = {𝑉1, 𝑉2 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑘} and suppose that
𝛼 ≺ 𝛾 ≰ 𝜗. Clearly, 𝛾 is obtained from 𝛼 by merging 𝑉1
with another block 𝑉𝑗 . This means that we get 𝑓𝛾 from 𝑓𝛼 by
identifying the inessential variable 𝑉1 with another variable,
hence we have 𝑓𝛼 ≡ 𝑓𝛾 , that is 𝑐 (𝛼) = 𝑐 (𝛾). Similarly,
for any 𝜉 ∈ [𝛼;𝜗], denoting by 𝜑 (𝜉) = 𝜉 ∨ 𝛾 the partition
obtained from 𝜉 by merging 𝑉1 (which must be a block of
𝜉) with the block containing 𝑉𝑗 , we have 𝑐 (𝜉) = 𝑐 (𝜑 (𝜉)),
therefore condition (i) of Proposition 9 is satisfied. Thus we
can conclude that 𝛼 ⇝1 𝛾 for every 𝛾 ∈ Π𝑛 such that
𝛼 ≺ 𝛾 ≰ 𝜗.

We have proved that if 𝑓𝛼 has an inessential variable, then
there exists an upper cover 𝛾 of 𝛼 such that 𝛼⇝1 𝛾. Proceed-
ing this way (always identifying an inessential variable with

another variable as long as there is an inessential variable),
we finally arrive at a partition 𝛼′ such that 𝛼 ⇝ 𝛼′ and all
variables of 𝑓𝛼′ are essential.

Now we are ready to prove that 𝑐 is an admissible coloring.
Assume that 𝑐 (𝛼) = 𝑐 (𝛽), i.e., 𝑓𝛼 ≡ 𝑓𝛽 , and use the above
procedure to find partitions 𝛼′ and 𝛽′ such that 𝛼 ⇝ 𝛼′ and
𝛽 ⇝ 𝛽′ with 𝑓𝛼′ and 𝑓𝛽′ depending on all their variables.
Since 𝑓𝛼′ ≡ 𝑓𝛼 ≡ 𝑓𝛽 ≡ 𝑓𝛽′ , the functions 𝑓𝛼′ and 𝑓𝛽′ are
equivalent, and this implies that they can be obtained from
each other by a permutation of variables, since both functions
have only essential variables. This permutation of variables
induces naturally a color-preserving isomorphism between the
intervals [𝛼′;⊤] and [𝛽′;⊤], showing that 𝛼′ ∼ 𝛽′. Thus we
have 𝛼 ⇝ 𝛼′ ∼ 𝛽′ ⇝𝛽, and this proves that (1) is satisfied.

Remark 13. If 𝑓 depends on all of its variables, then 𝑐 (⊥) =
𝑓/ ≡ appears only at ⊥ in the coloring of Proposition 12.
Therefore, one may always assume without loss of generality
that ⊥ is the unique element of Π𝑛 with color 𝑐 (⊥). On the
other hand, one cannot assume the same about the color of
⊤: a function can have several minors that are equivalent to
𝑓⊤ = 𝑓 (𝑥, . . . , 𝑥) (see also Remark 20).

Next we would like to prove the following converse of
Proposition 12: for any admissible coloring 𝑐 : Π𝑛 → 𝐶,
there is a function 𝑓 : 𝐴𝑛 → 𝐵 such that two partitions
of [𝑛] have the same color if and only if the corresponding
minors of 𝑓 are equivalent. To construct this function, let 𝐴
be any set with at least 𝑛 elements, let 𝐵 = 𝐶, and define
𝑓 : 𝐴𝑛 → 𝐵 by 𝑓 (a) := 𝑐 (kera) for all a ∈ 𝐴𝑛. Here
ker a denotes the (partition corresponding to the) kernel of the
map a : [𝑛] → 𝐴, 𝑖 �→ 𝑎𝑖. All partitions of [𝑛] with at most
∣𝐴∣ blocks arise in the form kera, therefore our assumption
∣𝐴∣ ≥ 𝑛 guarantees that in fact every element of Π𝑛 will
occur. We will show in Theorem 16 that the above function
has the desired property, thus we can conclude that every
poset that appears as the poset of minors of a function can
be represented by a function 𝑓 having the special property
that 𝑓 (a) is determined by the kernel of a.

Let 𝑓 be the function defined above, and let us consider an
arbitrary minor 𝑓𝛼. From the definition of a minor we have that
𝑓𝛼 (a) = 𝑓 (a ∘ nat𝛼) = 𝑐 (ker (a ∘ nat𝛼)) for all a ∈ 𝐴𝛼.
Observe that the partition ker (a ∘ nat𝛼) is a coarsening of 𝛼
(merging two blocks of 𝛼 if and only if a assigns the same
value to them). Moreover, the assumption ∣𝐴∣ ≥ 𝑛 ensures that
we obtain every coarsening of 𝛼 (every element of the interval
[𝛼;⊤]) this way. This observation will be of key importance in
the next two lemmas, which prepare the proof of Theorem 16,
our main result in this section.

Lemma 14. Let 𝑐 : Π𝑛 → 𝐶 be an arbitrary coloring, and let
the function 𝑓 : 𝐴𝑛 → 𝐶 be defined by 𝑓 (a) = 𝑐 (kera) for
all a ∈ 𝐴𝑛, where 𝐴 is a finite set with at least 𝑛 elements.
For arbitrary partitions 𝛼, 𝛽 ∈ Π𝑛, the minors 𝑓𝛼 and 𝑓𝛽 can
be obtained from each other by a permutation of variables if
and only if 𝛼 ∼ 𝛽.
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Lemma 15. Let 𝑐 : Π𝑛 → 𝐶 be an arbitrary coloring, and let
the function 𝑓 : 𝐴𝑛 → 𝐶 be defined by 𝑓 (a) = 𝑐 (kera) for
all a ∈ 𝐴𝑛, where 𝐴 is a finite set with at least 𝑛 elements. For
arbitrary partitions 𝛼, 𝛽 ∈ Π𝑛, the minor 𝑓𝛽 can be obtained
from 𝑓𝛼 by identifying an inessential variable with another
variable if and only if 𝛼⇝1 𝛽.

Theorem 16. Let 𝑐 : Π𝑛 → 𝐶 be an admissible coloring, and
let the function 𝑓 : 𝐴𝑛 → 𝐶 be defined by 𝑓 (a) = 𝑐 (ker a)
for all a ∈ 𝐴𝑛, where 𝐴 is a finite set with at least 𝑛 elements.
Then for every 𝛼, 𝛽 ∈ Π𝑛, we have 𝑓𝛼 ≡ 𝑓𝛽 if and only if
𝑐 (𝛼) = 𝑐 (𝛽).

Proof: Let us suppose first that 𝑓𝛼 ≡ 𝑓𝛽 . Let 𝛼 =
{𝑉1, . . . , 𝑉𝑘} ∈ Π𝑛 and assume that 𝑉1, . . . , 𝑉ℓ are inessential
variables and 𝑉ℓ+1, . . . , 𝑉𝑘 are essential variables in 𝑓𝛼. If
𝛼′ = {𝑉1 ∪ ⋅ ⋅ ⋅ ∪ 𝑉ℓ ∪ 𝑉ℓ+1, 𝑉ℓ+2, . . . , 𝑉𝑘}, then 𝑓𝛼′ depends
on all of its variables, and 𝑓𝛼′ can be obtained from 𝑓𝛼 by
repeatedly identifying an inessential variable with an essential
one. Similarly, let 𝑓𝛽′ be the “essential minor” of 𝑓𝛽 . Clearly,
𝑓𝛼 ≡ 𝑓𝛽 implies that 𝑓𝛼′ and 𝑓𝛽′ can be obtained from each
other by a permutation of variables. Now Lemma 14 and
Lemma 15 yield 𝛼 ⇝ 𝛼′ ∼ 𝛽′ ⇝𝛽, and then 𝑐 (𝛼) = 𝑐 (𝛽)
follows (see Remark 11).

Conversely, if 𝑐 (𝛼) = 𝑐 (𝛽), then, by the admissibility of
the coloring 𝑐, there exist 𝛼′, 𝛽′ ∈ Π𝑛 such that 𝛼 ⇝ 𝛼′ ∼
𝛽′ ⇝𝛽. Lemma 15 shows that 𝑓𝛼 ≡ 𝑓𝛼′ and 𝑓𝛽 ≡ 𝑓𝛽′ , and
Lemma 14 shows that 𝑓𝛼′ ≡ 𝑓𝛽′ . Therefore, we can conclude
that 𝑓𝛼 and 𝑓𝛽 are equivalent.

Corollary 17. A poset 𝑃 belongs to ℳ (i.e., isomorphic to
the poset of all minors of some function 𝑓 ) if and only if there
is an admissible coloring 𝑐 : Π𝑛 → 𝐶 for some 𝑛 ∈ ℕ and
for some nonempty set 𝐶 such that 𝑃 𝑑 ∼= Π𝑛/ ker 𝑐.

IV. CONSTRUCTIONS AND EXAMPLES

In this section we give some (families) of examples of minor
posets, and we also present some constructions which allow
us to build new minor posets from known ones.

Theorem 18. The following are minor posets for every natural
number 𝑛:

(i) the dual of the partition lattice Π𝑛;
(ii) the 𝑛-element chain n;

(iii) the 𝑛-dimensional cube (Boolean lattice) 2𝑛;
(iv) the lattice 𝑀𝑛.

Proof: In each case we give an admissible coloring of a
partition lattice such that the corresponding quotient is dually
isomorphic to the desired poset. We leave it to the reader to
verify that these colorings are indeed admissible.

(i) If 𝑐 : Π𝑛 → Π𝑛 is the identity map, then clearly
Π𝑛/ ker 𝑐 is dually isomorphic to Π𝑑

𝑛.
(ii) For the coloring 𝑐 : Π𝑛 → [𝑛], 𝛼 �→ ∣𝛼∣, the quotient

Π𝑛/ ker 𝑐 is (the dual of) an 𝑛-element chain.
(iii) Let 𝑐 be the coloring that assigns to every partition 𝛼 =

{𝑉1, . . . , 𝑉𝑘} ∈ Π𝑛+1 the set of minimal elements of the
blocks of 𝛼 (under the natural ordering 1 < ⋅ ⋅ ⋅ < 𝑛+1),
that is, 𝑐 (𝛼) := {min𝑉1, . . . ,min𝑉𝑘}. The image of
𝑐 consists of those subsets of [𝑛 + 1] that contain the
element 1, and we have 𝛼 > 𝛽 =⇒ 𝑐 (𝛼) ⊂ 𝑐 (𝛽).
Moreover, if 1 ∈ 𝑀 ⊂ 𝑁 ⊆ [𝑛 + 1], then one
can find partitions 𝛼, 𝛽 ∈ Π𝑛+1 with 𝛼 > 𝛽 and
𝑐 (𝛼) =𝑀, 𝑐 (𝛽) = 𝑁 . This implies that Π𝑛+1/ ker 𝑐 is
isomorphic to the lattice of subsets of [𝑛+1] containing
1, which is (dually) isomorphic to 2𝑛. Figure 4 illustrates
the coloring and the corresponding quotient for 𝑛 = 3.

(iv) Let us choose a natural number 𝑚 such that
(
𝑚
2

) ≥ 𝑛,
and let us color Π𝑚 as follows. The bottom element
of Π𝑚 is white, the atoms (i.e., the upper covers of
⊥) receive 𝑛 different colors (different from white and
black) in an arbitrary way, and all the other elements of
Π𝑚 are black. Then Π𝑚/ ker 𝑐 is (dually) isomorphic to
𝑀𝑛.

Proposition 19. The class ℳ is closed under taking principal
ideals: if 𝑃 ∈ ℳ and 𝑎 ∈ 𝑃 , then the principal ideal [⊥𝑃 ; 𝑎]
is also a member of ℳ.

Proof: If 𝑓 is a function such that ↓𝑓 is isomorphic to
𝑃 , and 𝑎 ∈ 𝑃 , then 𝑓 has a minor 𝑓𝛼 corresponding to 𝑎, and
↓𝑓𝛼 is isomorphic to the principal ideal [⊥𝑃 ; 𝑎].
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Remark 20. A natural idea to prove an analogous statement
for principal filters would be the following. Take an admissible
coloring 𝑐 of Π𝑛 such that Π𝑛/ ker 𝑐 ∼= 𝑃 𝑑, and let 𝛼
correspond to 𝑎 under this isomorphism. Change all colors
outside of ↓𝛼 to the color of 𝛼; then the resulting quotient
poset of Π𝑛 will be dually isomorphic to the principal filter
[𝑎;⊤𝑃 ] of 𝑃 . However, unfortunately, this modified coloring
will not be admissible in general. Nevertheless, it might be
still true that ℳ is closed under taking principal filters, but
a different argument would be needed to prove this.

In the following theorem we prove that one can always add
a new top element to a minor poset. Recalling that the ordinal
sum of posets is denoted by ⊕, the poset obtained by adding
a new top element to 𝑃 can be written as 𝑃 ⊕ 1.

Theorem 21. If 𝑃 ∈ ℳ, then 𝑃 ⊕ 1 ∈ ℳ.

Proof: By Corollary 17, there is an admissible coloring
𝑐 : Π𝑛−1 → 𝐶 for some natural number 𝑛 and for some
nonempty set 𝐶 such that Π𝑛−1/ ker 𝑐 ∼= 𝑃 𝑑. For any
𝜉 ∈ Π𝑛, let us simply write 𝜉 − 𝑛 for the partition that is
obtained from 𝜉 by deleting the element 𝑛. More precisely,
if 𝜉 = {𝑉1, . . . , 𝑉𝑘}, and, say, 𝑛 ∈ 𝑉𝑘, then let 𝜉 − 𝑛 =
{𝑉1, . . . , 𝑉𝑘 ∖ {𝑛}} ∈ Π𝑛−1, discarding the block 𝑉𝑘 ∖ {𝑛} if
it is empty. Define 𝑐∗ : Π𝑛 → 𝐶 by 𝑐∗ (𝜉) = 𝑐 (𝜉 − 𝑛). One
can verify that 𝑐∗ is admissible and that the quotient poset
Π𝑛/ ker 𝑐

∗ is isomorphic to 𝑃 𝑑 (we omit the details).
Now let us introduce a new color ∗ /∈ 𝐶 and modify the

coloring 𝑐∗ by changing the color of ⊥ to ∗ (the colors of the
other elements remain the same). Clearly, this new coloring
is also admissible, and the corresponding quotient of Π𝑛 is
isomorphic to 1 ⊕ 𝑃 𝑑 (note that the “old” color 𝑐∗ (⊥) does
still appear, for instance as 𝑐∗ ({{1}, {2}, . . . , {𝑛− 1, 𝑛}}).
Therefore, 𝑃 ⊕ 1 (the dual of 1 ⊕ 𝑃 𝑑) belongs to ℳ by
Corollary 17.

Remark 22. It is a natural question whether 𝑃 ∈ ℳ implies
1⊕𝑃 ∈ ℳ. A simple proof could be obtained by changing the
color of ⊤ to a new color ∗ at the end of the previous proof.
Unfortunately, this new coloring is not necessarily admissible,
and it remains an open problem whether adding a new bottom
element to a minor poset yields a minor poset or not.

Next we describe a construction of “gluing” two posets to-
gether, and we show that ℳ is closed under this construction.
For finite bounded posets 𝑃1 and 𝑃2, let 𝑃1 ∗ 𝑃2 denote the
poset obtained from the disjoint union (parallel sum) of 𝑃1

and 𝑃2 by identifying the top elements as well as the bottom
elements (see Figure 5).

Theorem 23. If 𝑃1, 𝑃2 ∈ ℳ, then 𝑃1 ∗ 𝑃2 ∈ ℳ.

Proof: Suppose that 𝑃1, 𝑃2 ∈ ℳ, and let 𝑐𝑖 : Π𝑊𝑖
→ 𝐶𝑖

be admissible colorings such that Π𝑊𝑖
/ ker 𝑐𝑖 ∼= 𝑃 𝑑

𝑖 for 𝑖 =
1, 2. We assume that the sets 𝑊1 and 𝑊2 are disjoint, and
also that 𝑐1 (⊥1) = 𝑐2 (⊥2) = ♠, 𝑐1 (⊤1) = 𝑐2 (⊤2) = ♥ but
apart from these two colors, there is no common color used
in 𝑐1 and 𝑐2. (Here ⊥𝑖 and ⊤𝑖 denote the bottom and top ele-

Fig. 5.

ments of Π𝑊𝑖
.) By Remark 13, we may also suppose that the

color ♠ appears only at the bottom in 𝑐1 as well as in 𝑐2. We
shall construct an admissible coloring 𝑐 : Π𝑊 → 𝐶 with 𝑊 =
𝑊1∪𝑊2 and 𝐶 = 𝐶1∪𝐶2 such that Π𝑊 / ker 𝑐 ∼= (𝑃1 ∗ 𝑃2)

𝑑.
For 𝑖 = 1, 2, let 𝜔𝑖 ∈ Π𝑊 be the partition of 𝑊 whose

only non-singleton block is 𝑊𝑖, and let 𝜄𝑖 : Π𝑊𝑖
→ Π𝑊 be

the natural embedding that maps Π𝑊𝑖
isomorphically onto

[⊥𝑖;𝜔𝑖]. We define the desired coloring 𝑐 by

𝑐 (𝜉) =

{
𝑐𝑖

(
𝜄−1
𝑖 (𝜉)

)
, if 𝜉 ∈ [⊥𝑖;𝜔𝑖] for some 𝑖 ∈ {1, 2} ;

♥, if 𝜉 /∈ [⊥𝑖;𝜔1] ∪ [⊥𝑖;𝜔2] .

Note that 𝑐 is well defined, as the intervals [⊥1;𝜔1] and
[⊥2;𝜔2] intersect only at the bottom, and 𝑐1 (⊥1) = 𝑐2 (⊥2).
One can check that 𝑐 is admissible (again, we omit the
technical details), and it is clear that Π𝑊 / ker 𝑐 ∼= (𝑃1 ∗ 𝑃2)

𝑑.

Starting with the examples of Theorem 18, one can build
many minor posets using the constructions of Theorems 21
and 23. For example, the poset of Figure 1 can be constructed
as 3 ∗ (𝑀2 ⊕ 1). We have verified (using these techniques
as well as ad hoc colorings) that all bounded posets up to 6
elements are minor posets. It might even be the case that every
finite bounded poset is a minor poset, but the (dis)proof of this
statement still eludes us.
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