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Abstract This paper clarifies the connection between multiple criteria decision-making

Q1

7

and decision under uncertainty in a qualitative setting relying on a finite value scale. While 8

their mathematical formulations are very similar, the underlying assumptions differ and the 9

latter problem turns out to be a special case of the former. Sugeno integrals are very general 10

aggregation operations that can represent preference relations between uncertain acts or 11

between multifactorial alternatives where attributes share the same totally ordered domain. 12

This paper proposes a generalized form of the Sugeno integral that can cope with attributes 13

having distinct domains via the use of qualitative utility functions. It is shown that in the 14

case of decision under uncertainty, this model corresponds to state-dependent preferences 15

on consequences of acts. Axiomatizations of the corresponding preference functionals are 16

proposed in the cases where uncertainty is represented by possibility measures, by necessity 17

measures, and by general order-preserving set-functions, respectively. This is achieved by 18

weakening previously proposed axiom systems for Sugeno integrals. 19
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1 Motivation22

Two important chapters of decision theory are decision under uncertainty and multicriteria23

evaluation [5]. Although these two areas have been developed separately, they entertain24

close relationships. On the one hand, they are not mutually exclusive; in fact, there are works25

dealing with multicriteria evaluation under uncertainty [32]. On the other hand, the structure26

of the two problems is very similar, see, e.g., [21, 23]. Decision-making under uncertainty27

(DMU), after Savage [39], relies on viewing a decision (called an act) as a mapping from a28

set of states of the world to a set of consequences, so that the consequence of an act depends29

on the circumstances in which it is performed. Uncertainty about the state of the world is30

represented by a set-function on the set of states, typically a probability measure.31
In multicriteria decision-making (MCDM) an alternative is evaluated in terms of its32

(more or less attractive) features according to prescribed attributes and the relative impor-33

tance of such features. Attributes play in MCDM the same role as states of the world in34

DMU, and this very fact highlights the similarity of alternatives and acts: both can be repre-35

sented by tuples of ratings (one component per state or per criterion) Moreover, importance36

coefficients in MCDM play the same role as the uncertainty function in DMU. A major37

difference between MCDM and DMU is that in the latter there is usually a unique conse-38

quence set, while in MCDM each attribute possesses its own domain. A similar setting is39

that of voting, where voters play the same role as attributes in MCDM.40
There are several possible frameworks for representing decision problems that range41

from numerical to qualitative and ordinal. While voting problems are often cast in a purely42

ordinal setting (leading to the famous impossibility theorem of Arrow), decision under43

uncertainty adopts a numerical setting as it deals mainly with quantities (since its tradition44

comes from economics). The situation of MCDM in this respect is less clear: the literature45

is basically numerical, but many methods are inspired by voting theory; see [6].46
In the last 15 years, the paradigm of qualitative decision theory has emerged in Artifi-47

cial Intelligence in connection with problems such as webpage configuration, recommender48

systems, or ergonomics (see [19]). In such topics, quantifying preference in very precise49

terms is difficult but not crucial, as these problems require on-line inputs from humans and50

answers must be provided in a rather short period of time. As a consequence, the formal51

models are either ordinal (like in CP-nets, see [4]) or qualitative, that is, based on finite52

value scales. This paper is a contribution to evaluation processes in the finite value scale53

setting for DMU and MCDM. In such a qualitative setting, the most natural aggregation54

functions are based on the so-called Sugeno integral [40]. They were first used in MCDM55

[30]. Theoretical foundations for them in the scope of DMU have been proposed in the set-56

ting of possibility theory [27], then assuming a more general representation of uncertainty57

[26]. The same aggregation functions have been used in [33] in the scope of MCDM, and58

applied in [36] to ergonomics. In these papers it is assumed that the domains of attributes59

are the same totally ordered set.60
In the current paper, we remove this restriction, and consider an aggregation model based61

on compositions of Sugeno integrals with qualitative utility functions on distinct attribute62

domains, which we call Sugeno utility functionals. We propose an axiomatic approach to63

these extended preference functionals that enables the representation of preference relations64

over Cartesian products of, possibly different, finite chains (scales). We consider the cases65
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when importance weights bear on individual attributes (the importance function is then 66

a possibility or a necessity measure), and the general case when importance weights are 67

assigned to groups of attributes, not necessarily singletons. We study this extended Sugeno 68

integral framework in the DMU situation showing that it leads to the case of state-dependent 69

preferences on consequences of acts. The new axiomatic system is compared to previous 70

proposals in qualitative DMU: it comes down to deleting or weakening two axioms on the 71

global preference relation. 72

The paper is organized as follows. Section 2 introduces basic notions and terminology, 73

and recalls previous results needed throughout the paper. Our main results are given in 74

Section 3, namely, representation theorems for multicriteria preference relations by Sugeno 75

utility functionals. In Section 4, we compare this axiomatic approach to that previously 76

presented in DMU. We show that this new model can account for preference relations that 77

cannot be represented in DMU, i.e., by Sugeno integrals applied to a single utility function. 78

This situation remains in the case of possibility theory. 79

This contribution is an extended and corrected version of a preliminary conference paper 80

[7] that was presented at ECAI’2012. 81

2 Basic Background 82

In this section, we recall basic background and present some preliminary results needed 83

throughout the paper. For introduction on lattice theory see [37]. 84

2.1 Preliminaries 85

Throughout this paper, let Y be a finite chain endowed with lattice operations ∧ and ∨, 86

and with least and greatest elements 0Y and 1Y , respectively; the subscripts may be omitted 87

when the underlying lattice is clear from the context; [n] is short for {1, . . . , n} ⊂ N. 88

Given finite chains Xi , i ∈ [n], their Cartesian product X = ∏
i∈[n] Xi constitutes a 89

bounded distributive lattice by defining 90

a ∧ b = (a1 ∧ b1, . . . , an ∧ bn), and a ∨ b = (a1 ∨ b1, . . . , an ∨ bn).

In particular, a ≤ b if and only if ai ≤ bi for every i ∈ [n]. For k ∈ [n] and c ∈ Xk , we use 91

xc
k to denote the tuple whose i-th component is c, if i = k, and xi , otherwise. 92

In the sequel, X will always denote such a cartesian product
∏

i∈[n] Xi of finite chains 93

Xi , i ∈ [n]. In some places, we will consider the case when the Xi’s are the same chain X, 94

and this will be clearly indicated in the text. 95

Let f : X → Y be a function. The range of f is given by ran(f ) = {f (x) : x ∈ X}. 96

Also, f is said to be order-preserving if, for every a, b ∈ ∏
i∈[n] Xi such that a ≤ b, we 97

have f (a) ≤ f (b). A well-known example of an order-preserving function is the median 98

function med : Y 3 → Y given by 99

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

2.2 Basic Background on Polynomial Functions and Sugeno Integrals 100

In this subsection we recall some well-known results concerning polynomial functions that 101

will be needed hereinafter. For further background, we refer the reader to, e.g., [18, 29]. 102
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Recall that a (lattice) polynomial function on Y is any map p : Yn → Y which can be103

obtained as a composition of the lattice operations ∧ and ∨, the projections x �→ xi and the104

constant functions x �→ c, c ∈ Y .105

As shown by Goodstein [28], polynomial functions over bounded distributive lattices (in106

particular, over bounded chains) have very neat normal form representations. For I ⊆ [n],107

let 1I be the characteristic vector of I , i.e., the n-tuple in Yn whose i-th component is 1 if108

i ∈ I , and 0 otherwise.109

Theorem 2.1 A function p : Yn → Y is a polynomial function if and only if110

p(x1, . . . , xn) =
∨

I⊆[n]

(
p(1I ) ∧

∧

i∈I

xi

)
. (1)

Equivalently, p : Yn → Y is a polynomial function if and only if111

p(x1, . . . , xn) =
∧

I⊆[n]

(
p(1[n]\I ) ∨

∨

i∈I

xi

)
.

Remark 2.2 Observe that, by Theorem 2.1, every polynomial function p : Yn → Y is112

uniquely determined by its restriction to {0, 1}n. Also, since every lattice polynomial func-113

tion is order-preserving, the coefficients in Eq. 1 are monotone increasing as well, i.e.,114

p(1I ) ≤ p(1J ) whenever I ⊆ J . Moreover, a function f : {0, 1}n → Y can be extended to115

a polynomial function over Y if and only if it is order-preserving.116

Polynomial functions are known to generalize certain prominent nonadditive aggrega-117

tion functions namely, the so-called Sugeno integrals. A capacity on [n] is a mapping118

μ : P([n]) → Y which is order-preserving (i.e., if A ⊆ B ⊆ [n], then μ(A) ≤ μ(B)) and119

satisfies μ(∅) = 0 and μ([n]) = 1; such functions qualify to represent uncertainty in DMU120

and importance weights in MCDM.121

The Sugeno integral associated with the capacity μ is the function qμ : Yn → Y defined122

by123

qμ(x1, . . . , xn) =
∨

I⊆[n]

(
μ(I) ∧

∧

i∈I

xi

)
. (2)

The name “integral” for such an expression may sound surprising. However, it was proposed124

first by Sugeno [40] under the name “fuzzy integral” in analogy with Lebesgue integral125

under the following equivalent form:126

qμ(x) = max
y∈Y

min(y, μ(x ≥ y)),

where μ(x ≥ y) = μ({i ∈ [n]|xi ≥ y}). The idea was to replace integral (sum) and127

product in Lebesgue integral by fuzzy set union (max) and intersection (min). For further128

background see, e.g., [31, 40, 41].129

Remark 2.3 As observed in [33, 34], Sugeno integrals exactly coincide with those polyno-130

mial functions q : Yn → Y that are idempotent, that is, which satisfy q(c, . . . , c) = c,131

for every c ∈ Y . In fact, by Eq. 1 it suffices to verify this identity for c ∈ {0, 1}, that is,132

q(1[n]) = 1 and q(1∅) = 0.133

Remark 2.4 Note also that the range of a Sugeno integral q : Yn → Y is ran(q) = Y .134

Moreover, by defining μ(I) = q(1I ), we get q = qμ.135
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In the sequel, we shall be particularly interested in the following types of capacities. A 136

capacity μ is called a possibility measure (resp. necessity measure) if for every A,B ⊆ [n], 137

μ(A ∪ B) = μ(A) ∨ μ(B) (resp. μ(A ∩ B) = μ(A) ∧ μ(B)). 138

Remark 2.5 In the finite setting, a possibility measure is completely characterized by the 139

value of μ on singletons, namely, μ({i}), i ∈ [n] (called a possibility distribution), since 140

clearly, μ(A) = ∨
i∈A μ({i}). Likewise, a necessity measure is completely characterized by 141

the value of μ on sets of the form Ni = [n] \ {i} since clearly, μ(A) = ∧
i �∈A μ(Ni) 142

Note that if μ is a possibility measure [42] (resp. necessity measure [25]), then qμ is 143

a weighted disjunction
∨

i∈I μ(i) ∧ xi (resp. weighted conjunction μ(I) ∧ ∧
i∈I xi)) for 144

some I ⊆ [n] [24] (where μ(i), a shorthand notation for μ({i}), represents importance of 145

criterion i). The weighted disjunction operation is then permissive (it is enough that one 146

important criterion be satisfied for the result to be high) and the weighted conjunction is 147

demanding (all important criteria must be satisfied). In terms of DMU, states are compared 148

in terms of relative plausibility, and the weighted disjunction is optimistic (it is enough that 149

one plausible state yields a good consequence for the act to be attractive), while the weighted 150

conjunction is pessimistic (it is required that all plausible states yield good consequences 151

for the act to be attractive). 152

Polynomial functions and Sugeno integrals have been characterized by several authors, 153

and in the more general setting of distributive lattices see, e.g., [9, 10, 31]. 154

The following characterization in terms of median decomposability will be instrumental 155

in this paper. A function p : Yn → Y is said to be median decomposable if for every x ∈ Yn, 156

p(x) = med
(
p(x0

k), xk, p(x1
k)

)
(k = 1, . . . , n),

where xc
k denotes the tuple whose i-th component is c, if i = k, and xi , otherwise. 157

Theorem 2.6 ([8, 34]) Let p : Yn → Y be a function on an arbitrary bounded chain Y . 158

Then p is a polynomial function if and only if p is median decomposable. 159

2.3 Sugeno Utility Functionals 160

Let X1, . . . , Xn and Y be finite chains. We denote (with no danger of ambiguity) the top 161

and bottom elements of X1, . . . , Xn and Y by 1 and 0, respectively. 162

We say that a mapping ϕi : Xi → Y , i ∈ [n], is a local utility function if it is order- 163

preserving. It is a qualitative utility function as mapping on a finite chain. A function 164

f : X → Y is a Sugeno utility functional if there is a Sugeno integral q : Yn → Y and local 165

utility functions ϕi : Xi → Y , i ∈ [n], such that 166

f (x) = q(ϕ1(x1), . . . , ϕn(xn)). (3)

Note that Sugeno utility functionals are order-preserving. Moreover, it was shown in [15] 167

that the set of functions obtained by composing lattice polynomials with local utility 168

functions is the same as the set of Sugeno utility functionals. 169

Remark 2.7 In [15] and [16] a more general setting was considered, where the inner 170

functions ϕi : Xi → Y , i ∈ [n], were only required to satisfy the so-called “boundary 171

conditions”: for every x ∈ Xi , 172

ϕi(0) ≤ ϕi(x) ≤ ϕi(1) or ϕi(1) ≤ ϕi(x) ≤ ϕi(0). (4)
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The resulting compositions (3) where q is a polynomial function (resp. Sugeno integral)173

were referred to as “pseudo-polynomial functions” (resp. “pseudo-Sugeno integrals”). As it174

turned out, these two notions are in fact equivalent.175

Remark 2.8 Observe that pseudo-polynomial functions are not necessarily order-176

preserving, and thus they are not necessarily Sugeno utility functionals. However, Sugeno177

utility functionals coincide exactly with those pseudo-polynomial functions (or, equiva-178

lently, pseudo-Sugeno integrals) which are order-preserving, see [15].179

Sugeno utility functionals can be axiomatized in complete analogy with polynomial180

functions by extending the notion of median decomposability. We say that f : X → Y181

is pseudo-median decomposable if for each k ∈ [n] there is a local utility function182

ϕk : Xk → Y such that183

f (x) = med
(
f (x0

k), ϕk(xk), f (x1
k)

)
(5)

for every x ∈ X.184

Theorem 2.9 ([15]) A function f : X → Y a Sugeno utility functional if and only if f is185

pseudo-median decomposable.186

Remark 2.10 In [15] and [16] a more general notion of pseudo-median decomposability187

was considered where the inner functions ϕi : Xi → Y , i ∈ [n], were only required to188

satisfy the boundary conditions.189

Note that once the local utility functions ϕi : Xi → Y (i ∈ [n]) are given, the pseudo-190

median decomposability formula (5) provides a disjunctive normal form of a polynomial191

function p0 which can be used to factorize f . To this extent, let 1̂I denote the characteristic192

vector of I ⊆ [n] in X, i.e., 1̂I ∈ X is the n-tuple whose i-th component is 1Xi
if i ∈ I , and193

0Xi
otherwise.194

Theorem 2.11 ([16]) If f : X → Y is pseudo-median decomposable w.r.t. local utility195

functions ϕk : Xk → Y (k ∈ [n]), then f = p0(ϕ1, . . . , ϕn), where the polynomial function196

p0 is given by197

p0 (y1, . . . , yn) =
∨

I⊆[n]

(
f

(
1̂I

) ∧
∧

i∈I

yi

)
. (6)

This result naturally asks for a procedure to obtain local utility functions ϕi : Xi → Y198

(i ∈ [n]) which can be used to factorize a given Sugeno utility functional f : X → Y199

into a composition (3). In the more general setting of pseudo-polynomial functions, such200

procedures were presented in [15] when Y is an arbitrary chain, and in [16] when Y is a201

finite distributive lattice; we recall the latter in Appendix A.202

The following result provides a noteworthy axiomatization of Sugeno utility functionals203

which follows as a corollary of Theorem 19 in [16]. For the sake of self-containment, we204

present its proof in Appendix B.205
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Theorem 2.12 A function f : X → Y is a Sugeno utility functional if and only if it is 206

order-preserving and satisfies 207

f
(
x0
k

)
< f

(
xa
k

)
and f

(
ya
k

)
< f

(
y1
k

) =⇒ f
(
xa
k

) ≤ f
(
ya
k

)

for all x, y ∈ X and k ∈ [n], a ∈ Xk . 208

Let us interpret this result in terms of multicriteria evaluation. Consider alternatives x and 209

y such that xk = yk = a. Then f
(
x0
k

)
< f (x) means that down-grading attribute k makes 210

the corresponding alternative x0
k strictly worse than x. Similarly, f (y) < f

(
y1
k

)
means that 211

upgrading attribute k makes the corresponding alternative y1
k strictly better than y. Then 212

pseudo-median decomposibility expresses the fact that the value of x is either f (x0
k), or 213

f (x1
k) or ϕk(xk), which expresses a kind of non-compensation. In such a situation, given 214

another alternative y such that yk = xk = a: 215

f
(
x0
k

)
< f (x) = med

(
f (x0

k), ϕk(a), f (x1
k)

) = ϕk(a) ∧ f (x1
k) ≤ ϕk(a),

f
(
y1
k

)
> f (y) = med

(
f (y0

k), ϕk(a), f (y1
k)

) = ϕk(a) ∨ f (y0
k) ≥ ϕk(a),

and so f (x) ≤ ϕk(a) ≤ f (y). Hence, if maximally downgrading (resp. upgrading) attribute 216

k makes the alternative worse (resp. better) it means that its overall rating was not more 217

(resp. not less) that the rating on attribute k. We shall further discuss this and other facts in 218

Section 5. 219

It is also interesting to comment on Sugeno utility functionals as opposed to Sugeno 220

integrals applied to a single local utility function. First, the role of local utility functions is 221

clearly to embed all the local scales Xi into a single scale Y in order to make the scales 222

Xi commensurate. In other words, a Sugeno integral (2) cannot be defined if there is no 223

common scale X such that Xi ⊆ X, for every i ∈ [n]. In particular, the situation in decision 224

under uncertainty is precisely that where [n] is the set of states of nature, and Xi = X, for 225

every i ∈ [n], is the set of consequences (not necessarily ordered) that is, the utility of a 226

consequence resulting from implementing an act does not depend on the state of the world 227

in which the act is implemented. Then it is clear that ϕi = ϕ, for every i ∈ [n], namely, 228

a unique utility function is at work. In this sense, the Sugeno utility functional becomes a 229

simple Sugeno integral of the form 230

qμ(y1, . . . , yn) =
∨

I⊆[n]

(
μ(I) ∧

∧

i∈I

yi

)
. (7)

where Y = ϕ(X). It is the utility function ϕ that equips X with a total order: xi ≤ xj ⇐⇒ 231

ϕ(xi) ≤ ϕ(xj ). The general case studied here corresponds to that of DMU but where the 232

utility function are state-dependent. In the state-dependent situation, the evaluation of x is 233

of the form (3), i.e., consequences xi ∈ X are not evaluated in the same way in each state: 234

what is denoted by ϕi(xi) stands for ϕ(i, xi),where ϕ : [n]×X → Y , i.e. the utility function 235

evaluates pairs (state, consequence). This situation was already considered in the literature 236

of expected utility theory [38], here adapted to the qualitative setting. 237

3 Preference Relations Represented by Sugeno Utility Functionals 238

In this section we are interested in relations which can be represented by Sugeno utility 239

functionals. In Section 3.1 we recall basic notions and present preliminary observations 240

pertaining to preference relations. We discuss several axioms of DMU in Section 3.2 and 241
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present several equivalences between them. In Sections 3.3 and 3.4 we present axiomati-242

zations of those preference relations induced by possibility and necessity measures, and of243

more general preference relations represented by Sugeno utility functions.244

3.1 Preference Relations on Cartesian Products245

One of the main areas in decision making is the representation of preference relations. A246

weak order on a set X = ∏
i∈[n] Xi is a relation � ⊆ X2 that is reflexive, transitive, and247

complete (∀x, y ∈ X : x � y or y � x). Like quasi-orders (i.e., reflexive and transitive248

relations), weak orders do not necessarily satisfy the antisymmetry condition:249

∀x, y ∈ X : x � y, y � x =⇒ x = y. (AS)

Not having this property implies the existence of an “indifference” relation which we denote250

by ∼, and which is defined by y ∼ x if x � y and y � x. Clearly, ∼ is an equivalence251

relation. Moreover, the quotient relation � / ∼ satisfies (AS); in other words, � / ∼ is a252

complete linear order (chain).253

By a preference relation on X we mean a weak order � which satisfies the Pareto254

condition:255

∀x, y ∈ X : x ≤ y =⇒ x � y. (P)

In this section we are interested in modeling preference relations, and in this field two256

problems arise naturally. The first deals with the representation of such preference relations,257

while the second deals with the axiomatization of the chosen representation. Concerning258

the former, the use of aggregation functions has attracted much attention in recent years,259

for it provides an elegant and powerful formalism to model preference [5, 30] (for general260

background on aggregation functions, see [2, 31]).261

In this approach, a weak order � on a set X = ∏
i∈[n] Xi is represented by a so-called262

global utility function U (i.e., an order-preserving mapping which assigns to each event in263

X an overall score in a possibly different scale Y ), under the rule: x � y if and only if264

U(x) ≤ U(y). Such a relation is clearly a preference relation.265

Conversely, if � is a preference relation, then the canonical surjection r : X → X/ ∼,266

also referred to as the rank function of �, is an order-preserving map from X to X/ ∼267

(linearly ordered by �:=� / ∼), and we have x � y ⇐⇒ r (x) � r (y). Thus, � is268

represented by an order-preserving function if and only if it is a preference relation, and in269

this case � is represented by r .270

3.2 Axioms Pertaining to Preference Modelling271

In this subsection we recall some properties of relations used in the axiomatic approach272

discussed in [23, 26]; here we will adopt the same terminology even if its motivation only273

makes sense in the realm of decision making under uncertainty. We also introduce some274

variants, and present connections between them.275

First, for x, y ∈ X and A ⊆ [n], let xAy denote the tuple in X whose i-th component276

is xi if i ∈ A and yi otherwise. Moreover, let 0 and 1 denote the bottom and the top of X,277

respectively, and let � be a preference relation on X.278

We consider the following axioms. The optimism axiom [27] is279

∀x, y ∈ X,∀A ⊆ [n] : xAy ≺ x =⇒ x � yAx. (OPT)

The intuition behind this axiom is as follows [26]. Noticing that xAx = x, xAy ≺ x indicates280

improved attractiveness of the act if y is changed into x in the case that event [n] \A occurs.281
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Thus it indicates that [n] \ A is plausible for the decision-maker. As (s)he is optimistic, this 282

level of attractiveness is maintained even if x is changed into y when A occurs, regardless 283

of whether A is plausible. The name optimism is also justified considering the case where 284

x = 1 and y = 0. Then Eq. OPT reads A ≺ [n] implies [n] � [n] \ A (full trust in at least 285

A or [n] \ A, an optimistic approach to uncertainty). 286

This axiom subsumes1 two instances of interest, namely, 287

∀x ∈ X,∀A ⊆ [n] : xA0 ≺ x =⇒ x � 0Ax, (OPT′)
288

∀x, y ∈ X, k ∈ [n] , a ∈ Xk : x0
k ≺ xa

k =⇒ xa
k � ya

k . (OPT1)

Note that under Eq. P the conclusion of Eq. OPT′ is equivalent to x ∼ 0Ax. Similarly, the 289

conclusion of Eq. OPT1 could be replaced by xa
k ∼ 0a

k (state k is considered fully plausible, 290

and consequences of other states are neglected). 291

Dual to optimism we have the pessimism axiom 292

∀x, y ∈ X,∀A ⊆ [n] : xAy � x =⇒ x � yAx. (PESS)

The intuition behind this axiom is analogous to that of optimism [26]. Statement xAy � x 293

indicates increased attractiveness of the act if x is changed into y when [n] \ A occurs, and 294

thus it indicates that [n] \ A is plausible for the decision-maker. As (s)he is pessimistic, 295

this level of attractiveness of x cannot be improved by changing x into y when A occurs, 296

regardless of whether A is plausible. When x = 0 and y = 1, (PESS) reads [n] \ A � ∅ 297

implies ∅ � A (full distrust in at least one of A or [n] \ A, a pessimistic approach to 298

uncertainty). 299

The pessimism axiom subsumes the two dual instances 300

∀x ∈ X,∀A ⊆ [n] : xA1 � x =⇒ x � 1Ax, (PESS′)
301

∀x, y ∈ X, k ∈ [n] , a ∈ Xk : x1
k � xa

k =⇒ xa
k � ya

k . (PESS1)

Again, under (P), the conclusions of Eqs. PESS′ and PESS1 are equivalent to x ∼ 1Ax and 302

xa
k ∼ 1a

k , respectively. 303

We will also consider the disjunctive and conjunctive axioms 304

∀y, z ∈ X : y ∨ z ∼ y or y ∨ z ∼ z, (∨)
305

∀y, z ∈ X : y ∧ z ∼ y or y ∧ z ∼ z. (∧)

Moreover, we have the so-called disjunctive dominance and strict disjunctive dominance 306

∀x, y, z ∈ X : x � y, x � z =⇒ x � y ∨ z, (DD�)
307∀x, y, z ∈ X : x � y, x � z =⇒ x � y ∨ z, (DD�)

as well as their dual counterparts, conjunctive dominance and strict conjunctive dominance 308

∀x, y, z ∈ X : y � x, z � x =⇒ y ∧ z � x, (CD�)
309∀x, y, z ∈ X : y � x, z � x =⇒ y ∧ z � x. (CD�)

The four above axioms clearly make sense for one-shot decisions as they model non- 310

compensation between consequences of states in the presence of uncertainty. 311

Theorem 3.1 If � is a preference relation, then axioms (OPT), (OPT′), (OPT1), (∨), (DD�) 312

and (DD�) are pairwise equivalent. 313

1For (OPT) =⇒ (OPT1), just take x = xa
k , y = y0

k and A = [n] \ {k}.
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Proof We prove the theorem by establishing the following six implications:314

(OPT′) =⇒ (OPT) =⇒ (OPT1) =⇒ (∨)

=⇒ (DD�) =⇒ (DD�) =⇒ (OPT′).

Note that the implication (∨) =⇒ (DD�) is trivial, and recall that Eq. OPT1 is just a315

special case of Eq. OPT. Thus, we only need to prove the four implications below.316

(OPT′) =⇒ (OPT): Suppose that xAy ≺ x. By the Pareto property we have xA0 �317

xAy, and then xA0 ≺ x follows by the transitivity of �. Applying Eqs. OPT′ and P, we318

obtain x � 0Ax � yAx, and then x � yAx follows again from transitivity.319

(OPT1) =⇒ (∨): Let us suppose that y ∨ z � z; we will prove using (OPT1) that320

y ∨ z ∼ y. From Eq. P we see that z � y ∨ z, hence we have z ≺ y ∨ z by our assumption. If321

A = {i ∈ [n] : yi > zi}, then obviously yAz = y ∨ z. Let � denote the cardinality of A, let322

A = {i1, . . . , i�}, and define the sets Aj := {
i1, . . . , ij

}
for j = 1, . . . , �. Using the Pareto323

property, we obtain the following chain of inequalities:324

z � yA1z � · · · � yA�z = y ∨ z.

Since z ≺ y ∨ z, at least one of the above inequalities is strict. If the s-th inequality is the325

last strict one, then326

z � yA1z � · · · � yAs−1z ≺ yAsz ∼ · · · ∼ yA�z = y ∨ z. (8)

To simplify notation, let us put x = yAs−1z, k = is and a = yk . Then we have x0
k � x =327

yAs−1z ≺ yAsz = xa
k , hence xa

k � ya
k follows from Eq. OPT1. On the other hand, we see328

from Eq. 8 that yAsz ∼ y ∨ z, therefore329

y ∨ z ∼ yAsz = xa
k � ya

k = y � y ∨ z,

where the last inequality is justified by Eq. P. Since � is a weak order, we can conclude that330

y ∨ z ∼ y.331

(DD�) =⇒ (DD�): Assume that x � y, x � z. Since � is complete, we can suppose332

without loss of generality that y � z. By reflexivity, we also have y � y, hence it follows333

from Eq. DD� that y � y ∨ z. Since x � y, we obtain x � y ∨ z by transitivity.334

(DD�) =⇒ (OPT′): Putting y = xA0 and z = 0Ax, we clearly have y ∨ z = x. If335

x � y and x � z, then Eq. DD� implies x � y ∨ z, which is a contradiction. Therefore, we336

must have x � y or x � z. This shows that x � y =⇒ x � z =⇒ x � z, where the337

second implication holds because � is complete. Thus we have y ≺ x =⇒ x � z, and this338

is exactly what Eq. OPT′ asserts.339

Dually, we have the following result which establishes the pairwise equivalence between340

the remaining axioms.341

Theorem 3.2 If � is a preference relation, then axioms (PESS), (PESS′), (PESS1), (∧),342

(CD�) and (CD�) are pairwise equivalent.343

3.3 Preference Relations Induced by Possibility and Necessity Measures344

In this subsection we present some preliminary results towards the axiomatization of345

preference relations represented by Sugeno utility functionals (see Theorem 3.6). More346

precisely, we first obtain an axiomatization of relations represented by Sugeno util-347

ity functionals associated with possibility measures (weighted disjunction of utility348

functions).349
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Theorem 3.3 A preference relation � satisfies one (or, equivalently, all) of the axioms in 350

Theorem 3.1 if and only if there are local utility functions ϕi , i ∈ [n], and a possibility 351

measure μ, such that � is represented by the Sugeno utility functional f = qμ(ϕ1, . . . , ϕn). 352

Proof First let us assume that � is represented by a Sugeno utility functional f = 353

qμ(ϕ1, . . . , ϕn), where μ is a possibility measure. As observed in Section 2.2, f can be 354

expressed as a weighted disjunction: 355

f (x) =
∨

i∈[n]

(
μ (i) ∧ ϕi (xi)

)
.

Using the fact that each ϕi is order-preserving and Y is a chain, we can verify that f 356

commutes with the join operation of the lattice X: 357

f (y ∨ z) =
∨

i∈[n]

(
μ (i) ∧ ϕi (yi ∨ zi)

)

=
∨

i∈[n]

(
μ (i) ∧ (ϕi (yi) ∨ ϕi (zi))

)

=
∨

i∈[n]

(
μ (i) ∧ ϕi (yi)

) ∨
∨

i∈[n]

(
μ (i) ∧ ϕi (zi)

) = f (y) ∨ f (z) .

Since the ordering on Y is complete, we have f (y ∨ z) ∈ {f (y) , f (z)}, and this implies 358

that y ∨ z ∼ y or y ∨ z ∼ z for all y, z ∈ X, i.e., � satisfies (∨). 359

Now let us assume that � satisfies (∨), and let Y = X/ ∼. Using the rank function 360

r of �, we define a set function μ : P ([n]) → Y by μ (I) = r (1I0) and a unary map 361

ϕi : Xi → Y by ϕi (a) = r
(
0a
i

)
for each i ∈ [n]. The Pareto condition ensures that μ and 362

each ϕi , i ∈ [n], are all order-preserving; moreover, μ is a capacity, since 0 and 1 have the 363

least and greatest rank, respectively. 364

Condition (∨) can be reformulated in terms of the rank function as 365

∀y, z ∈ X : r (y ∨ z) = r (y) ∨ r (z) , (9)

and this immediately implies that μ is a possibility measure. Therefore, as observed in 366

Section 2.2, the Sugeno utility functional f := qμ(ϕ1, . . . , ϕn) can be written as 367

f (x) =
∨

i∈[n]

(
μ (i) ∧ ϕi (xi)

) =
∨

i∈[n]

(
r
(
01
i

) ∧ r
(
0xi

i

))
,

since μ (i) = r (1 {i} 0) = r
(
01
i

)
. By the Pareto condition, we have 01

i � 0xi

i , hence 368

r
(
01
i

) ∧ r
(
0xi

i

) = r
(
0xi

i

)
, and thus f (x) takes the form 369

f (x) =
∨

i∈[n]

r
(
0xi

i

)
.

Applying (9) repeatedly, and taking into account that x = ∨
i∈[n] 0xi

i , we conclude that 370

f (x) = r (x). As observed in Section 3.1, r represents �, and thus � is represented by the 371

Sugeno utility functon f corresponding to the possibility measure μ. 372

Remark 3.4 Note that the above theorem does not state that every Sugeno utility functional 373

representing a preference relation that satisfies the conditions of Theorem 3.1 corresponds 374

to a possibility measure. As an example, consider the case n = 2 with X1 = X2 = {0, 1} 375
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and Y = {0, a, b, 1}, where 0 < a < b < 1. Let us define local utility functions ϕi : Xi →376

Y (i = 1, 2) by377

ϕ1 (0) = 0, ϕ1 (1) = b, ϕ2 (0) = a, ϕ2 (1) = 1,

and let μ be the capacity on {1, 2} given by378

μ (∅) = 0, μ ({1}) = a, μ ({2}) = b, μ ({1, 2}) = 1.

It is easy to see that μ is not a possibility measure, but the preference relation � on X1 ×X2379

represented by f := qμ(ϕ1, ϕ2) clearly satisfies (∨), since (0, 0) ∼ (1, 0) ≺ (0, 1) ∼380

(1, 1) . On the other hand, the same relation can be represented by the second projection381

(x1, x2) �→ x2 on {0, 1}2, which is in fact a Sugeno integral with respect to a possibility382

measure satisfying 0 = μ(∅) = μ({1}) and μ({2}) = μ({1, 2}) = 1.383

Concerning necessity measures, by duality, we have the following characterization of the384

weighted conjunction of utility functions.385

Theorem 3.5 A preference relation � satisfies one (or, equivalently, all) of the axioms in386

Theorem 3.1 if and only if there are local utility functions ϕi , i ∈ [n], and a necessity387

measure μ, such that � is represented by the Sugeno utility functional f = qμ(ϕ1, . . . , ϕn).388

3.4 Axiomatizations of Preference Relations Represented by Sugeno Utility389

Functionals390

Recall from Section 3.1 that � is a preference relation if and only if � is represented by391

an order-preserving function valued in some chain (for instance, by its rank function). The392

following result that draws from Theorem 2.12 (and whose interpretation was given imme-393

diately after) axiomatizes those preference relations represented by general Sugeno utility394

functionals.395

Theorem 3.6 A preference relation � on X can be represented by a Sugeno utility396

functional if and only if397

x0
k ≺ xa

k and ya
k ≺ y1

k =⇒ xa
k � ya

k (10)

holds for all x, y ∈ X and k ∈ [n], a ∈ Xk .398

Proof From Theorem 2.12 it follows that r is a Sugeno utility functional if and only if Eq.399

10 holds. Thus, to prove Theorem 3.6, it is enough to verify that � can be represented by a400

Sugeno utility functional if and only if r is a Sugeno utility functional.401

The sufficiency is obvious. For the necessity, let us assume that � is represented by a402

Sugeno utility functional f : X → Y of the form f = qμ(ϕ1, . . . , ϕn). Furthermore, we403

may assume that f is surjective.404

Since r also represents �, we have f (x) ≤ f (y) ⇐⇒ r (x) � r (y), and hence the405

mapping α : Y → X/ ∼ given by α(f (x)) = r (x) is a well-defined order-isomorphism

2Since X/ ∼ has two elements, this is essentially the same as the rank function r : X → X/ ∼.
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between Y and X/ ∼. As α is order-preserving, it commutes with the lattice operations ∨ 406

and ∧, and hence 407

r (x) = α(f (x)) =
∨

I⊆[n]

(
α(μ (I)) ∧

∧

i∈I

α(ϕi (xi))
)

for all x ∈ X. Since α is an order-isomorphism, each composition αϕi , i ∈ [n], is a local 408

utility function, and the composition αμ is a capacity on [n]. Thus r is indeed a Sugeno 409

utility functional, namely, r = αf = qαμ(αϕ1, . . . , αϕn). 410

Example 3.7 To illustrate (10), suppose that alternatives xa
k and ya

k stand for two cars sharing 411

the same colour a. By Eq. 10, if xa
k is strictly preferred to ya

k , then either xa
k is indifferent to 412

the same car x0
k but with the ugliest colour 0, or ya

k is indifferent to the same car y1
k but with 413

the nicest colour 1. 414

In terms of DMU, one may also observe that x0
k ≺ x means that state k negatively affects 415

the worth of x, making it worse if not present. Dually, y ≺ y1
k means that state k positively 416

affects the worth of y, making it better if k is plausible. As in both cases the consequence of 417

these acts in state k is a, the axiom suggests that the utility of x is not greater than the utility 418

of consequence a in state k alone and that the utility of y is not less than this utility. 419

4 DMU vs. MCDM 420

In [26], Dubois, Prade and Sabbadin, considered the qualitative setting under uncertainty, 421

and axiomatized those preference relations on X = Xn that can be represented by special 422

(state-independent, see end of Section 3) Sugeno utility functionals f : X → Y of the form 423

f (x) = p(ϕ(x1), . . . , ϕ(xn)), (11)

where p : Yn → Y is a polynomial function (or, equivalently, a Sugeno integral; see, e.g., 424

[11, 12]), and ϕ : X → Y is a utility function. To get it, two additional axioms (more restric- 425

tive than Eqs. DD� and CD�) were considered, namely, the so-called restricted disjunctive 426

dominance and restricted conjunctive dominance: 427

∀x, y, c ∈ X : x � y, x � c =⇒ x � y ∨ c, (RDD)

428

∀x, y, c ∈ X : y � x, c � x =⇒ y ∧ c � x, (RCD)

where c is a constant tuple. 429

Theorem 4.1 (In [26]) A preference relation � on X = Xn can be represented by a state- 430

independent Sugeno utility functional (11) if and only if it satisfies (RDD) and (RCD). 431

Clearly, (11) is a particular form of Eq. 3, and thus every preference relation � on X = 432

Xn which is representable by Eq. 11 is also representable by a Sugeno utility functional (3). 433

In other words, we have that Eqs. RDD and RCD imply condition (10). However, as the 434

following example shows, the converse is not true. 435
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Example 4.2 Let X = {1, 2, 3} = Y endowed with the natural ordering of integers, and the436

consider the preference relation � on X = X2 whose equivalence classes are437

[(3, 3)] = {(3, 3), (2, 3)},
[(3, 2)] = {(3, 2), (3, 1), (1, 3), (2, 2), (2, 1)},
[(1, 2)] = {(1, 2), (1, 1)}.

This relation does not satisfy (RDD), e.g., take x = (2, 3), y = (1, 3) and c = (2, 2)438

(similarly, it does not satisfy (RCD)), and thus it cannot be represented by a Sugeno utility439

functional (11). However, with q(x1, x2) = (2 ∧ x1) ∨ (2 ∧ x2) ∨ (3 ∧ x1 ∧ x2), and440

ϕ1 = {(3, 3), (2, 3), (1, 1)} and ϕ2 = {(3, 3), (2, 1), (1, 1)}, we have that � is represented441

by the Sugeno utility functional f (x1, x2) = q(ϕ1(x1), ϕ2(x2)).442

In the case of preference relations induced by possibility and necessity measures, Dubois,443

Prade and Sabbadin [27] obtained the following axiomatizations.444

Theorem 4.3 (In [27]) Let � be a preference relation on X = Xn. Then the following445

assertions hold.446

(i) � satisfies (OPT) and (RCD) if and only if there exist a utility function ϕ and a447

possibility measure μ, such that � is represented by the Sugeno utility functional448

f = qμ(ϕ, . . . , ϕ).449

(ii) � satisfies (PESS) and (RDD) if and only if there exist a utility function ϕ and a450

necessity measure μ, such that � is represented by the Sugeno utility functional f =451

qμ(ϕ, . . . , ϕ).452

Again, every preference relation which is representable as in (i) or (ii) of Theorem 4.3,453

is representable as in Theorems 3.3 and 3.5, respectively. In other words, MCDM is at least454

as expressive as DMU.455

Now one could think that in these more restrictive possibility and necessity frameworks456

the expressive power of state-independent DMU and MCDM (or state-dependent DMU)457

would coincide. As the following example shows, state-dependent DMU (MCDM) is again458

strictly more expressive than DMU.459

Example 4.4 Let once again X = {1, 2, 3} = Y endowed with the natural ordering of460

integers, and the consider the preference relation � on X = X2 whose equivalence classes461

are462

[(3, 3)] = {(3, 3), (3, 2), (3, 1), (1, 3), (2, 3)},
[(2, 2)] = {(2, 2), (2, 1)},
[(1, 2)] = {(1, 2), (1, 1)}.

This relation does not satisfy (RCD), e.g., take x = (1, 2), y = (1, 3) and c = (2, 2), and463

thus it cannot be represented by a Sugeno utility functional f = qμ(ϕ, . . . , ϕ) where μ is464

possibility measure. However, with q(x1, x2) = (3∧x1)∨(3∧x2), with possibility distribu-465

tion μ(1) = μ(2) = 3, and ϕ1 = {(3, 3), (2, 2), (1, 1)} and ϕ2 = {(3, 3), (2, 1), (1, 1)}, we466

have that � is represented by the Sugeno utility functional f (x1, x2) = q(ϕ1(x1), ϕ2(x2)).467

Dually, we can easily construct an example of a preference relation representable in the468

necessity setting of MCDM, but not in that of DMU.469
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5 Concluding Remarks and Open Problems 470

As recalled in the introduction, Sugeno integrals can be instrumental in DMU and MCDM 471

in situations where it is difficult or too time-consuming to evaluate preferences between 472

alternatives (by uncertainty of states or importance of criteria using a fine-grained numerical 473

scales, respectively). They generalize maximin and maximax criteria in DMU. Moreover, 474

more often than not, obtaining very precise quantified results in these areas is not crucial 475

outside economic domains. The use of Sugeno integrals only requires finite value scales 476

that can be adapted to the level of perception of decision-makers. Conversely, Sugeno inte- 477

grals can be applied to identify criteria aggregations from data, and expressing them in 478

interpretable ways by means of if-then rules [20, 35]. 479

One draw-back is that such aggregation methods have limited expressive power. Our 480

proposal of Sugeno utility functionals thus improves the expressiveness of qualitative 481

aggregation methods. 482

Besides, in the numerical setting, utility functions play a crucial role in the expressive 483

power of the expected utility approach, introducing the subjective perception of (real- 484

valued) consequences of acts and expressing the attitude of the decision-maker in the face of 485

uncertainty. In the qualitative and finite setting, the latter point is taken into account by the 486

choice of the monotonic set-function in the Sugeno integral expression (possibility measures 487

for optimistic decision-makers, necessity measures for pessimistic decision-makers. 488

So one might have thought that a direct appreciation of consequences is enough to 489

describe a large class of preference relations. This paper questions this claim by show- 490

ing that even in the finite qualitative setting, the use of local utility functions increases 491

the expressive power of Sugeno integrals, thus proving that the framework of qualitative 492

MCDM is formally more general that the one of state-independent qualitative DMU. In fact, 493

the same holds in the more restrictive frameworks dealing with possibility and necessity 494

measures. 495
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Appendix A: Factorization of Sugeno utility functionals 501

In this appendix we recall the procedure given in [16] to obtain all possible factorizations 502

of a given Sugeno utility functional into a composition of a Sugeno integral (or, more gen- 503

erally, a polynomial function) with local utility functions. Note that Theorem 2.11 provides 504

a canonical polynomial function p0 that can be used in such a factorization. 505

First, we provide all possible inner functions ϕk : Xk → Y which can be used in the the 506

factorization of any Sugeno utility functional. To this extent, we need to recall the basic set- 507

ting of [16], and in what follows we take advantage of Birkhoff’s Representation Theorem 508

[1] to embed Y into P (U), the power set of a finite set U . Identifying Y with its image under 509

this embedding, we will consider Y as a sublattice of P (U) with 0 = ∅ and 1 = U . As Y 510

is a finite chain, say with m + 1 elements, U can be chosen as U = [m] = {1, 2, . . . , m}, 511

and Y = {[0] , [1] , . . . , [m]}, where [0] = ∅. 512
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The complement of a set S ∈ P (U) will be denoted by S. Moreover, we consider the513

two following operators on U . A closure operator cl514

cl (S) = [max S]

and a dual closure operator int515

int (S) = [
min S − 1

]
.

Now given an order-preserving function f : X → Y , we define for each k ∈ [n] two516

auxiliary functions �−
k ,�+

k : Xk → Y as follows:517

�−
k (ak) :=

∨

xk=ak

cl
(
f (x) ∧ f

(
x0
k

))
, �+

k (ak) :=
∧

xk=ak

int
(
f (x) ∨ f

(
x1
k

))
. (12)

Note that the terms f
(
x0
k

)
and f

(
x1
k

)
in Eq. 12 do not depend on ak , and hence, since f is518

order-preserving, both �−
k and �+

k are also order-preserving.519

With the help of these two mappings, we can determine all possible local utility functions520

ϕi : Xi → Y , i ∈ [n], which can be used to factorize a Sugeno utility functional f : X → Y521

as a composition522

f (x) = p(ϕ1(x1), . . . , ϕn(xn)),

where p : Yn → Y is a polynomial function.523

Theorem 6.1 (In [16]) For any order-preserving function f : X → Y and order-preserving524

mappings ϕk : Xk → Y (k ∈ [n]), the following conditions are equivalent:525

1. �−
k ≤ ϕk ≤ �+

k holds for all k ∈ [n];526

2. f (x) = p0 (ϕ (x));527

3. there exists a polynomial function p : Yn → Y such that f (x) = p (ϕ (x)).528

In particular, �−
k and �+

k are the minimal and maximal, respectively, local utility func-529

tions (w.r.t. the usual pointwise ordering of functions), which can be used to factorize a530

Sugeno utility functional. Moreover, we have the following corollary.531

Corollary 6.2 An order-preserving function f : X → Y is a Sugeno utility functional if and532

only if533

�−
k ≤ �+

k , for all k ∈ [n] . (13)

As mentioned, p0 can be used in any factorization of a Sugeno utility functional, but534

there may be other suitable polynomial functions. To find all such polynomial functions,535

let us fix local utility functions ϕk : Xk → Y (k ∈ [n]), such that �−
k ≤ ϕk ≤ �+

k for536

each k ∈ [n]. To simplify notation, let ak = ϕk (0) , bk = ϕk (1), and for each I ⊆ [n] let537

1I ∈ Yn be the n-tuple whose i-th component is ai if i /∈ I and bi if i ∈ I . If p : Yn → Y538

is a polynomial function such that f (x) = p (ϕ (x)), then539

p (1I ) = f
(
1̂I

)
for all I ⊆ [n] , (14)

since 1I = ϕ
(
1̂I

)
3. As shown in [16], (14) is not only necessary but also sufficient to540

establish the factorization f (x) = p (ϕ (x)).541

3Recall that 1̂I denotes the characteristic vector of I ⊆ [n] in X, i.e., 1̂I ∈ X is the n-tuple whose i-th
component is 1Xi

if i ∈ I , and 0Xi
otherwise.
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To make this description explicit, let us define the following two polynomial functions 542

first presented in [17], namely, 543

p− (y) =
∨

I⊆[n]

(
c−
I ∧

∧

i∈I

yi

)
, where c−

I = cl
(
f

(
1̂I

) ∧
∧

i /∈I

ai

)
,

and 544

p+ (y) =
∨

I⊆[n]

(
c+
I ∧

∧

i∈I

yi

)
, where c+

I = int
(
f

(
1̂I

) ∨
∨

i∈I

bi

)
.

As it turned out, a polynomial function p is a solution of Eq. 14 if and only if p− ≤ p ≤ p+. 545

Since, by Theorem 2.1, p is uniquely determined by its values on the tuples 1I , this is 546

equivalent to 547

c−
I = p− (1I ) ≤ p (1I ) ≤ p+ (1I ) = c+

I for all I ⊆ [n] .

These observations are reassembled in the following theorem which provides the description 548

of all possible factorizations of Sugeno utility functionals. 549

Theorem 6.3 (In [16]) Let f : X → Y be an order-preserving function, for each k ∈ [n] 550

let ϕk : Xk → Y be a local utility function, and let p : Yn → Y be a polynomial function. 551

Then f (x) = p (ϕ (x)) if and only if �−
k ≤ ϕk ≤ �+

k for each k ∈ [n], and p− ≤ p ≤ p+. 552

Appendix B: Proof of Theorem 2.12 553

Let f : X → Y be an order-preserving function. As Appendix I, Y is thought of as the 554

sublattice Y = {[0] , [1] , . . . , [m]} of P ([m]) , where [0] = ∅. Then f
(
x0
k

) = [u] , f (x) = 555

[v] , f
(
x1
k

) = [w] with u ≤ v ≤ w, and hence we have 556

f (x) ∧ f
(
x0
k

) = {u + 1, . . . , v} ,

f (x) ∨ f
(
x1
k

) = {1, . . . , v, w + 1, . . . , m} .

Therefore the terms in the definition of �−
k and �+

k can be determined as follows: 557

cl
(
f (x) ∧ f

(
x0
k

)) =
{

f (x) , if f
(
x0
k

)
< f (x) ;

∅, if f
(
x0
k

) = f (x) ; (15)

int
(
f (x) ∨ f

(
x1
k

)) =
{

f (x) , if f
(
x1
k

)
> f (x) ;

U, if f
(
x1
k

) = f (x) .
(16)

By making use of these observations we can now prove Theorem 2.12: 558

Theorem 7.1 (In [16]) A function f : X → Y is a Sugeno utility functional if and only if it 559

is order-preserving and satisfies 560

f
(
x0
k

)
< f

(
xa
k

)
and f

(
ya
k

)
< f

(
y1
k

) =⇒ f
(
xa
k

) ≤ f
(
ya
k

)
(17)

for all x, y ∈ X and k ∈ [n], a ∈ Xk . 561

Proof Suppose first that f is a Sugeno utility functional. As observed, f is order- 562

preserving, and thus we only need to verify that Eq. 17 holds. For a contradiction, suppose 563
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that there is k ∈ [n] such that for some a ∈ Xk and x, y ∈ X, we have f
(
x0
k

)
<564

f
(
xa
k

)
and f

(
ya
k

)
< f

(
y1
k

)
, but f

(
xa
k

)
> f

(
ya
k

)
. Then565

cl
(
f

(
xa
k

) ∧ f
(
x0
k

))
> int

(
f

(
ya
k

) ∨ f
(
y1
k

))
,

and thus �−
k (a) > �+

k (a). This contradicts Corollary 6.2 as f is a Sugeno utility functional.566

Hence both conditions are necessary.567

To see that these conditions are also sufficient, suppose that f is order-preserving and568

satisfies (17). Then, for every k ∈ [n], a ∈ Xk , and every x, y ∈ X,569

cl
(
f

(
xa
k

) ∧ f
(
x0
k

)) ≤ int
(
f

(
ya
k

) ∨ f
(
y1
k

))
.

Thus, for every k ∈ [n], we have �−
k ≤ �+

k and, by Corollary 6.2, f is a Sugeno utilty570

function.571
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