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On the shape of solution sets of systems of (functional) equations1

Endre Tóth and Tamás Waldhauser2

Abstract. Solution sets of systems of linear equations over fields are characterized as being3

affine subspaces. But what can we say about the “shape” of the set of all solutions of other4

systems of equations? We study solution sets over arbitrary algebraic structures, and we5

give a necessary condition for a set of n-tuples to be the set of solutions of a system of6

equations in n unknowns over a given algebra. In the case of Boolean equations we obtain7

a complete characterization, and we also characterize solution sets of systems of Boolean8

functional equations.9

Mathematics Subject Classification. Primary 06E30; Secondary 08A40, 39B52, 39B72.10

Keywords. Systems of equations, Functional equations, Solution sets, Clones,11

Boolean functions.12

1. Introduction13

A basic fact from undergraduate linear algebra: solution sets of systems of14

homogeneous linear equations in n variables over a field K are precisely the15

subspaces of the vector space Kn, i.e., sets of n-tuples that are closed un-16

der linear combinations. Similarly, solution sets of systems of arbitrary linear17

equations are characterized by being closed under affine combinations. In this18

paper we propose an abstract framework that encompasses the aforementioned19

two well-known situations and allows us to study sets of solutions of systems of20

equations in great generality. Our aim is to determine the “shape” of solution21

sets by giving necessary and sufficient conditions for a set of tuples to arise22

as the set of all solutions of a system of equations. We establish a universal23

necessary condition, and prove that it is also sufficient for Boolean equations,24

i.e., for equations over the two-element set {0, 1}. We also present examples25

showing that this is not the case for domains with at least three elements. For26

functional equations such a general framework was established in [2]; here we27

Research supported by the Hungarian National Foundation for Scientific Research (Grant
Nos. K104251 and K115518) and by the János Bolyai Research Scholarship.
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prove that the necessary condition found there actually characterizes sets of28

solutions of Boolean functional equations.29

To make this more precise, let us fix a nonempty set A and a set F of30

operations on A that we are allowed to use in our equations (for example,31

the unary operations ax (a ∈ K) and the binary operation x + y as well as32

constants c ∈ K in the case of linear equations over a field K). Since we33

can use these operations several times, we can build composite operations (for34

example a1x1 + · · ·+ anxn + c). This means that every equation in n variables35

can be written as f(x1, . . . , xn) = g(x1, . . . , xn), where f and g are obtained as36

compositions of operations from F . The set of all such operations is denoted37

by [F ], and it is called the clone generated by F (see Sect. 2 for the precise38

definitions). Elements of the clone [F ] are also called term functions of the39

algebraic structure A = (A;F ), and our equations are the same as equations40

over A in the sense of universal algebra. However, in universal algebra the41

focus is on (the complexity of) finding one solution or deciding if there is a42

solution at all, whereas here we study the structure of the set of all solutions.43

If two sets of operations generate the same clone, then they produce the44

same equations, thus it is natural to speak about equations over a clone C.45

This leads to the main problem of this paper: given a clone C, characterize sets46

T ⊆ An that can appear as the set of all solutions of a system of equations over47

C. After introducing the required notions and notations in Sect. 2, we give a48

general necessary condition in Sect. 3 (see Theorem 3.1). More precisely, we49

prove that for every clone C, one can assign a clone C∗ (called the centralizer50

of C) such that if T ⊆ An is the set of all solutions of a system of equations51

over C, then T is closed under C∗. In certain special cases, such as in the case52

of (homogeneous) linear equations (see Example 3.2), being closed under C∗ is53

sufficient for being the solution set of a system of C-equations. Unfortunately,54

as we show in Example 3.3, there are other “non-linear” clones for which this is55

not true. However, we will prove in Sect. 4 that for Boolean functions (i.e., for56

A = {0, 1}) the condition given in Theorem 3.1 is sufficient. Thus we obtain a57

complete characterization of solution sets of systems of Boolean equations in58

terms of closure conditions, which is similar in spirit to the “linear” examples59

mentioned in the first paragraph (Theorem 4.1). We will use this result in60

Sect. 5 to characterize solution sets of systems of Boolean equations, solving61

the main problem of [2] in the Boolean case (Theorem 5.1).62

2. Preliminaries63

2.1. Operations and clones64

Let A be an arbitrary set with at least two elements. By an operation on A65

we mean a map f : An → A; the nonnegative integer n is called the arity66
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On the shape of solution sets of systems

of the operation f . (We allow nullary operations: since A0 is a singleton, an67

operation of arity zero can be naturally identified with the unique element in68

its image set.) The set of all operations on A is denoted by OA. Operations69

on A = {0, 1} are called Boolean functions, and we will also use the notation70

Ω = O{0,1} for the set of all Boolean functions (see the appendix for some71

background on Boolean functions). For a set F ⊆ OA of operations, by F (n)
72

we mean the set of n-ary members of F . In particular, O
(n)
A stands for the set73

of all n-ary operations on A.74

We will denote tuples by boldface letters, and we will use the corresponding75

plain letters with subscripts for the components of the tuples. For example,76

if a ∈ An, then ai denotes the i-th component of a, i.e., a = (a1, . . . , an). In77

particular, if f ∈ O
(n)
A , then f(a) is a short form for f(a1, . . . , an). In accor-78

dance with the above, we denote the n-tuple (1, 1, . . . , 1) by 1, and similarly79

the n-tuple (0, 0, . . . , 0) by 0 (the length of the tuple shall be clear from the80

context). If t(1), . . . , t(m) ∈ An and f ∈ O
(m)
A , then f(t(1), . . . , t(m)) denotes81

the n-tuple obtained by applying f to the tuples t(1), . . . , t(m) componentwise:82

f(t(1), . . . , t(m)) =
(
f(t

(1)
1 , . . . , t

(m)
1 ), . . . , f(t(1)n , . . . , t(m)

n )
)
.83

We say that T ⊆ An is closed under C, if for all m ∈ N, t(1), . . . , t(m) ∈ T and84

for all f ∈ C(m) we have f(t(1), . . . , t(m)) ∈ T .85

Let f ∈ O
(n)
A and g1, . . . , gn ∈ O

(k)
A . By the composition of f by g1, . . . , gn86

we mean the operation h ∈ O
(k)
A defined by87

h(x) = f
(
g1(x), . . . , gn(x)

)
for all x ∈ Ak.88

If a class C ⊆ OA of operations is closed under composition and contains89

the projections (x1, . . . , xn) �→ xi for all 1 ≤ i ≤ n ∈ N, then C is said90

to be a clone (notation: C ≤ OA). Notable examples include all continuous91

operations on a topological space, all monotone operations on an ordered set,92

all polynomial operations of a ring (or any algebraic structure), etc. (see also93

Example 2.1). For an arbitrary set F of operations on A, there is a least94

clone [F ] containing F , called the clone generated by F . The elements of this95

clone are those operations that can be obtained from members of F and from96

projections by finitely many compositions.97

The set of all clones on A is a lattice under inclusion; the greatest element98

of this lattice is OA, and the least element is the trivial clone consisting of99

projections only. There are countably infinitely many clones on the two-element100

set; these have been described by Post [4], hence the lattice of clones on {0, 1}101

is called the Post lattice. In the appendix we present the Post lattice and we102

define Boolean clones that we need in the proof of our main results. If A is a103

finite set with at least three elements, then there is a continuum of clones on104

A, and it is a very difficult open problem to describe all clones on A even for105

|A| = 3.106
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2.2. Centralizer clones107

We say that the operations f ∈ O
(n)
A and g ∈ O

(m)
A commute (notation: f ⊥ g)108

if109

f
(
g(a11, a12, . . . , a1m), . . . , g(an1, an2, . . . , anm)

)
110

= g
(
f(a11, a21, . . . , an1), . . . , f(a1m, a2m, . . . , anm)

)
111

holds for all aij ∈ A (1 ≤ i ≤ n, 1 ≤ j ≤ m). This can be visualized as112

follows: for every n × m matrix Q = (aij), first applying g to the rows of Q113

and then applying f to the resulting column vector yields the same result as114

first applying f to the columns of Q and then applying g to the resulting row115

vector:116

a11 . . . a1m

...
...

an1 . . . anm

g
−−−−→

⏐⏐�f

⏐⏐�f

g
−−−−→

117

Denoting by cj ∈ An (j = 1, . . . , m) the j-th column vector of Q, we can118

express the commutation property more compactly:119

f(g(c1, . . . , cm)) = g(f(c1), . . . , f(cm)). (2.1)120

It is easy to verify that if f, g1, . . . , gn all commute with an operation h,121

then the composition f(g1, . . . , gn) also commutes with h. This implies that122

for any F ⊆ OA, the set F ∗ := {g ∈ OA | f ⊥ g for all f ∈ F} is a clone, called123

the centralizer of F . Clones arising in this form are called primitive positive124

clones; such clones seem to be quite rare: there are only finitely many primitive125

positive clones over any finite set [1]. It is useful to note that if C = [F ], then126

C∗ = F ∗. This implies that in order to compute the centralizer of a clone C, it127

is sufficient to determine the operations commuting with a (preferably small)128

generating set of C.129

Example 2.1. Let K be a field, and let L be the clone of all operations over K130

that are represented by a linear polynomial:131

L := {a1x1 + · · · + akxk + c | k ≥ 0, a1, . . . , ak, c ∈ K}.132

Since L is generated by the operations x + y, ax (a ∈ K) and the constants133

c ∈ K, the centralizer L∗ consists of those operations f over K that commute134
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On the shape of solution sets of systems

with x + y and ax (i.e., f is additive and homogeneous), and also commute135

with the constants (i.e., f(c, . . . , c) = c for all c ∈ K):136

L∗ := {a1x1 + · · · + akxk | k ≥ 1, a1, . . . , ak ∈ K and a1 + · · · + ak = 1}.137

Similarly, one can verify that L∗
0 = L0 for the clone138

L0 := {a1x1 + · · · + akxk | k ≥ 0, a1, . . . , ak ∈ K}.139

2.3. Equations and solution sets140

Let us fix a clone C ≤ OA and a natural number n. By an n-ary equation over141

C (C-equation for short) we mean an equation of the form f(x1, . . . , xn) =142

g(x1, . . . , xn), where f, g ∈ C(n). We will often simply write this equation as a143

pair (f, g). A system of C-equations is a finite set of C-equations of the same144

arity:145

E :=
{
(f1, g1), . . . , (ft, gt)

}
, where fi, gi ∈ C(n) (i = 1, . . . , t).146

We define the set of solutions of E as the set147

Sol(E) :=
{
a ∈ An | fi(a) = gi(a) for i = 1, . . . , t

}
.148

For a ∈ An we denote by EqC(a) the set of C-equations satisfied by a:149

EqC(a) :=
{
(f, g) | f, g ∈ C(n) and f(a) = g(a)

}
.150

Let T ⊆ An be an arbitrary set of tuples. We denote by EqC(T ) the set of151

C-equations satisfied by T :152

EqC(T ) :=
⋂

a∈T

EqC(a).153

Example 2.2. Considering the “linear” clones of Example 2.1, L-equations are154

linear equations and L0-equations are homogeneous linear equations.155

3. A general necessary condition156

Looking for a characterization of solution sets by means of closure conditions,157

we would like to determine operations under which solution sets of C-equations158

are closed. The following theorem shows that the solution set is always closed159

under operations in the centralizer C∗.160

Theorem 3.1. For any clone C ≤ OA, the set of all solutions of a system of161

C-equations is closed under C∗.162
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Proof. Let C ≤ OA be a clone and let E be a system of n-ary C-equations163

with solution set T = Sol(E) ⊆ An. Let Φ ∈ C∗ be an arbitrary m-ary oper-164

ation, and let t(1), . . . , t(m) ∈ T ; we need to prove that Φ(t(1), . . . , t(m)) ∈ T .165

Consider an arbitrary equation f(x1, . . . , xn) = g(x1, . . . , xn) from E . Since166

t(1), . . . , t(m) are solutions of E , we have f(t(j)) = g(t(j)) for j = 1, . . . , m.167

This implies that168

Φ(f(t(1)), . . . , f(t(m))) = Φ(g(t(1)), . . . , g(t(m))). (3.1)169

Let us consider the n × m matrix Q = (t
(j)
i ) obtained by writing the tuples170

t(j) next to each other as column vectors. Then the left hand side of (3.1)171

is obtained by applying f to the columns of Q and then applying Φ to the172

resulting row vector. Since Φ and f commute, we get the same by applying173

first Φ row-wise and then applying f column-wise, and the result in this case174

is f(Φ(t(1), . . . , t(m))) (cf. also (2.1)). Rewriting similarly the right hand side175

of (3.1), we can conclude that176

f(Φ(t(1), . . . , t(m))) = g(Φ(t(1), . . . , t(m))).177

This means that the tuple Φ(t(1), . . . , t(m)) also satisfies the equation (f, g).178

This holds for every equation of E , thus we have Φ(t(1), . . . , t(m)) ∈ T . �179

Example 3.2. Let us consider once more the case of linear equations (we use180

the notation of Examples 2.1 and 2.2 ). A set of tuples (vectors) T ⊆ Kn is181

closed under the clone L∗ if and only if T is an affine subspace of Kn, and T182

is closed under L∗
0 = L0 if and only if T is a subspace of Kn. Thus in this case183

T is the solution set of a system of L-equations (L0-equations) if and only if184

T is closed under L∗ (L∗
0).185

Theorem 3.1 gives a necessary condition for a set T ⊆ An to be the set of186

all solutions of a system of C-equations. In the case of (homogeneous) linear187

equations this condition is sufficient as well (see the example above). In the188

next section we prove that if A is a two-element set then for every clone189

C ≤ OA, every set of tuples that is closed under C∗ is the solution set of some190

system of C-equations. However, for a three-element underlying set this is not191

always the case.192

Example 3.3. Let us consider the (nonassociative) binary operation f (x, y) =193

x ⊗ y on A = {0, 1, 2} defined by the following operation table:194

⊗ 0 1 2

0 0 0 0

1 0 0 1

2 0 1 0

195

Observe that x ⊗ x = 0 and x ⊗ 0 = 0 ⊗ x = 0 hold identically, hence the196

only unary operations in the clone C = [f ] are g0 (x) = 0 and g1 (x) = x.197
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On the shape of solution sets of systems

Therefore, the only nontrivial C-equation of arity n = 1 is (g0, g1), whose198

solution set is {0}. Thus there are only two subsets T ⊆ A that are solution199

sets of (systems of) unary C-equations, namely T = {0} and T = {0, 1, 2}.200

However, the set {0, 1} is also closed under C∗. Indeed, if Φ ∈ C∗ is an m-ary201

operation and a1, . . . , am ∈ {0, 1}, then, observing that ai = ai ⊗ 2, we can202

compute Φ (a) = Φ (a1, . . . , am) as follows:203

Φ(a) = Φ (a1 ⊗ 2, . . . , am ⊗ 2) = Φ (a) ⊗ Φ(2) = f (Φ (a) ,Φ(2)) . (3.2)204

Since the range of f contains only the elements 0 and 1, we see that the right205

hand side of (3.2) belongs to {0, 1}. We can conclude that the set {0, 1} is206

closed under C∗, yet it is not the solution set of any system of C-equations.207

4. Boolean equations208

In this section we consider exclusively Boolean equations, that is, from now on209

our underlying set is A = {0, 1}. We will use the notation of the appendix; in210

particular, Ω = O{0,1} stands for the set of all Boolean functions. By proving211

a converse of Theorem 3.1, we will establish the following characterization of212

solution sets of Boolean equations.213

Theorem 4.1. For any Boolean clone C ≤ Ω and T ⊆ {0, 1}n, the following214

two conditions are equivalent:215

(i) there is a system E of C-equations such that T = Sol(E);216

(ii) T is closed under C∗.217

The implication (i) =⇒ (ii) follows from Theorem 3.1, so we only need to218

prove that (ii) implies (i). Since all Boolean clones are known (see the appen-219

dix), we could do this one by one for every single Boolean clone. However, many220

clones have the same centralizer, therefore, as the following remark shows, it221

suffices to prove Theorem 4.1 for a few clones (note that this remark is valid222

for any set A, not just for the two-element set).223

Remark 4.2. Let C1 ≤ C2 ≤ OA and C∗
1 = C∗

2 = C. Assume that Theorem 4.1224

is true for C1, and let T ⊆ An be closed under C. Then there is a system of225

C1-equations such that T = Sol(E). From C1 ⊆ C2 it follows that E is also a226

system of C2-equations. Thus Theorem 4.1 holds for C2 as well.227

We can further reduce the number of cases by considering Boolean functions228

up to duality. The dual of f ∈ Ω(n) is the Boolean function fd defined by229

fd(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn), and the dual of a Boolean clone C is230

Cd = {fd | f ∈ C}. Note that dualizing means just interchanging 0 and 1,231

hence if Theorem 4.1 holds for C, then it is obviously valid for Cd, too.232

Considering the observations above as well as the list of centralizers of233

Boolean clones given in the appendix, it suffices to prove the implication234

(ii) =⇒ (i) of Theorem 4.1 for the following 18 cases:235

Journal: 10 Article No.: 499 TYPESET DISK LE CP Disp.:2017/7/15 Pages: 21

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

E. Tóth, T. Waldhauser AEM

1. L∗ = L01, L∗
0 = L0, L∗

01 = L, SL∗ = SL;236

2. M∗ = [x], (U∞M)∗ = [0], (U∞
01 M)∗ = [0, 1], S∗ = [¬], SM∗ = Ω(1);237

3. Λ∗ = Λ01, Λ0
∗ = Λ0, Λ1

∗ = Λ1, Λ01
∗ = Λ;238

4. (Ω(1))∗ = S01, [¬]∗ = S, [0, 1]∗ = Ω01, [0]∗ = Ω0, [x]∗ = Ω.239

We will present the proof through a sequence of 18 lemmas. These are grouped240

into four subsections by the methods used in their proofs, according to the241

numbering above.242

4.1. Linear clones243

Lemma 4.3. If T ⊆ {0, 1}n is closed under the clone L0
∗ = L0, then there244

exists a system E of L0-equations such that T = Sol(E).245

Proof. This is a special case of Example 3.2 for the two-element field. �246

Lemma 4.4. If T ⊆ {0, 1}n is closed under the clone L01
∗ = L, then there247

exists a system E of L01-equations such that T = Sol(E).248

Proof. Let T ⊆ {0, 1}n be closed under the clone L01
∗ = L. Since T is closed249

under L = [x + y, 1], it is a subspace in {0, 1}n, and we also have 1 ∈ T .250

Therefore there exists a system of homogeneous linear equations E such that251

the set of solutions of E is exactly T . It only remains to verify that E is252

equivalent to a system of L01-equations. Recall that L01 = {x1 + · · · + xn |253

n is odd}.254

An equation in E is of the form xi1 + xi2 + · · · + xim
= 0. Since 1 ∈ T , the255

tuple 1 satisfies this equation, hence it follows that 2 | m. Adding xi1 to both256

sides, we obtain the equivalent equation xi2 + · · · + xim
= xi1 . Since there is257

an odd number of variables on both sides, this is an L01-equation. �258

Lemma 4.5. If T ⊆ {0, 1}n is closed under the clone L∗ = L01, then there259

exists a system E of L-equations such that T = Sol(E).260

Proof. This is a special case of Example 3.2 for the two-element field. �261

Lemma 4.6. If T ⊆ {0, 1}n is closed under the clone SL∗ = SL, then there262

exists a system E of SL-equations such that T = Sol(E).263

Proof. Let T ⊆ {0, 1}n be closed under the clone SL∗ = SL. Note that264

SL = [x + y + z, x + 1] = {x1 + · · · + xn + c | n is odd, and c ∈ {0, 1}}.265

Since SL ⊇ L01 we see that T is an affine subspace in {0, 1}n, hence there266

exists a system E of linear equations such that T = Sol(E). Moreover, since267

x + 1 ∈ SL, we have x ∈ T ⇒ ¬x ∈ T . It only remains to verify that E is268

equivalent to a system of SL-equations.269

An equation in E is of the form xi1 + xi2 + · · · + xim
= c. Since x ∈ T270

implies that ¬x ∈ T , it follows that 2 | m. Our equation is equivalent to271
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On the shape of solution sets of systems

Figure 1. The functions f and g in the proof of Lemma 4.7

xi2 + · · · + xim
= xi1 + c, and since at both sides of the equation there is an272

odd number of variables, it follows that this is an SL-equation. �273

4.2. Clones with unary centralizers274

Lemma 4.7. If T ⊆ {0, 1}n is closed under the clone M∗ = [x], then there275

exists a system E of M -equations such that T = Sol(E).276

Proof. Note that every subset of {0, 1}n is closed under [x]. For every T �277

{0, 1}n, we have278

T =
⋂

v/∈T

Tv, (4.1)279

where Tv = {0, 1}n\{v}. Therefore it suffices to show that for every v ∈280

{0, 1}n, there exists an M -equation (f, g) such that Tv = Sol({(f, g)}).281

Let v ∈ {0, 1}n be an arbitrary n-tuple. Let f and g be the following282

functions:283

f(x) =

{
1, if x > v;

0, otherwise,
and g(x) =

{
1, if x ≥ v;

0, otherwise.
284

Figure 1 shows a schematic view of the Hasse diagram of {0, 1}n. Grey color285

indicates points where the value of the corresponding function is 1; on the286

remaining tuples the values are 0. It is easy to see that f, g ∈ M and that for287

all v ∈ {0, 1}n, we have f(x) = g(x) if and only if x �= v, therefore the set of288

solutions of f(x) = g(x) is indeed Tv. �289
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Lemma 4.8. If T ⊆ {0, 1}n is closed under the clone (U∞M)∗ = [0], then there290

exists a system E of U∞M -equations such that T = Sol(E).291

Proof. A set T ⊆ {0, 1}n is closed under [0] if and only if 0 ∈ T . Thus, similarly292

to the proof of Lemma 4.7, it suffices to show that for every v ∈ {0, 1}n\{0}293

there exists a U∞M -equation (f, g) such that Tv = Sol({(f, g)}). (We can294

exclude v = 0 from the intersection (4.1) because 0 ∈ T .)295

Let v ∈ {0, 1}n\{0} be an arbitrary n-tuple, and let f and g be the same296

functions, as defined in the proof of Lemma 4.7. We have seen that f and g297

are monotone and Sol({(f, g)}) = Tv. Hence it only remains to verify that298

f, g ∈ U∞, that is, there exists a k ∈ N such that for all x ∈ {0, 1}n, if299

f(x) = 1 (g(x) = 1), then xk = 1. We may assume (after a permutation of300

coordinates) that v is of the form (0, 0, . . . , 0, 1, 1, . . . , 1). Since v �= 0, at least301

one 1 appears in v, i.e., vn = 1. If f(x) = 1, then x > v, hence xn = 1, thus302

f ∈ U∞. Similarly, xn = 1 whenever g(x) = 1, so g ∈ U∞. �303

Lemma 4.9. If T ⊆ {0, 1}n is closed under the clone (U∞
01 M)∗ = [0, 1], then304

there exists a system E of U∞
01 M -equations such that T = Sol(E).305

Proof. The proof is almost identical to those of the previous two lemmas. Here306

we have 0,1 ∈ T , hence we can assume that v /∈ {0,1}, and we only need to307

show that in this case the functions f and g defined in the proof of Lemma 4.7308

are 0-preserving as well as 1-preserving. By the definition of the functions f309

and g, it is obvious that f(0) = 0 and g(1) = 1. Moreover, v �= 0 implies that310

g(0) = 0 and v �= 1 implies that f(1) = 1. Thus f, g ∈ U∞
01 M , as claimed. �311

Lemma 4.10. If T ⊆ {0, 1}n is closed under the clone S∗ = [¬], then there312

exists a system E of S-equations such that T = Sol(E).313

Proof. For every T � {0, 1}n that is closed under the clone [¬], we have314

T =
⋂

v/∈T

Tv,315

where Tv = {0, 1}n\{v,¬v}. (Note that we are changing the notation of the316

previous three lemmas.) Therefore it suffices to show that for every v ∈ {0, 1}n
317

there exists an S-equation (f, g) such that Tv = Sol({(f, g)}).318

Let v ∈ {0, 1}n be an arbitrary n-tuple, and let f ∈ S be an arbitrary319

n-ary self-dual function. Define the function g by320

g(x) =

{
f(x), if x /∈ {v,¬v};

¬f(x), if x ∈ {v,¬v}.
321

Clearly, the set of solutions of f(x) = g(x) is indeed Tv, and it is straightfor-322

ward to verify that g is self-dual. �323

Lemma 4.11. If T ⊆ {0, 1}n is closed under the clone SM∗ = Ω(1), then there324

exists a system E of SM -equations such that T = Sol(E).325
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On the shape of solution sets of systems

Proof. Using the notation of Lemma 4.10, we need to show that for every v ∈326

{0, 1}n\{0,1} there exists an SM -equation (f, g) such that Tv = Sol({(f, g)}).327

(We exclude 0 and 1 since T is closed under Ω(1) = [0, 1,¬x].)328

Let v ∈ {0, 1}n\{0,1}, and let h ∈ SM be an arbitrary n-ary self-dual329

monotone function. Define the function f by330

f(x) =

⎧
⎪⎨
⎪⎩

0, if x ≤ v or x < ¬v;

1, if x > v or x ≥ ¬v;

h(x), otherwise.

331

Since v �= 0,1, the tuples v and ¬v are incomparable, hence the three cases332

in the definition of f are mutually exclusive and thus f is well defined. Define333

the function g by334

g(x) =

{
f(x), if x /∈ {v,¬v};

¬f(x), if x ∈ {v,¬v}.
335

Let H be the set of tuples x ∈ {0, 1}n that are incomparable to both v and336

¬v. (Note that H is closed under negation.) The colors on Figure 2 indicate337

the value of the corresponding function as in the proof of Lemma 4.7. The338

striped area represents the set H. From the definition of the function g it is339

clear that the set of solutions of f(x) = g(x) is indeed Tv.340

It only remains to verify that f, g ∈ SM , that is, f and g are both monotone341

and self-dual. We present the details for f only; the proof for g is similar.342

Let x and y be arbitrary n-tuples with x ≤ y. To verify that f ∈ M , we343

consider four cases:344

1. If x,y ∈ H, then f(x) = h(x) ≤ h(y) = f(y), as h ∈ SM .345

2. If x,y /∈ H, then from the definition of the function f we have f(x) ≤ f(y).346

3. If x ∈ H and y /∈ H, then y is comparable to v or ¬v. If f(y) = 1, then347

obviously f(x) ≤ f(y). If f(y) = 0, then y ≤ v or y < ¬v. However, in348

this case x ≤ y implies that x is comparable to v or to ¬v, contradicting349

the assumption x ∈ H.350

4. The case x /∈ H, y ∈ H can be verified similarly to the previous case.351

For self-duality, let x ∈ {0, 1}n be an arbitrary n-tuple; we need to show that352

f(x) = ¬f(¬x). We distinguish two cases:353

1. If x /∈ H, then ¬x /∈ H. If f(x) = 0, then either x ≤ v or x < ¬v. In the354

first case, we have ¬x ≥ ¬v, and in the second case, we have ¬x > v. In355

both cases, f(¬x) = 1. Similarly, f(x) = 1 implies that f(¬x) = 0.356

2. If x ∈ H, then ¬x ∈ H, therefore f(x) = h(x) = ¬h(¬x) = ¬f(¬x), as357

h ∈ SM . �358
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Figure 2. The functions f and g in the proof of Lemma 4.11

4.3. Clones generated by conjunctions and constants359

Lemma 4.12. If T ⊆ {0, 1}n is closed under the clone Λ∗ = Λ01, then there360

exists a system E of Λ-equations such that T = Sol(E).361

Proof. Note that Λ = [x ∧ y, 0, 1], and that Λ01 = [x ∧ y]. Let T ⊆ {0, 1}n
362

be closed under the clone Λ∗ = Λ01, and let E = EqΛ(T ). We will show that363

T = Sol(E). Since T ⊆ Sol(E) is trivial, it suffices to prove that v ∈ Sol(E)364

implies v ∈ T for all v ∈ {0, 1}n.365

Let v ∈ Sol(E), and suppose first that v �= 0,1. We may assume without366

loss of generality that v is of the form (1, 1, . . . , 1, 0, 0, . . . , 0), where v1 =367

· · · = vk = 1 and vk+1 = · · · = vn = 0 (k ∈ {1, . . . , n− 1}). Let us consider the368

following Λ-equation:369

x1 ∧ · · · ∧ xk = x1 ∧ · · · ∧ xk ∧ xk+1. (4.2)370

It is clear that v does not satisfy (4.2), thus the Eq. (4.2) does not appear in371

E . Hence, there exists an n-tuple t(1) ∈ T such that t(1) does not satisfy (4.2),372

i.e., t
(1)
1 = · · · = t

(1)
k = 1 and t

(1)
k+1 = 0. Similarly, for all m ∈ {1, . . . , n − k} we373

may consider the Λ-equation374

x1 ∧ · · · ∧ xk = x1 ∧ · · · ∧ xk ∧ xk+m. (4.3)375

Just like (4.2), the equation (4.3) does not appear in E , thus there exists376

t(m) ∈ T such that t
(m)
1 = · · · = t

(m)
k = 1 and t

(m)
k+m = 0. We know that T377

is closed under the clone Λ01, in particular, T is closed under conjunctions.378

Therefore t(1), . . . , t(n−k) ∈ T implies that379

t(1) ∧ · · · ∧ t(n−k) = (1, 1, . . . , 1, 0, 0, . . . , 0) = v ∈ T.380
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On the shape of solution sets of systems

It only remains to consider the cases v = 0 and v = 1. If v = 0 satisfies E ,381

then let us consider the following Λ-equations for all i ∈ {1, . . . , n}:382

xi = 1. (4.4)383

Since v = 0 does not satisfy (4.4), this equation does not belong to E . Thus T384

contains a counterexample t(i) to (4.4) such that t
(i)
i = 0. Therefore we have385

t(1) ∧ · · · ∧ t(n) = (0, 0, . . . , 0) = v ∈ T.386

If v = 1 satisfies E , then we consider the following Λ-equation:387

x1 ∧ · · · ∧ xn = 0. (4.5)388

Similarly as above, T contains a counterexample to (4.5), and the only such389

counterexample is 1. �390

Lemma 4.13. If T ⊆ {0, 1}n is closed under the clone Λ0
∗ = Λ0, then there391

exists a system E of Λ0-equations such that T = Sol(E).392

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ0
∗ = Λ0, and define E393

as E = EqΛ0
(T ). If v ∈ Sol(E) and v �= 0, then the same argument as in394

Lemma 4.12 proves that v ∈ T . It only remains to consider the case v = 0.395

Since T is closed under the clone Λ0 and 0 ∈ Λ0, it follows that 0 ∈ T . �396

Lemma 4.14. If T ⊆ {0, 1}n is closed under the clone Λ1
∗ = Λ1, then there397

exists a system E of Λ1-equations such that T = Sol(E).398

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ1
∗ = Λ1, and define E399

as E = EqΛ1
(T ). If v ∈ Sol(E) and v �= 1, then the same argument as in400

Lemma 4.12 proves that v ∈ T . Since T is closed under the clone Λ1 and401

1 ∈ Λ1, it follows that 1 ∈ T . �402

Lemma 4.15. If T ⊆ {0, 1}n is closed under the clone Λ01
∗ = Λ, then there403

exists a system E of Λ01-equations such that T = Sol(E).404

Proof. Let T ⊆ {0, 1}n be closed under the clone Λ01
∗ = Λ, and define E405

as E = EqΛ01
(T ). If v ∈ Sol(E) and v �= 0,1, then the same argument as406

in Lemma 4.12 proves that v ∈ T . Since T is closed under the clone Λ and407

0,1 ∈ Λ, it follows that 0,1 ∈ T . �408

4.4. Unary clones409

Lemma 4.16. If T ⊆ {0, 1}n is closed under the clone [x]∗ = Ω, then there410

exists a system E of [x]-equations such that T = Sol(E).411
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Proof. Let T ⊆ {0, 1}n be closed under the clone [x]∗ = Ω, and let E =412

Eq[x](T ). We will show that T = Sol(E). Since T ⊆ Sol(E) is trivial, it suffices413

to prove that v ∈ Sol(E) implies v ∈ T for all v ∈ {0, 1}n.414

Let v ∈ Sol(E), and let T = {t(1), . . . , t(m)}, where m = |T |. Let us consider415

the matrix Q = (t
(j)
i ) ∈ {0, 1}n×m whose j-th column vector is t(j). Let416

ri = (t
(1)
i , . . . , t

(m)
i ) be the i-th row of Q, and let R = {r1, . . . , rn} be the set417

of row vectors of Q. Define the m-ary function Φ by418

Φ(x) =

{
vi, if x = ri;

0, if x /∈ R.
419

Note that Φ is defined in such a way that v = Φ(t(1), . . . , t(m)). However,420

we need to verify that Φ is a well-defined function. Assume that ri = rj and421

vi �= vj for some i, j ∈ {1, . . . , n}. From ri = rj it follows that T satisfies the422

[x]-equation xi = xj , hence this equation belongs to E . On the other hand, v423

satisfies E , thus vi = vj , which is a contradiction. Therefore the function Φ424

is well defined, and obviously Φ ∈ Ω. The set T is closed under the clone Ω,425

hence v = Φ(t(1), . . . , t(m)) ∈ T . �426

Lemma 4.17. If T ⊆ {0, 1}n is closed under the clone [0]∗ = Ω0, then there427

exists a system E of [0]-equations such that T = Sol(E).428

Proof. Let T ⊆ {0, 1}n be closed under the clone [0]∗ = Ω0, let E = Eq[0](T ),429

and assume that v ∈ Sol(E). Define Q, ri, R and Φ as in the proof of430

Lemma 4.16. The proof of Lemma 4.16 shows that Φ is well defined; we only431

need to verify that Φ ∈ Ω0. If 0 /∈ R, then Φ(0) = 0 follows from the definition432

of Φ. If ri = 0 for some i, then the [0]-equation xi = 0 holds in T , thus (xi, 0) ∈433

E . Therefore v satisfies this equation as well, hence Φ(0) = Φ(ri) = vi = 0.434

This shows that Φ ∈ Ω0, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as T is435

closed under Ω0. �436

Lemma 4.18. If T ⊆ {0, 1}n is closed under the clone [0, 1]∗ = Ω01, then there437

exists a system E of [0, 1]-equations such that T = Sol(E).438

Proof. The proof is almost identical to that of Lemma 4.17; we just need to439

modify the definition of Φ such that Φ(1) = 1 if 1 /∈ R. Taking equations of440

the form xi = 0 and xi = 1 into account, we can prove that Φ ∈ Ω01, and then441

v = Φ(t(1), . . . , t(m)) ∈ T follows, as T is closed under Ω01. �442

Lemma 4.19. If T ⊆ {0, 1}n is closed under the clone [¬]∗ = S, then there443

exists a system E of [¬]-equations such that T = Sol(E).444

Proof. Let T ⊆ {0, 1}n be closed under the clone [¬]∗ = S, let E = Eq[¬](T ),445

and assume that v ∈ Sol(E). Define Q, ri and R as in the proof of Lemma 4.16446
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On the shape of solution sets of systems

and let R′ = {¬r1, . . . ,¬rn}. Let h ∈ S be an arbitrary m-ary self-dual func-447

tion and define the function Φ ∈ Ω(m) by448

Φ(x) =

⎧
⎪⎨
⎪⎩

vi, if x = ri;

¬vi, if x = ¬ri;

h(x), if x /∈ R ∪ R′.

449

We show that the function Φ is well defined. We distinguish two cases:450

1. If ri = rj and vi �= vj for some i, j ∈ {1, . . . , n}, then T satisfies the [¬]-451

equation xi = xj , hence this equation belongs to E . On the other hand, v452

satisfies E , thus vi = vj , which is a contradiction.453

2. If ri = ¬rj and vi �= ¬vj for some i, j ∈ {1, . . . , n}, then T satisfies the [¬]-454

equation xi = ¬xj , hence this equation appears in E . On the other hand,455

v satisfies E , thus vi = ¬vj , which is a contradiction.456

It only remains to verify that Φ ∈ S. Let a be an arbitrary n-tuple. If457

a /∈ R ∪ R′, then Φ(a) = h(a) = ¬h(¬a) = ¬Φ(¬a), since the function h is458

self-dual. If a = ri for some i ∈ {1, . . . , n}, then ¬a = ¬ri, thus Φ(¬a) = ¬vi =459

¬Φ(a). This shows that Φ ∈ S, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as460

T is closed under S. �461

Lemma 4.20. If T ⊆ {0, 1}n is closed under the clone (Ω(1))∗ = S01, then there462

exists a system E of Ω(1)-equations such that T = Sol(E).463

Proof. Let T ⊆ {0, 1}n be closed under the clone (Ω(1))∗ = S01, let E =464

EqΩ(1)(T ), and assume that v ∈ Sol(E). Define Q, ri, R and R′ as in the proof465

of Lemma 4.19, and let us also define Φ in the same way as there, but this time466

choosing the function h from S01. We can follow the same argument as before,467

but we also need to verify that Φ ∈ Ω01. If 0 /∈ R ∪ R′, then Φ(0) = 0, since468

h ∈ S01. If 0 ∈ R, and 0 = ri, then the Ω(1)-equation xi = 0 holds in E , thus469

vi = 0. Therefore, from the definition of the function Φ, we have Φ(0) = 0. If470

0 ∈ R′, and 0 = ¬ri, then the Ω(1)-equation ¬xi = 0 holds in E , thus ¬vi = 0,471

hence Φ(0) = 0. This proves that Φ ∈ Ω0, and a similar argument shows that472

Φ ∈ Ω1. Therefore Φ ∈ S01, and then v = Φ(t(1), . . . , t(m)) ∈ T follows, as T473

is closed under S01. �474

5. Boolean functional equations475

A framework for functional equations was presented in [2], which includes476

many classical functional equations as special cases (see the examples in [2]).477

The problem of characterizing solution sets of functional equations was posed478

there, and a general necessary condition was also established, which is similar479

to our Theorem 3.1. Here we prove that for Boolean functions that condition480
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is also sufficient, thus we obtain a complete characterization of solution sets of481

Boolean functional equations.482

First let us recall the abstract definition of a functional equation proposed483

in [2]. Let A and B be clones on sets A and B, respectively. A (B,A) -equation484

is a functional equation of the form485

u(f(g11, . . . , g1n), . . . , f(gr1, . . . , grn))486

= v(f(h11, . . . , h1n), . . . , f(hs1, . . . , hsn)), (5.1)487

where r, s, n ≥ 0, u ∈ B(r), v ∈ B(s), each gij and hij is a function in A(m),488

m ≥ 0, and f is an n-ary function symbol. Observe that if we interpret the489

function symbol f by a function f : An → B, then each side of (5.1) becomes490

an m-ary function from A to B. If these two functions coincide, then f is a491

solution of the equation. We can define systems of functional equations and492

solution sets in a natural way (similarly to Sect. 2.3).493

The following theorem gives the promised characterization of solution sets494

of functional equations in the case of Boolean functions (i.e., for A = B =495

{0, 1}).496

Theorem 5.1. A class K of n-ary Boolean functions is the solution set of a497

system of (B,A)-equations if and only if the following two conditions hold:498

(A) for every f ∈ K and ϕ ∈ (A∗)(1) we have f(ϕ(x1), . . . , ϕ(xn)) ∈ K, and499

(B) for every ℓ ≥ 0, f1, . . . , fℓ ∈ K and Φ ∈ (B∗)(ℓ) we have Φ(f1, . . . , fℓ) ∈ K.500

The “only if” part was proved in Proposition 5 of [2] for arbitrary functions501

(not only for Boolean functions). For the “if” part, we need to show that if502

K ⊆ Ω(n) satisfies the two conditions of the theorem, then it is the set of503

all solutions of some system of (B,A)-equations, or, using the terminology of504

[2], K is definable by (B,A)-equations. We present the proof through several505

lemmas. First we show how to use our Theorem 4.1 and condition (B) to find506

a system of functional equations (but not (B,A)-equations yet) whose solution507

set is K.508

Lemma 5.2. If K ⊆ Ω(n) satisfies condition (B), then there is a system of509

(B, [0, 1])-equations such that K = Sol(E).510

Proof. Let N = 2n, and let {a1, . . . ,aN} = {0, 1}n. To every function f ∈ Ω(n)
511

we can assign a tuple �f ∈ {0, 1}N by listing all the values of the function:512

�f := (f(a1), . . . , f(aN )). Condition (B) implies that the set
−→
K :=

{
�f

∣∣ f ∈513

K
}

⊆ {0, 1}N is closed under the clone B (cf. Example 6 of [2]). Therefore,514

by Theorem 4.1,
−→
K is definable by a system of B-equations. Let (u, v) be one515

of the defining equations of
−→
K (where u, v ∈ B(N)), and let us rewrite it as a516

functional equation:517

u(f(a1), . . . , f(aN )) = v(f(a1), . . . , f(aN )). (5.2)518
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On the shape of solution sets of systems

For example, if n = 2, then (5.2) takes this form:519

u(f(0, 0), f(0, 1), f(1, 0), f(1, 1)) = v(f(0, 0), f(0, 1), f(1, 0), f(1, 1)).520

Rewriting all the defining equations of
−→
K this way, we get a system E of521

functional equations such that Sol(E) = K. Regarding the entries of the tuples522

ai in (5.2) as constant functions (which play the role of the functions gij and523

hij in (5.1)), we see that (5.2) is a (B, [0, 1])-equation and thus E is a system524

of (B, [0, 1])-equations. �525

The next step in the proof is to translate the system E of (B, [0, 1])-equations526

found in Lemma 5.2 into a system of (B,A)-equations. Condition (A) will play527

a key role during this translation. Using the list of centralizer clones given in528

the appendix, it is easy to compute (A∗)(1) for each Boolean clone A (one may529

also use the Post lattice to compute the unary part of A∗ as the intersection530

A∗ ∩ Ω(1)). Up to duality, we have the following possibilities (in the second531

and the third item k = 2, 3, . . . ,∞):532

1. (A∗)(1) = {x} for A = Ω, M, L, Λ, Ω(1), [0, 1];533

2. (A∗)(1) = {x, 0} for A = Ω0, M0, L0, Uk, UkM, Λ0, [0];534

3. (A∗)(1) = {x, 0, 1} for A = Ω01, M01, Uk
01, Uk

01M, Λ01;535

4. (A∗)(1) = {x,¬} for A = S, SL, [¬];536

5. (A∗)(1) = {x, 0, 1,¬} for A = S01, SM, L01, [x].537

Similarly to Remark 4.2, it is useful to observe that if A1 ≤ A2 and538

(A∗
1)

(1) = (A∗
2)

(1), then condition (A) is the same for A1 and A2, and if a539

class K is definable by (B,A1)-equations, then K is also definable by (B,A2)-540

equations. This means that in each of the five lists of clones above, it suffices541

to prove Theorem 5.1 for the last clone A in the list, since it is contained in the542

previous ones (one can verify this with the help of the Post lattice). In the first543

list this l(e)ast(!) clone is [0, 1], hence we have nothing to do: the (B, [0, 1])-544

equations of Lemma 5.2 are already (B,A)-equations. Thus we only have four545

cases, and we deal with them one by one in the following four lemmas.546

Lemma 5.3. Let K ⊆ Ω(n), A = [0], and B ≤ Ω. If K satisfies conditions (A)547

and (B), then K is definable by (B,A)-equations.548

Proof. First let us note that condition (A) with ϕ(x) = 0 means that f ∈549

K implies that the constant function f (0), regarded as an n-ary function,550

also belongs to K. According to Lemma 5.2, there is a system E of (B, [0, 1])-551

equations such that K = Sol(E), and every equation in E is of the form (5.2)552

with u, v ∈ B(N). If E is one such equation, then let Ẽ denote the equation553

obtained from E by replacing each occurrence of 1 in the tuples ai by x. For554

example, if n = 2, then Ẽ is of the form555

u(f(0, 0), f(0, x), f(x, 0), f(x, x)) = v(f(0, 0), f(0, x), f(x, 0), f(x, x)).556
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E. Tóth, T. Waldhauser AEM

Since 0, x ∈ A, the functional equation Ẽ is a (B,A)-equation. We claim that557

K is the set of all solutions of the system Ẽ :=
{
Ẽ

∣∣ E ∈ E
}
.558

For each E ∈ E , the equation Ẽ is formally stronger than E: if a function f559

satisfies Ẽ, then, setting x = 1 in Ẽ, we see that f also satisfies E. This shows560

that Sol(Ẽ) ⊆ Sol(E) = K. Conversely, assume that f ∈ K and let Ẽ ∈ Ẽ ; we561

may assume without loss of generality that E is of the form (5.2). Clearly, f562

satisfies Ẽ in the case x = 1; we need to verify that f satisfies Ẽ for x = 0 as563

well, i.e.,564

u(f(0), . . . , f(0)) = v(f(0), . . . , f(0)). (5.3)565

Let g ∈ Ω(n) be the constant function defined by g(x1, . . . , xn) = f (0). As566

observed at the beginning of the proof, f ∈ K implies that g ∈ K. Since567

K = Sol(E), the function g satisfies every equation in E . In particular, g satisfies568

E, and this means exactly that (5.3) holds. This proves that f satisfies each569

equation Ẽ ∈ Ẽ , hence f ∈ Sol(Ẽ). Thus, we have shown that K ⊆ Sol(Ẽ), and570

this completes the proof. �571

Lemma 5.4. Let K ⊆ Ω(n), A = Λ01, and B ≤ Ω. If K satisfies conditions (A)572

and (B), then K is definable by (B,A)-equations.573

Proof. We start with the system E of (B, [0, 1])-equations defining K, which574

was constructed in the proof of Lemma 5.2. For each equation E ∈ E , let Ẽ be575

the equation obtained from E by replacing each occurrence of 0 by x ∧ y and576

each occurrence of 1 by x in the tuples ai. For example, if n = 2, then Ẽ is of577

the form578

u(f(x ∧ y, x ∧ y), f(x ∧ y, x), f(x, x ∧ y), f(x, x))579

= v(f(x ∧ y, x ∧ y), f(x ∧ y, x), f(x, x ∧ y), f(x, x)). (5.4)580

Since x, x ∧ y ∈ A, the set Ẽ :=
{
Ẽ

∣∣ E ∈ E
}

is a system of (B,A)-equations.581

Just like in the proof of the previous lemma, it is clear that Sol(Ẽ) ⊆ K. To582

prove the reversed inclusion, let f ∈ K and Ẽ ∈ Ẽ [again, E is assumed to be in583

the form (5.2)]. We need to verify that f satisfies Ẽ. If x = 0, then Ẽ reduces584

to (5.3), which is true since K satisfies (A) with ϕ(x) = 0 ∈ (A∗)(1). Similarly,585

(A) with ϕ(x) = 1 ∈ (A∗)(1) shows that Ẽ is valid for x = y = 1. Finally, if586

x = 1 and y = 0, then Ẽ holds because f satisfies E. Thus f ∈ Sol(Ẽ), and587

this proves that K ⊆ Sol(Ẽ). �588

Lemma 5.5. Let K ⊆ Ω(n), A = [¬], and B ≤ Ω. If K satisfies conditions (A)589

and (B), then K is definable by (B,A)-equations.590

Proof. Similarly to the proofs of the previous two lemmas, we translate the591

system E of (B, [0, 1])-equations from Lemma 5.2 into a system of (B,A)-592

equations. This time, we replace 0 with x and 1 with ¬x in every tuple ai in593

every equation in E . Let us illustrate this again in the case n = 2:594
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On the shape of solution sets of systems

u(f(x, x), f(x,¬x), f(¬x, x), f(¬x,¬x))595

= v(f(x, x), f(x,¬x), f(¬x, x), f(¬x,¬x)).596

Since x,¬x ∈ A, we obtain a system Ẽ of (B,A)-equations this way, and we597

need to show that K ⊆ Sol(Ẽ), as the other containment is obvious.598

Assume that f ∈ K and let Ẽ ∈ Ẽ . If x = 0 then Ẽ is equivalent to E,599

which is satisfied by f , as f ∈ K = Sol(E). If x = 1, then Ẽ takes the form600

u(f(¬a1), . . . , f(¬aN )) = v(f(¬a1), . . . , f(¬aN )).601

This equation for f = f is the same as E for the function f = g, where602

g(x1, . . . , xn) = f(¬x1, . . . ,¬xn). Condition (A) with ϕ(x) = ¬x shows that603

g ∈ K = Sol(E), hence g satisfies E, and this implies that f satisfies Ẽ for604

x = 1. �605

Lemma 5.6. Let K ⊆ Ω(n), A = [x], and B ≤ Ω. If K satisfies conditions (A)606

and (B), then K is definable by (B,A)-equations.607

Proof. The proof is very similar to the previous ones, so we omit the details.608

We translate E to a system Ẽ of (B,A)-equations by replacing every 0 by x and609

every 1 by y. Let Ẽ ∈ Ẽ and f ∈ K. To prove that f satisfies Ẽ, we consider610

four cases: for x = 0, y = 1 we get back E; for x = 0, y = 0 we use (A) with611

ϕ(x) = 0; for x = 1, y = 1 we use (A) with ϕ(x) = 1; for x = 1, y = 0 we use612

(A) with ϕ(x) = ¬x. �613

Appendix614

The Post lattice615

E.L. Post proved that there are countably infinitely many Boolean clones (i.e.,616

clones over the set {0, 1}), and described them explicitly in [4]. We define617

only those clones that we use in this paper; see [5] for the explanation of the618

notation used in the Post lattice below.619

• Ω is the clone of all Boolean functions: Ω = O01.620

• Ω0 and Ω1 denote the clones of 0-preserving and 1-preserving functions,621

respectively: Ω0 = {f ∈ Ω | f(0) = 0}, Ω1 = {f ∈ Ω | f(1) = 1}.622

• Ω01 is the clone of idempotent functions: Ω01 = Ω0 ∩ Ω1.623

In general, if C is a clone, then let C0 = C ∩ Ω0, C1 = C ∩ Ω1, and624

C01 = C0 ∩ C1.625

• Ω(1) is the clone of all essentially unary functions: Ω(1) = [x,¬x, 0, 1].626

• M is the clone of monotone functions: M = {f ∈ Ω | x ≤ y ⇒ f(x) ≤627

f(y)}.628
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Figure 3. The Post lattice

• U∞ = {f ∈ Ω(n) | n ∈ N0,∃k ∈ {1, . . . , n} : f(x) = 1 =⇒ xk = 1},629

and U∞M = U∞ ∩ M, U∞
01 M = U∞ ∩ Ω01 ∩ M .630

• S is the clone of self-dual functions: S = {f ∈ Ω | ¬f(¬x) = f(x)}.631

• Λ = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [0, 1] = [∧, 0, 1]632

• Λ0 = Λ ∩ Ω0 = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [0] = [∧, 0]633

• Λ1 = Λ ∩ Ω1 = {x1 ∧ · · · ∧ xn | n ∈ N} ∪ [1] = [∧, 1]634

• Λ01 = Λ ∩ Ω01 = {x1 ∧ · · · ∧ xn | n ∈ N} = [∧]635

• L = {x1 + · · · + xn + c | c ∈ {0, 1}, n ∈ N0} = [x + y, 1]636

• L0 = L ∩ Ω0 = {x1 + · · · + xn | n ∈ N0} = [x + y]637

• L01 = L ∩ Ω01 = {x1 + · · · + xn | n is odd} = [x + y + z]638

• SL = S∩L =
{
x1+· · ·+xn+c | n is odd, and c ∈ {0, 1}

}
= [x+y+z, x+1]639

Centralizer clones of Boolean clones640

If a clone D is the centralizer of some clone C, then D is said to be a primitive641

positive clone. All primitive positive Boolean clones are given in [3], but the642

centralizers of the other (not primitive positive) clones are not given there.643
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On the shape of solution sets of systems

However, using the Post lattice, one can determine the centralizers of these644

clones by straightforward calculations. We omit the details and give only the645

list of all Boolean clones together with their centralizers.646

• [x] = Ω∗ = M∗
647

• [0] = Ω0
∗ = M0

∗ = (Uk)∗ = (UkM)∗ (for any k ∈ {2, 3, . . . ,∞})648

• [1] = Ω1
∗ = M1

∗ = (W k)∗ = (W kM)∗ (for any k ∈ {2, 3, . . . ,∞})649

• [0, 1] = Ω01
∗ = M01

∗ = (Uk
01)

∗ = (Uk
01M)∗ = (W k

01)
∗ = (W k

01M)∗ (for any650

k ∈ {2, 3, . . . ,∞})651

• [¬] = S∗, Ω(1) = S01
∗ = SM∗

652

• L01 = L∗, L0 = L0
∗, L1 = L1

∗, L = L01
∗, SL = SL∗

653

• Λ01 = Λ∗, Λ0 = Λ0
∗, Λ1 = Λ1

∗, Λ = Λ01
∗

654

• V01 = V ∗, V0 = V0
∗, V1 = V1

∗, V = V01
∗

655

• S01 = (Ω(1))∗, S = [¬]∗656

• Ω01 = [0, 1]∗, Ω0 = [0]∗, Ω1 = [1]∗, Ω = [x]∗657
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Endre Tóth and Tamás Waldhauser668

Bolyai Institute669

University of Szeged670
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