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On the interval of strong partial clones of Boolean
functions containing Pol({(0, 0), (0, 1), (1, 0)})

Miguel Couceiro, Lucien Haddad, Karsten Schölzel, and Tamás

Waldhauser

Abstract. D. Lau raised the problem of determining the cardinality of the set of all

partial clones of Boolean functions whose total part is a given Boolean clone. The
key step in the solution of this problem, which was obtained recently by the authors,

was to show that the sublattice of strong partial clones on {0, 1} that contain all

total functions preserving the relation ρ0,2 = {(0, 0), (0, 1), (1, 0)} is of continuum
cardinality. In this paper we represent relations derived from ρ0,2 in terms of graphs,

and we define a suitable closure operator on graphs such that the lattice of closed sets

of graphs is isomorphic to the dual of this uncountable sublattice of strong partial
clones. With the help of this duality, we provide a rough description of the structure

of this lattice, and we also obtain a new proof for its uncountability.

1. Introduction

Let A be a finite non-singleton set. Without loss of generality we assume

that A = k := {0, . . . , k − 1}. For a positive integer n, an n-ary partial

function on k is a map f : dom(f)→ k where dom(f) is a subset of kn called

the domain of f . If dom(f) = kn, then f is a total function (or operation)

on k. Let Par(n)(k) denote the set of all n-ary partial functions on k and let

Par(k) :=
⋃
n≥1

Par(n)(k). The set of all total operations on k is denoted by

Op(k).

For n,m ≥ 1, f ∈ Par(n)(k) and g1, . . . , gn ∈ Par(m)(k), the composition of

f and g1, . . . , gn, denoted by f [g1, . . . , gn] ∈ Par(m)(k), is defined by

dom(f [g1, . . . , gn]) :=
{

a ∈ km : a ∈
n⋂
i=1

dom(gi) and

(g1(a), . . . , gn(a)) ∈ dom(f)
}
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2 Couceiro, Haddad, Schölzel, and Waldhauser Algebra univers.

and

f [g1, . . . , gn](a) := f(g1(a), . . . , gn(a))

for all a ∈ dom(f [g1, . . . , gn]).

For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary i-th

projection function defined by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn.

Furthermore, let

Jk := {eni : 1 ≤ i ≤ n}
be the set of all (total) projections on k.

Definition 1.1. A partial clone on k is a composition closed subset of Par(k)

containing Jk.

The partial clones on k, ordered by inclusion, form a complete lattice LPk

in which the infinimum is the set-theoretical intersection. That means that

the intersection of an arbitrary family of partial clones on k is also a partial

clone on k.

Examples.

(1) Ωk :=
⋃
n≥1

{f ∈ Par(n)(k) : dom(f) 6= ∅ =⇒ dom(f) = kn} is a partial

clone on k.

(2) For a = 0, 1 let Ta be the set of all total functions satisfying f(a, . . . , a) =

a, let M be the set of all monotone total functions and S be the set of all

self-dual total functions on 2 = {0, 1}. Then T0, T1,M and S are (total)

clones on 2.

(3) Let

T0,2 := {f ∈ Op(2) : [(a1, b1) 6= (1, 1), . . . , (an, bn) 6= (1, 1)]

=⇒ (f(a1, . . . , an), f(b1, . . . , bn)) 6= (1, 1)}.

Then T0,2 is a (total) clone on 2.

(4) Let

S̃ := {f ∈ Par(2) : {(a1, . . . , an), (¬a1, . . . ,¬an)} ⊆ dom(f)

=⇒ f(¬a1, . . . ,¬an) = ¬f(a1, . . . , an)},

where ¬ is the negation on 2. Then S̃ is a partial clone on 2.

Definition 1.2. For h ≥ 1, let ρ be an h-ary relation on k and f be an

n-ary partial function on k. We say that f preserves ρ if for every h × n

matrix M = [Mij ] whose columns M∗j ∈ ρ, (j = 1, . . . , n) and whose rows

Mi∗ ∈ dom(f) (i = 1, . . . , h), the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol(ρ) := {f ∈ Par(k) : f preserves ρ}.

It is well known that pPol ρ is a partial clone called the partial clone de-

termined by the relation ρ. Note that if there is no h × n matrix M = [Mij ]

whose columns M∗j ∈ ρ and whose rows Mi∗ ∈ dom(f), then f ∈ pPol(ρ).

We can naturally extend the pPol operator to sets of relations: if R is a set
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Vol. 00, XX On an interval of strong partial clones of Boolean functions 3

of relations, then let pPol (R) =
⋂
ρ∈R pPol (ρ). We denote the total part of

pPol (R) by Pol (R), i.e., Pol (R) = pPol (R) ∩Op(k).

We say that g ∈ Par(k) is a subfunction of f ∈ Par(k) if dom(g) ⊆ dom(f)

and g is the restriction of f to dom g.

Definition 1.3. A strong partial clone is a partial clone that is closed under

taking subfunctions.

A partial clone is strong if and only if it contains all partial projections

(subfunctions of projections). For a set P ⊆ Par(k) we denote the least strong

partial clone containing P by Str (P ). Observe that if C ⊆ Op(k) is a total

clone, then Str (C) is just the set of all subfunctions of members of C. It is easy

to see that if a partial function f preserves a relation ρ, then all subfunctions

of f also preserve ρ. Thus every partial clone of the form pPol(ρ) is strong.

In the examples above Ta = Pol({a}), M = Pol(≤), S = Pol( 6=), T0,2 =

Pol(ρ0,2) and S̃ = pPol(6=), whereas Ωk is not a strong partial clone. Here,

for simplicity, we write ≤ for {(0, 0), (0, 1), (1, 1)}, ρ0,2 for {(0, 0) , (0, 1), (1, 0)}
and 6= for {(0, 1), (1, 0)}.

The study of partial clones on 2 := {0, 1} was initiated by R. V. Freivald [8].

Among other things, he showed that the set of all monotone partial functions

and the set of all self-dual partial functions are both maximal partial clones on

2. In fact, Freivald showed that there are exactly eight maximal partial clones

on 2. To state Freivald’s result, we introduce the following two relations: let

R1 = {(x, x, y, y) : x, y ∈ 2} ∪ {(x, y, y, x) : x, y ∈ 2}
R2 = R1 ∪ {(x, y, x, y) : x, y ∈ 2}.

Theorem 1.4 ([8]). There are 8 maximal partial clones on 2: pPol({0}),

pPol({1}), pPol({(0, 1)}), pPol(≤), pPol( 6=), pPol(R1), pPol(R2) and Ω2.

Note that the set of total functions preserving R2 form the maximal clone

of all (total) linear functions over 2.

Also interesting is to determine the intersections of maximal partial clones.

It is shown in [1] that the set of all partial clones on 2 that contain the maximal

clone consisting of all total linear functions on 2 is of continuum cardinality

(for details see [1, 11] and Theorem 20.7.13 of [17]). A consequence of this

is that the interval of partial clones [pPol(R2) ∩ Ω2,Par(2)] is of continuum

cardinality.

A similar result, (but slightly easier to prove) is established in [10] where it is

shown that the interval of partial clones [pPol(R1)∩Ω2,Par(2)] is also of contin-

uum cardinality. Notice that the three maximal partial clones pPolR1, pPolR2

and Ω2 contain all unary functions (i.e., maps) on 2. Such partial clones are

called S lupecki type partial clones in [11, 21]. These are the only three maximal

partial clones of S lupecki type on 2.

For a complete study of the pairwise intersections of all maximal partial

clones of S lupecki type on a finite non-singleton set k, see [11]. The papers
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4 Couceiro, Haddad, Schölzel, and Waldhauser Algebra univers.

[12, 13, 18, 23, 24] focus on the case k = 2 where various interesting, and

sometimes hard to obtain, results are established. For instance, the intervals

[pPol({0}) ∩ pPol({1}) ∩ pPol({(0, 1)}) ∩ pPol(≤),Par(2)]

and

[pPol({0}) ∩ pPol({1}) ∩ pPol({(0, 1)}) ∩ pPol( 6=),Par(2)]

are shown to be finite and are completely described in [12]. Some of the results

in [12] are included in [23, 24] where partial clones on 2 are handled via the

one point extension approach (see section 20.2 in [17]).

In view of results from [1, 10, 12, 23, 24], it was thought that if 2 ≤ i ≤ 5

and M1, . . . ,Mi are non-S lupecki maximal partial clones on 2, then the in-

terval [M1 ∩ · · · ∩ Mi,Par(2)] is either finite or countably infinite. It was

shown in [13] that the interval of partial clones [pPol(≤) ∩ pPol( 6=),Par(2)]

is infinite. However, it remained an open problem to determine whether

[pPol(≤)∩pPol( 6=),Par(2)] is countably or uncountably infinite. This problem

was settled in [3]:

Theorem 1.5 ([3]). The interval of partial clones [pPol(≤)∩pPol( 6=),Par(2)]

that contain the strong partial clone of monotone self-dual partial functions, is

of continuum cardinality on 2.

The main construction in proving this result was later adapted in [4] to

solve an intrinsically related problem that was first considered by D. Lau [16],

and tackled recently by several authors, namely: Given a total clone C on 2,

describe the interval of all partial clones on 2 whose total component is C. Let

us introduce a notation for this interval and several variants:

I(C) := {P ⊆ Par(2) : P is a partial clone and C = P ∩Op(2)} ;

IStr(C) := {P ⊆ Par(2) : P is a strong partial clone and C = P ∩Op(2)} ;

I⊆Str(C) := {P ⊆ Par(2) : P is a strong partial clone and C ⊆ P ∩Op(2)} .

In [4] we established a complete classification of all intervals of the form

I(C), for a total clone C on 2, and showed that each such I(C) is either finite

or of continuum cardinality. Given the previous results by several authors,

the missing case was settled by the following theorem. (Note that I(T0,2) ⊇
IStr(T0,2), hence if IStr(T0,2) has continuum cardinality, then it follows that

I(T0,2) is also uncountable.)

Theorem 1.6 ([4]). The interval of strong partial clones IStr(T0,2) is of con-

tinuum cardinality.

Lau’s problem is equivalent to the problem of determining the cardinali-

ties of intervals of weak relational clones generating a given relational clone

(see Subection 2.1). This problem is important in the study of complexity of

constraint satisfaction problems (CSPs), and has been posed in [15].

In this paper we provide an alternative proof of Theorem 1.6 based on

a representation of relations that are invariant under T0,2 by graphs. By
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defining an appropriate closure operator on graphs, we will show that there

are a continuum of such closed sets of graphs, which in turn are in a one-to-one

correspondence with strong partial clones containing T0,2. As we will see, this

construction will contribute to a better understanding of the structure of this

uncountable sublattice of partial clones.

This paper is organised as follows. In Section 2 we recall some basic notions

and preliminary results on relations and graphs that will be needed throughout.

In Section 3 we introduce a representation of relations by graphs, and we

show that the lattice I⊆Str(T0,2) is dually isomorphic to the lattice of classes

of graphs that are closed under some natural constructions such as disjoint

unions and quotients. Motivated by this duality, in Section 4 and Section 5

we focus on this lattice of closed sets of graphs, and obtain some results about

its structure. These results (after dualizing) yield the following information

about I⊆Str(T0,2):

(a) I⊆Str(T0,2) has a two-element chain at the bottom and a three-element

chain at the top (Theorem 4.4);

(b) between these chains there is an uncountable “jungle” (see Figure 1), in

which there is a continuum of elements below and above every element

(Theorems 5.15 and 5.21);

(c) for each n ∈ {0, 1, 2, . . . ,ℵ0}, there exist elements in I⊆Str(T0,2) with ex-

actly n lower covers (Theorem 5.13).

This paper is an extended version of the conference paper [5] presented at

the 44th IEEE International Symposium on Multiple-Valued Logic, where (a)

has been proved as well as a weaker form of (b).

2. Preliminaries

2.1. Relations. An n-ary relation ρ ⊆ kn over k can be regarded as a map

kn → {0, 1}, such that ρ (a1, . . . , an) is 1 iff (a1, . . . , an) ∈ ρ. This allows us

to speak about inessential coordinates: the i-th coordinate of ρ is inessential

if the corresponding map kn → {0, 1} does not depend on its i-th variable.

Sometimes it will be convenient to think of a relation ρ as an n × |ρ| matrix,

whose columns are the tuples belonging to ρ (the order of the columns is

irrelevant).

For a set R of relations, let 〈R〉@ denote the set of relations definable

by quantifier-free primitive positive formulas over R ∪ {ωk}, where ωk =

{(a, a) : a ∈ k} is the equality relation on k. Formally, an n-ary relation σ

belongs to 〈R〉@ if and only if there exist relations ρ1, . . . , ρt ∈ R ∪ {ωk} of

arities r1, . . . , rt, respectively, and there are variables z
(j)
i ∈ {x1, x2, . . . , xn}

(j = 1, . . . , t; i = 1, . . . , rj) such that

σ (x1, . . . , xn) =

t∧
j=1

ρj

(
z
(j)
1 , . . . , z(j)rj

)
.
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6 Couceiro, Haddad, Schölzel, and Waldhauser Algebra univers.

We say that R is a weak relational clone if R is closed under quantifier-free

primitive positive definability, i.e., 〈R〉@ = R. (The terms weak partial co-

clone and weak co-clone are also used for this notion.)

Let Inv (P ) denote the set of invariant relations of a set P ⊆ Par(k) of

partial functions:

Inv(P ) := {ρ ⊆ kn : ρ is preserved by each f ∈ P}.

The operators pPol and Inv give rise to a Galois connection between partial

functions and relations, and the corresponding Galois closed classes are strong

partial clones and weak relational clones.

Theorem 2.1 ([20]). For any set P ⊆ Par(k) of partial functions and for any

set R of relations on k, we have

Str (P ) = pPol Inv (P ) and 〈R〉@ = Inv pPol (R) .

Remark 2.2. Theorem 2.1 implies that the lattice of strong partial clones is

dually isomorphic to the lattice of weak relational clones. In particular, for any

total Boolean clone C, the interval IStr(C) is dually isomorphic to the interval

{R : 〈R〉@ = R and Pol (R) = C} in the lattice of weak relational clones.

Now we introduce some simple constructions for relations that allow us to

give an alternative description of the closure 〈R〉@.

• For ρ ⊆ kn and σ ⊆ km, the direct product of ρ and σ is the relation

ρ× σ ⊆ kn+m defined by

ρ× σ =
{

(a1, . . . , an+m) ∈ kn+m : (a1, . . . , an) ∈ ρ, (an+1, . . . , an+m) ∈ σ
}
.

• Let ρ ⊆ kn and let ε be an equivalence relation on {1, 2, . . . , n}. Define

∆ε (ρ) ⊆ kn by

∆ε (ρ) = {(a1, . . . , an) ∈ ρ : ai = aj whenever (i, j) ∈ ε} .

We say that ∆ε (ρ) is obtained from ρ by diagonalization.

• If two relations ρ and σ, considered as matrices, can be obtained from

each other by permuting rows, by adding or deleting repeated rows, and

by adding or deleting inessential coordinates, then a partial function f

preserves ρ if and only if f preserves σ. In this case we say that ρ and σ

are esentially the same, and we write ρ ≈ σ. Observe that the relations

k (unary total relation) and ωk (binary equality relation) are essentially

the same.

The following characterization of weak relational clones is straightforward

to verify.

Fact 2.3. For an arbitrary set R of relations on k, we have 〈R〉@ = R if and

only if the following conditions are satisfied:

(i) if ρ, σ ∈ R, then ρ× σ ∈ R;

(ii) if ρ ∈ R, then ∆ε (ρ) ∈ R (for all appropriate equivalence relations ε);

(iii) k ∈ R (here k is the unary total relation);
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(iv) if ρ ∈ R and σ ≈ ρ, then σ ∈ R.

2.2. Graphs. We consider finite undirected graphs without multiple edges.

For any graph G, let V (G) and E (G) denote the set of vertices and edges

of G, respectively. An edge uv ∈ E (G) is called a loop if u = v. A map

ϕ : V (G) → V (H) is a homomorphism from G to H if for all uv ∈ E (G) we

have ϕ (u)ϕ (v) ∈ E (H). We use the notation G→ H to denote the fact that

there is a homomorphism from G to H. The homomorphic image of G under

ϕ is the subgraph ϕ (G) of H given by V (ϕ (G)) = {ϕ (v) : v ∈ V (G)} and

E (ϕ (G)) = {ϕ (u)ϕ (v) : uv ∈ E (G)}. If ϕ (G) is an induced subgraph of H,

then we say that ϕ is a faithful homomorphism; this means that every edge

of H between two vertices in ϕ (V (G)) is the image of an edge of G under

ϕ. If ϕ : G → H is a surjective faithful homomorphism, then ϕ is said to be

a complete homomorphism. In this case H is the homomorphic image of G

under ϕ (i.e., H = ϕ (G)), and we shall denote this by G� H.

If ε is an equivalence relation on the set of vertices V (G) of a graph G, then

we can form the quotient graph G/ε as follows: the vertices of G/ε are the

equivalence classes of ε, and two such equivalence classes C,D are connected

by an edge in G/ε if and only if there exist u ∈ C, v ∈ D such that uv ∈
E (G). Note that a vertex of G/ε has no loop if and only if the corresponding

equivalence class is an independent set in G (i.e., there are no edges inside

this equivalence class in G). There is a canonical correspondence between

quotients and homomorphic images: the quotient G/ε is a homomorphic image

of G (under the natural homomorphism sending every vertex to the ε-class to

which it belongs), and if ϕ : G � H is a complete homomorphism, then H is

isomorphic to the quotient of G corresponding to the kernel of ϕ.

For n ∈ N, the complete graph Kn is the graph on n vertices that has no

loops but has an edge between any two distinct vertices, i.e.,

E (Kn) = {uv : u, v ∈ V (Kn) and u 6= v} .

Note that this defines Kn only up to isomorphism (as the vertex set is not

specified). In fact, in the following we will not distinguish between isomorphic

graphs. For n = 1 we get the graph K1 consisting of a single isolated vertex.

We will denote the one-vertex graph with a loop by L.

The disjoint union of graphs G and H will be denoted by G⊕H. Observe

that there exist natural homomorphisms G → G ⊕ H and H → G ⊕ H. By

k ·G := G⊕ · · · ⊕G we denote the disjoint union of k copies of G.

A homomorphism G→ Kn is a proper coloring of G by n colors (regard the

vertices of Kn as n different colors; properness means that adjacent vertices

of G must receive different colors). The chromatic number χ (G) of a loopless

graph is the least number of colors required in a proper coloring of G. Observe

that if G→ H, then χ (G) ≤ χ (H), since G→ H → Kn implies G→ Kn for

all natural numbers n. A graph is bipartite if and only if χ (G) ≤ 2, i.e., G is

2-colorable.
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The girth of a graph is the length of its shortest cycle (if there is a cycle at

all), and the odd girth of a graph G is the length of the shortest cycle of odd

length in G (is there is an odd cycle at all, i.e., if G is not bipartite). The odd

girth can be described in terms of homomorphisms as follows. Let Cn denote

the cycle of length n without loops (just like Kn, this graph is defined only up

to isomorphism). Then the odd girth of a non-bipartite graph G is the least

odd number n such that Cn → G. It follows that if G → H, then the odd

girth of H is at most as large as the odd girth of G. P. Erdős has proved that

for any pair of natural numbers (k, g) with k, g ≥ 3 there exists a graph with

chromatic number k and girth g [7].

Since the relation → is reflexive and transitive, it is a quasiorder on the

set of all (isomorphism types of) finite graphs. The corresponding equivalence

relation is called homomorphic equivalence, and factoring out by this equiva-

lence, we obtain the homomorphism order of graphs. The above mentioned

theorem of Erdős implies that this homomorphism order has infinite width: if

Gk is a graph with chromatic number and odd girth equal to 2k + 1 for each

k ∈ N, then {G1, G2, . . . } is an infinite antichain. The homomorphism order

is dense almost everywhere: E. Welzl showed that if G is strictly less than H

(that is G→ H and H 9 G), then there exists a graph lying between G and

H, except in the case when G and H are homomorphically equivalent to K1

and K2, respectively [25].

Let G denote the set of (isomorphism types of) finite undirected graphs

without multiple edges and without isolated vertices. We make one exception

to the ban on isolated vertices: we include the one-point graph K1 in G. We

allow loops, and a vertex having a loop is not considered as isolated; in partic-

ular, L ∈ G. In Section 5 we will work only with loopless non-bipartite graphs,

so let us introduce the notation G1 for the set of loopless non-bipartite mem-

bers of G. Observe that no graph from G1 is homomorphically equivalent to

K1 or K2, hence Welzl’s theorem implies that (G1;→) is a dense quasiordered

set. We shall need the following strengthening of this density result.

Theorem 2.4 ([19]). If G,H ∈ G1 such that G → H and H 9 G, then

there exists an infinite antichain {T1, T2, . . . } ⊆ G1 between G and H, i.e.,

G→ Ti → H and Ti 9 Tj for all i, j ∈ N, i 6= j.

3. Representing relations in 〈ρ0,2〉@ by graphs

Recall that ρ0,2 is the binary relation ρ0,2 = {0, 1}2\{(1, 1)} on 2, and T0,2 =

Pol (ρ0,2) is the corresponding total clone. The interval I⊆Str(T0,2) is dually

isomorphic to the interval {R : 〈R〉@ = R and T0,2 ⊆ Pol (R)} in the lattice of

weak relational clones (cf. Remark 2.2). According to the next proposition,

this latter interval is in turn isomorphic the lattice of weak relational subclones

of 〈ρ0,2〉@.
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Proposition 3.1. For any weak relational clone R on 2, we have T0,2 ⊆
Pol (R) if and only if R ⊆ 〈ρ0,2〉@.

Proof. The condition T0,2 ⊆ Pol (R) is equivalent to Str (T0,2) ⊆ pPol (R),

whereas R ⊆ 〈ρ0,2〉@ is equivalent to pPol (ρ0,2) ⊆ pPol (R). Therefore, it

suffices to prove that pPol (ρ0,2) = Str (T0,2), i.e., that if a partial function f

preserves ρ0,2, then it extends to a total function f̂ still preserving ρ0,2. It

is easy to see that setting f̂ (a) = 0 for all a /∈ dom (f) gives the required

extension of f . �

Let us write Sub
(
〈ρ0,2〉@

)
for the lattice of weak relational clones contained

in 〈ρ0,2〉@. By Proposition 3.1, Sub(〈ρ0,2〉@) is dually isomorphic to I⊆Str(T0,2).

Since the only Boolean clones properly containing T0,2 are T0 and Op(2), we

have I⊆Str(T0,2) = IStr(T0,2) ∪ IStr(T0) ∪ IStr(Op(2)). The intervals IStr(T0)

and IStr(Op(2)) are singletons (see [1], but we will also reprove these facts in

Remark 4.5), hence the main task is to describe the structure of IStr(T0,2).

We will represent relations in 〈ρ0,2〉@ by graphs, and we will introduce an

appropriate closure operator on graphs such that the closed sets of graphs are

in a one-to-one correspondence with the 〈·〉@-closed subsets of 〈ρ0,2〉@. This

will allow us to give a simple proof for the uncountability of IStr(T0,2) and to

obtain some new results about the structure of this lattice.

If G ∈ G is a graph with V (G) = {v1, . . . , vn}, then we can define a relation

rel (G) ⊆ 2n by

rel (G) (x1, . . . , xn) =
∧

vivj∈E(G)

ρ0,2 (xi, xj) .

Note that if we enumerate the vertices of G in a different way, then we may

obtain a different relation; however, these two relations differ only in the order

of their rows, hence they are essentially the same. Clearly, rel (G) ∈ 〈ρ0,2〉@
for every G ∈ G; moreover, for any σ ∈ 〈ρ0,2〉@ there exists G ∈ G such that

σ and rel (G) are esentially the same. Indeed, σ ∈ 〈ρ0,2〉@ implies that σ is of

the form

σ (x1, . . . , xn) =

t∧
j=1

ρ0,2
(
xuj

, xvj
)
∧

s∧
j=t+1

(
xuj

= xvj
)
,

where uj , vj ∈ {1, 2, . . . , n} (j = 1, . . . , s). Now if we define a graph G by

V (G) = {1, 2, . . . , n} and

E (G) = {u1v1, . . . , utvt} ,

then we have σ ≈ rel (G/ε), where ε is the least equivalence relation on V (G)

that contains the pairs (ut+1, vt+1) , . . . , (us, vs). Removing isolated vertices

(if there are any) from G/ε, we obtain a graph G′ ∈ G such that σ ≈ rel (G′).

(Recall that isolated vertices are not allowed in G with the sole exception of

K1. This does not result in a loss of generality, since isolated vertices in a

graph H correspond to inessential coordinates in the relation rel (H).)
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10 Couceiro, Haddad, Schölzel, and Waldhauser Algebra univers.

It may happen that nonisomorphic graphs induce essentially the same re-

lation. This is captured by the following equivalence relation. Let us say that

the graphs G,H ∈ G are loopvivalent (notation: G � H) if the following two

conditions are satisfied:

• G has a loop if and only if H has a loop;

• the subgraphs spanned by the edges connecting loopless vertices in G and

H are isomorphic.

Remark 3.2. Observe that for loopless graphs loopvivalence is equivalent to

isomorphy. If G has a loop, then we can obtain a canonical representative

of the loopvivalence class of G as follows. Delete all looped vertices from

G, and if any of the remaining vertices become isolated, then delete these

isolated vertices, too. Denoting the resulting (loopless) graph by G∗, we have

G � G∗ ⊕L; furthermore, G∗ ⊕L is the “simplest” graph that is loopvivalent

to G. As an example, consider a graph G on two vertices, which are connected

by an edge, and at least one of them has a loop. Then G∗ is empty (cf. [14]),

hence G is loopvivalent to L.

Lemma 3.3. For any G,H ∈ G, we have rel (G) ≈ rel (H)⇐⇒ G � H.

Proof. Let G ∈ G be an arbitrary graph with V (G) = {v1, . . . , vn}. Since

ρ0,2 = 22 \ {(1, 1)}, a tuple a = (a1, . . . , an) ∈ 2n belongs to rel (G) if and

only if a−1 (1) := {vi : ai = 1} ⊆ V (G) is an independent set. Thus the tuples

in rel (G) are in a one-to-one correspondence with the independent sets of G.

Therefore, for any G,H ∈ G with V (G) = V (H) = {v1, . . . , vn}, we have

rel (G) = rel (H) if and only if G and H have the same independent sets. This

holds if and only if G and H have the same loops and they have the same edges

between loopless vertices. Indeed, a vertex vi has a loop if and only if the set

{vi} is not independent, and there is an edge between loopless vertices vi and

vj if and only if the set {vi, vj} is not independent. Moreover, edges between a

looped vertex and any other vertex are irrelevant in determining independent

sets, since a set containing a looped vertex can never be independent.

Now let us determine the possible repeated rows of the matrix of rel (G).

If two vertices vi and vj both have a loop, then the i-th and the j-th rows of

the matrix of rel (G) are identical (in fact, they are constant 0, as a looped

vertex cannot belong to any independent set). On the other hand, if, say, vi
does not have a loop, then {vi} is an independent set, and the corresponding

tuple a ∈ rel (G) satisfies 1 = ai 6= aj = 0, hence the i-th and the j-th rows

of the matrix of rel (G) are different. Thus the matrix of rel (G) has repeated

rows if and only if G has more than one loop, and in this case the repeated

rows are the constant 0 rows corresponding to the looped vertices.

From the above considerations it follows that for any G,H ∈ G we have

rel (G) ≈ rel (H) if and only if G � H. �

Now let us translate the four conditions of Fact 2.3 to an appropriate closure

operator on G. Let us say that a set K ⊆ G of graphs is �-closed if it is closed
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under disjoint unions, homomorphic images and loopvivalance, and contains

K1:

(i) if G,H ∈ K, then G⊕H ∈ K;

(ii) if G ∈ K and G� H, then H ∈ K;

(iii) K1 ∈ K;

(iv) if G ∈ K and G � H, then H ∈ K.

The �-closure of K ⊆ G is the smallest �-closed set 〈K〉� that contains K.

Let us denote the lattice of �-closed subsets of G by Sub (G). Later we shall

also need another closure operator on loopless graphs, which we call 6�-closure.

We say that a set K ⊆ G1 is 6�-closed if it is closed under disjoint unions and

loopless homomorphic images:

(i) if G,H ∈ K, then G⊕H ∈ K;

(ii) if G ∈ K and G� H, then H ∈ K, provided that H has no loops.

The least 6�-closed subset of G1 containing K will be denoted by 〈K〉 6�.

The next lemma gives a visual interpretation of 6�-closure that we will often

use in the sequel: a graph G belongs to 〈K〉 6� if and only if G can be built by

“gluing together” loopless homomorphic images of members of K.

Lemma 3.4. For arbitrary K ⊆ G1 and G ∈ G1 the following three conditions

are equivalent:

(i) G ∈ 〈K〉 6�;

(ii) H1 ⊕ · · · ⊕Hk � G for some k ∈ N and H1, . . . ,Hk ∈ K;

(iii) every edge of G is contained in a subgraph that is a homomorphic image

of a member of K.

Proof. It is easy to see that a disjoint union of quotients of some graphs is also

a quotient of the disjoint union of these graphs, thus (i) =⇒ (ii). To prove

(ii) =⇒ (iii), suppose that H1, . . . ,Hk ∈ K and ϕ : H1 ⊕ · · · ⊕ Hk � G is a

complete homomorphism, and let e be an arbitrary edge of G. By completeness

of ϕ, the edge e is contained in ϕ (Hi) for some i, and then ϕ (Hi) will be the

required subgraph of G.

Finally, for (iii) =⇒ (i), assume that for every edge e ∈ E (G) there is a

(not necessarily induced) subgraph Se of G that is the homomorphic image

of some member of K and e ∈ E (Se). Clearly, this implies Se ∈ 〈K〉6�, so

it suffices to prove that G ∈ 〈{Se : e ∈ E (G)}〉6�. Let ιe : Se → G be the

inclusion map for every e ∈ E (G), and let us combine these maps into a

homomorphism ϕ :
⊕

e∈E(G) Se → G. Since e is included in the image of Se,

the homomorphism ϕ is complete, and this shows that G indeed belongs to

the 6�-closure of {Se : e ∈ E (G)}. �

Remark 3.5. Note that the (proof of) implication (iii) =⇒ (i) of Lemma 3.4

applies also to �-closure. As an illustration, observe that any graph with-

out isolated vertices can be built from edges and looped vertices, hence G =

〈K2, L〉� = 〈K2〉� (we can omit L as it is a homomorphic image of K2).
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As the main result of this section, we prove that �-closure is indeed the

appropriate closure operator on G that reflects the structure of the lattices

Sub
(
〈ρ0,2〉@

)
and I⊆Str(T0,2).

Proposition 3.6. The lattice Sub
(
〈ρ0,2〉@

)
of weak relational subclones of

〈ρ0,2〉@ is isomorphic to the lattice Sub (G) of �-closed subsets of G.

Proof. For K ⊆ G and R ⊆ 〈ρ0,2〉@, let

Φ (K) =
{
σ ∈ 〈ρ0,2〉@ : ∃G ∈ K such that σ ≈ rel (G)

}
;

Ψ (R) = {G ∈ G : rel (G) ∈ R} .

Observe that rel (G⊕H) ≈ rel (G)×rel (H) and rel (G/ε) ≈ ∆ε (rel (G)) for all

G,H ∈ G and for every equivalence relation ε on V (G), and we have rel (K1) ≈
2. Using these observations it is straightforward to verify that 〈K〉� = K =⇒
〈Φ (K)〉@ = Φ (K) and 〈R〉@ = R =⇒ 〈Ψ (R)〉� = Ψ (R). Thus we have

obtained maps Φ: Sub (G) → Sub
(
〈ρ0,2〉@

)
and Ψ: Sub

(
〈ρ0,2〉@

)
→ Sub (G),

and it is clear that both maps are order-preserving. Therefore, it only remains

to show that Φ and Ψ are inverses of each other: for every K ∈ Sub (G) and

R ∈ Sub
(
〈ρ0,2〉@

)
we have

ΨΦ (K) = {G ∈ G : rel (G) ∈ Φ (K)}
= {G ∈ G : ∃H ∈ K such that rel (G) ≈ rel (H)}
= {G ∈ G : ∃H ∈ K such that G � H}
= K;

ΦΨ (R) =
{
σ ∈ 〈ρ0,2〉@ : ∃G ∈ Ψ (R) such that σ ≈ rel (G)

}
=
{
σ ∈ 〈ρ0,2〉@ : ∃G ∈ G such that rel (G) ∈ R and σ ≈ rel (G)

}
= R.

�

Corollary 3.7. The lattice I⊆Str(T0,2) of strong partial clones containing T0,2 is

dually isomorphic to the lattice Sub (G) of �-closed subsets of G (see Figure 1).

4. The bottom and the top of Sub (G)

Building upon Corollary 3.7, in the rest of the paper we study the lattice of

�-closed subsets of G. In this section we take a closer look at the bottom and

the top of the lattice: we prove that there is a 3-element chain at the bottom

and a 2-element chain at the top of Sub (G); see Figure 1. Between these chains

there is a “jungle” that embeds the power set of a countably infinite set, hence

it has continuum cardinality. We shall explore this jungle in Section 5.

The smallest �-closed subset of G is 〈∅〉� = 〈K1〉� = {K1}. Any graph

containing an edge has L (the graph having only one vertex with a loop on it) as

a homomorphic image, hence the second smallest �-closed set is 〈L〉�, which

consists of all graphs having a loop and no edges between loopless vertices.
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Figure 1. The lattices I⊆Str(T0,2) and Sub (G)

In the next lemma we prove that the third smallest �-closed subset of G is

〈K2 ⊕ L〉�. It is eay to see with the help of Remark 3.5 that 〈K2 ⊕ L〉� \{K1}
is the set of all graphs containing at least one loop.

Lemma 4.1. At the bottom of the lattice Sub (G) we have the three-element

chain 〈K1〉� ≺ 〈L〉� ≺ 〈K2 ⊕ L〉�. All other �-closed subsets of G contain

〈K2 ⊕ L〉�.

Proof. Let K ⊆ G be a �-closed set such that 〈L〉� ⊂ K. Then K contains

a graph G with an edge uv where u and v are distinct loopless vertices. Let

us form the disjoint union G⊕ L, and let us identify all vertices of this graph

except for u and v. Then we obtain a graph G′ ∈ K with V (G′) = {u, v, w}
and {uv,ww} ⊆ E (G′) ⊆ {uv,ww, uw, vw}. Deleting the edges uw and vw

(if they are present) we arrive at a graph G′′ with V (G′′) = {u, v, w} and

E (G′′) = {uv,ww}. Since G′′ � G′, we have G′′ ∈ K; moreover, G′′ is

isomorphic to K2 ⊕ L, hence 〈K2 ⊕ L〉� ⊆ K. This proves that 〈K2 ⊕ L〉� is

the third smallest �-closed subset of G. �

As we will see later, we have to stop our climbing up in the lattice here, as

there is no fourth smallest �-closed set, so let us now focus on the top of the

lattice Sub (G). The largest �-closed set is clearly G, which, as we observed

in Remark 3.5, can be generated by K2. The following lemma describes the
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second largest �-closed set (recall that G1 denotes the set of all loopless non-

bipartite members of G).

Lemma 4.2. At the top of the lattice Sub (G) we have the two-element chain

G = 〈K2〉� � 〈K2 ⊕ L〉� ∪ G1. All other �-closed subsets of G are contained

in 〈K2 ⊕ L〉� ∪ G1.

Proof. Let us consider a �-closed set K such that 〈K2 ⊕ L〉� ⊆ K. If K
contains a graph G that is bipartite and has at least one edge (which cannot

be a loop, because of bipartiteness), then we have G � K2 ∈ K. Then we

can conclude K ⊇ 〈K2〉� = G (cf. Remark 3.5). Thus every proper �-closed

subset of G must be contained in 〈K2 ⊕ L〉� ∪G1. It remains to show that the

set 〈K2 ⊕ L〉� ∪ G1 is �-closed. To verify this, one just needs to observe that

if at least one of G and H is not bipartite, then G⊕H is not bipartite either;

furthermore, if G is not bipartite and G � H, then H is not bipartite either

(otherwise we would have G � H → K2, hence G → K2, contradicting the

non-bipartiteness of G). Therefore, the second largest �-closed subset of G is

indeed 〈K2 ⊕ L〉� ∪ G1. �

We will see in the next section that there is no third largest �-closed subset

of G, therefore we finish our climbing down here and summarize our findings

in the following theorem.

Theorem 4.3. A set K ⊆ G is �-closed if and only if either

(i) K = 〈K1〉� = {K1}, or

(ii) K = 〈L〉�, or

(iii) K = 〈K2〉� = G, or

(iv) K = 〈K2 ⊕ L〉� ∪H, where H ⊆ G1 is 6�-closed.

Proof. By Lemmas 4.1 and 4.2, the sets listed in the first three items are �-

closed (as well as the fourth item with H = ∅ and H = G1); moreover, any

other �-closed set K satisfies 〈K2 ⊕ L〉� ⊆ K ⊆ 〈K2 ⊕ L〉� ∪ G1. Let K be

such a set, and let H ⊆ G1 be the set of all loopless non-bipartite members

of K; then we have K = 〈K2 ⊕ L〉� ∪ H. To finish the proof, one just has to

verify that K is �-closed if and only if H is closed under disjoint unions and

loopless homomorphic images. �

We conclude this section with the description of the bottom and the top of

I⊆Str(T0,2). It is immediate from Theorem 4.3 and Corollary 3.7 that there is

a three-element chain at the top, and a two-element chain at the bottom of

I⊆Str(T0,2). In the next theorem we describe explicitly the five strong partial

clones in these chains.

Theorem 4.4. At the top of the lattice I⊆Str(T0,2) we have a three-element

chain Par(2) � Str (T0) � Str (T0,2) ∪ {f ∈ Par(2) : (0, . . . , 0) /∈ dom(f)},
while at the bottom we have the two-element chain Str (T0,2) ≺ Str (T0,2 ∪ {g}),

where g is the binary partial function defined by dom(g) = {(0, 1) , (1, 0)} and
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g (0, 1) = g (1, 0) = 1. All other strong partial clones in I⊆Str(T0,2) lie between

these two chains (see Figure 1).

Proof. We just need to translate the results of Lemma 4.1 and Lemma 4.2 to

the lattice Sub
(
〈ρ0,2〉@

)
with the help of Proposition 3.6, and then pass to the

lattice I⊆Str(T0,2) by the operator pPol (note that this last step turns the lattice

upside down).

It is obvious that Φ
(
〈K1〉�

)
= 〈2〉@ is the trivial relational clone, and

the corresponding strong partial clone is pPol (2) = Par(2). Similarly, since

rel (L) is the unary relation {0}, we have Φ
(
〈L〉�

)
= 〈{0}〉@, and pPol ({0}) =

Str (T0). The relation corresponding to K2 ⊕ L is

rel (K2 ⊕ L) = {(0, 0, 0) , (0, 1, 0) , (1, 0, 0)} = ρ0,2 × {0} .

All partial functions with (0, . . . , 0) /∈ dom(f) automatically preserve this re-

lation, and it is straightforward to verify that if (0, . . . , 0) ∈ dom(f), then

f ∈ pPol (ρ0,2 × {0}) holds if and only if f ∈ pPol (ρ0,2) = Str (T0,2).

For the chain at the bottom, observe that rel (K2) = ρ0,2, thus we have

Φ
(
〈K2〉�

)
= 〈ρ0,2〉@, and the corresponding strong partial clone is clearly

pPol (ρ0,2) = Str (T0,2). Finally, let us consider the strong partial clone C :=

pPol
(
Φ
(
〈K2 ⊕ L〉� ∪ G1

))
. The function g defined in the statement of the the-

orem does not preserve ρ0,2, therefore Str (T0,2) ⊂ Str (T0,2 ∪ {g}). It follows

from Theorem 4.3 that C is the unique upper cover of Str (T0,2), hence it suf-

fices to verify that Str (T0,2 ∪ {g}) ⊆ C, i.e., that g preserves rel (K2 ⊕ L) and

rel (G) for all G ∈ G1. The former is trivial, as (0, 0) /∈ dom(f). For the latter,

let us consider an arbitrary non-bipartite graph G with V (G) = {v1, . . . , vn},
and let a,b ∈ {0, 1}n such that a,b ∈ rel (G) and (ai, bi) ∈ dom(g) for every i.

Since dom(g) = {(0, 1) , (1, 0)}, the sets a−1 (1) and b−1 (1) form a partition

of V (G), and both sets are independent by the definition of rel (G) (cf. the

proof of Lemma 3.3). However, this means that G is 2-colorable, contradicting

the non-bipartiteness of G. Thus Definition 1.2 is satisfied emptily: there is

no matrix M such that its columns belong to rel (G) and its rows belong to

dom(g). �

Remark 4.5. The total parts of Par(2) and Str (T0) are Op(2) and T0,

while the total part of Str (T0,2) ∪ {f ∈ Par(2) : (0, . . . , 0) /∈ dom(f)} is T0,2.

Therefore, we have IStr(Op(2)) = {Par(2)} and IStr(T0) = {Str (T0)}, while

IStr(T0,2) can be obtained from I⊆Str(T0,2) by removing these two elements from

the top of the lattice.

5. The jungle

After Theorem 4.3, it remains to describe the structure of the interval[
〈K2 ⊕ L〉� , 〈K2 ⊕ L〉� ∪ G1

]
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of Sub (G). By Theorem 4.3, the map 〈K2 ⊕ L〉� ∪H 7→ H is an isomorphism

from this interval to the lattice of 6�-closed subsets of G1, which we shall denote

by Sub (G1). Therefore, in this section we focus on the lattice Sub (G1). Thus,

in the sequel we will assume that all homomorphisms map to loopless graphs;

in particular, we never identify vertices connected by an edge. We will prove

several properties of Sub (G1) indicating that this lattice is quite compicated,

hence it deserves to be called a jungle.

5.1. Decomposing the jungle. Let us consider the partition G1 = A ∪̇ B,

where

A = {G ∈ G1 : all components of G are non-bipartite} ,
B = {G ∈ G1 : at least one component of G is bipartite} .

Observe that 〈A〉6� = A, but B is not 6�-closed. In this subsection we show that

for any H ⊆ G1, one can determine 〈H〉6� by computing the 6�-closure of H∩A
andH∩B separately; moreover, 〈H ∩ B〉 6� is particularly easy to describe, since

it is just an upset in the homomorphism order of graphs (see Theorem 5.4). As

a corollary, we obtain that Sub (G1) can be embedded into the direct product of

the lattice of 6�-closed subsets of A and the lattice of upsets of the quasiordered

set (A;→) (see Corollary 5.8). First we introduce some notation, and then we

prove some preparatory results about the connection between 6�-closure and

upsets.

For any graph H ∈ G1, let HA ∈ A be the sum of the non-bipartite

components of H. If H ∈ A then HA = H, whereas for H ∈ B we have

H = HA ⊕ B with some bipartite graph B. Note that HA is never empty,

as every graph in G1 is non-bipartite. For a set H ⊆ G1, let H↑ denote

the upset generated by H in the quasiordered set (G1;→), i.e., let H↑ =

{G ∈ G1 : H → G for some H ∈ H}.

Lemma 5.1. For every H ⊆ G1, we have 〈H〉6� ⊆ H↑; consequently, if H ⊆ G1
is an upset in (G1;→), then 〈H〉6� = H.

Proof. If G ∈ 〈H〉6�, then, by Lemma 3.4, there is a complete homomorphism

ϕ : H1 ⊕ · · · ⊕ Hk � G for some k ∈ N and H1, . . . ,Hk ∈ H. Restricting ϕ

to H1, we get a homomorphism (not necessarily complete) H1 → G, which

shows that G ∈ H↑. If H is an upset, then H ⊆ 〈H〉 6� ⊆ H↑ = H, therefore

〈H〉6� = H. �

Remark 5.2. It follows from Lemma 5.1 that if {H1, H2, . . . } ⊆ G1 is an

infinite antichain in the homomorphism order, then the map I 7→ {Hi : i ∈ I}
embeds the power set of N into Sub (G1). As mentioned in Subsection 2.2, such

antichains do exist, hence Sub (G1) has continuum cardinality.

Lemma 5.3. For every H ∈ B, the graphs H and HA⊕K2 are homomorphi-

cally equivalent, and 〈H〉6� = 〈HA ⊕K2〉6� = H↑.
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Proof. Let H ∈ B, and let us consider the decomposition H = HA⊕B, where

B is the sum of the bipartite components of H. Since H has no isolated

vertices, B has at least one edge, hence K2 → B, and also B � K2, as B

is bipartite. This implies that the graphs H = HA ⊕ B and HA ⊕ K2 are

homomorphically equivalent.

For the other statements of the lemma, let us verify the following chain of

containments:

(HA ⊕K2)
↑ ⊆ 〈HA ⊕K2〉 6� ⊆ 〈H〉 6� ⊆ H

↑. (5.1)

To prove the first containment, let G ∈ G1 such that HA⊕K2 → G; then there

is also a homomorphism ϕ : HA → G. For every edge e = uv ∈ E (G), let Se
denote the subgraph of G that is obtained by adding the edge e to ϕ (HA): let

V (Se) = V (ϕ (HA)) ∪ {u, v} and E (Se) = E (ϕ (HA)) ∪ {e}. We can extend

ϕ to a homomorphism ϕe : HA ⊕K2 → Se that maps the edge of K2 onto e.

This shows that condition (iii) of Lemma 3.4 is satisfied with H = {HA ⊕K2},
therefore G ∈ 〈HA ⊕K2〉 6�.

The second containment of (5.1) follows from the fact that HA ⊕ K2 is a

homomorphic image of H = HA ⊕ B, since B � K2. The third containment

is immediate from Lemma 5.1.

To finish the proof, recall that H and HA⊕K2 are homomorphically equiv-

alent, hence (HA ⊕K2)
↑

= H↑, and then all containments of (5.1) are actually

equalities. �

Theorem 5.4. For every set H ⊆ G1, we have

〈H〉6� = 〈H ∩ A〉 6� ∪ (H ∩ B)
↑
.

Proof. If G ∈ 〈H〉 6�, then H1⊕· · ·⊕Hk � G for some k ∈ N and H1, . . . ,Hk ∈
H, by Lemma 3.4. If Hi ∈ A for every i, then G ∈ 〈H ∩ A〉6�. Otherwise there

is an i such that Hi ∈ B, and then Hi → G. This proves that 〈H〉6� ⊆
〈H ∩A〉 6� ∪ (H ∩ B)

↑
.

For the reverse containment, let us suppose that G ∈ 〈H ∩ A〉6� ∪ (H ∩ B)
↑
.

If G ∈ 〈H ∩ A〉6�, then we have obviously G ∈ 〈H〉6�, as 〈H ∩ A〉 6� ⊆ 〈H〉6�.

Otherwise there exists H ∈ H∩B such that H → G. It follows from Lemma 5.3

that G ∈ 〈H〉6�, and then G ∈ 〈H〉 6�. �

Remark 5.5. In view of Lemma 5.3, we may identify the graphs H and HA⊕
K2 for every H ∈ B, when investigating homomorphisms and 6�-closed sets in

G1, i.e., we can assume without loss of generality that the bipartite components

(if any) of our graphs are always K2. Therefore, we will write subsets of B
in the form H⊕K2 := {H ⊕K2 : H ∈ H} with H ⊆ A. In particular, we have

B = A⊕K2 . (If one does not wish to make the aforementioned identification,

then H⊕K2 should be interpreted as the set of all graphs of the form H ⊕ B,

where H ∈ H and B is a bipartite graph without isolated vertices.)

Theorem 5.6. A set H ⊆ G1 is 6�-closed if and only if there exist H1,H2 ⊆ A
such that
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Figure 2. The structure of a 6�-closed subset of G1

(i) H = H1 ∪̇ H⊕K2
2 ;

(ii) H1 is 6�-closed;

(iii) H2 is an upset (order filter) in (A;→), i.e., H↑2 ∩ A = H2;

(iv) H2 ⊆ H1.

Proof. Let us put H1 = H ∩ A, and let H2 denote the collection of the non-

bipartite parts of the members of H∩B, i.e., H2 = {HA : H ∈ H ∩ B}. Then,

performing the identification of Remark 5.5, we have H ∩ B = H⊕K2
2 , hence

H = H1 ∪̇H⊕K2
2 . For every graph G with at least one edge, G and G⊕K2 are

homomorphically equivalent; therefore, (H ∩ B)
↑

=
(
H⊕K2

2

)↑
= H↑2. By the

same token, we have H↑2 ∩ B =
(
H↑2 ∩ A

)⊕K2
.

By Theorem 5.4 and by the above observations, we have

〈H〉6� = 〈H1〉6� ∪H
↑
2 = 〈H1〉6� ∪

(
H↑2 ∩ A

)
∪
(
H↑2 ∩ A

)⊕K2
. (5.2)

Clearly, 〈H〉6� = H holds if and only if 〈H〉6�∩A ⊆ H∩A and 〈H〉6�∩B ⊆ H∩B.

From (5.2) we see that 〈H〉6� ∩ B =
(
H↑2 ∩ A

)⊕K2
, thus

〈H〉6� ∩ B ⊆ H ∩ B ⇐⇒
(
H↑2 ∩ A

)⊕K2 ⊆ H⊕K2
2 ⇐⇒ H↑2 ∩ A ⊆ H2,

which is equivalent to (iii). Again from (5.2) we have 〈H〉6� ∩ A = 〈H1〉6� ∪(
H↑2 ∩ A

)
, hence

〈H〉6� ∩ A ⊆ H ∩A ⇐⇒ 〈H1〉6� ⊆ H1 and H↑2 ∩ A ⊆ H1,

which, taking (iii) also into account, is equivalent to (ii) and (iv). �

Remark 5.7. The structure of 6�-closed subsets of G1 as described by The-

orem 5.6 can be visualized as follows (see Figure 2): we take an upset H2 in
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(A;→); together with its “copy” H⊕K2
2 in B, and then we extend H2 to a

(possibly) larger 6�-closed subset H1 ⊆ A.

Corollary 5.8. The lattice Sub (G1) is isomorphic to the sublattice

{(H1,H2) : H2 ⊆ H1} ⊆ Sub (A)×Upsets (A)

of the direct product of the lattice of 6�-closed subsets of A and the lattice of

upsets of the quasiordered set (A;→).

5.2. The upper part of the jungle. The results of the previous subsec-

tion show that in order to understand the structure of Sub (G1), it suffices to

describe the intervals [∅,A] and [A,G1]. Let us now explore the part of the

jungle that lies above A. By choosing H1 = A in Theorem 5.6, we see that

the 6�-closed sets H containing A are of the form A ∪̇ H⊕K2
2 , where H2 is an

upset in (A;→). Thus, we have the following description of the upper part of

the jungle.

Theorem 5.9. The interval [A,G1] in Sub (G1) is isomorphic to Upsets (A).

Proof. Using the notation of Theorem 5.6, the map H 7→ H2 establishes the

required isomorphism. �

Observe that the union of two upsets is an upset, hence the lattice [A,G1] is

distributive. Building upon the isomorphism given in Theorem 5.9, we show

that each subinterval of [A,G1] is either finite or has continuum cardinality.

Theorem 5.10. If H and K are 6�-closed subsets of G1 such that A ⊆ H ⊂ K,

then the interval [H,K] is either a finite Boolean lattice or it embeds the power

set of N.

Proof. According to Theorem 5.9, we can work in the lattice Upsets (A); let

H2 and K2 be the upsets corresponding to H and K. Assume first that the

difference K2 \H2 contains two comparable graphs: there exist G,H ∈ K2 \H2

such that G→ H and H 9 G. By Theorem 2.4, there is an infinite antichain

between G and H, i.e., there are graphs T1, T2, . . . such that G→ Ti → H and

Ti and Tj are incomparable for all i, j ∈ N, i 6= j. For every set S ⊆ N we can

construct an upset US = H2 ∪ {Ti : i ∈ S}↑, and it is straightofrward to verify

that the map S 7→ US embeds the power set of N into the interval [H2,K2] of

the lattice of upsets of (A;→).

Now let us assume that K2 \ H2 contains no comparable elements, i.e., it

is an antichain. Then the interval [H2,K2] is isomorphic to the power set of

K2 \ H2. Depending on whether K2 \ H2 is finite or infinite, we obtain either

a finite Boolean lattice or the power set of N. �

Remark 5.11. Both cases of Theorem 5.10 do appear: if G,H ∈ A are such

that G → H and H 9 G, then the interval
[
H↑, G↑

]
in Upsets (A) embeds

the power set of N, while if T1, . . . , Tn is an antichain in A then the interval

between H = T ↑1 ∪ · · · ∪ T ↑n \ {T1, . . . , Tn} and K = T ↑1 ∪ · · · ∪ T ↑n is isomorphic

to the power set of {1, . . . , n}.
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Corollary 5.12. Every interval above A in Sub (G1) is either finite or has

continuum cardinality.

Theorem 5.13. For each n ∈ {0, 1, 2, . . . ,ℵ0}, there exist elements in Sub (G1)

with exactly n upper covers.

Proof. By Theorem 5.9, if H ⊆ A has n upper covers in Upsets (A), then

A∪̇H⊕K2 has n upper covers in the lattice of 6�-closed subsets of G1. For n = 0

let us take an infinite ascending chain G1 → G2 → . . . in A (for example, let

Gi = Ki+2), and let U = {H ∈ A : H 9 Gi for every i ∈ N}; this is clearly an

upset. If V is an upset such that U ⊂ V and H ∈ V \U , then H → Gi for some

i ∈ N. This implies that Gi ∈ V, thus U ⊂ U ∪G↑i+1 ⊂ U ∪G
↑
i ⊆ V. Therefore,

V is not an upper cover of U , hence U has no upper covers.

For n ∈ {1, 2, . . . ,ℵ0}, let {Gi : i ∈ I} be an antichain in A of size n. Let

us define U in the same way as above: U = {H ∈ A : H 9 Gi for every i ∈ I}.
Then U is an upset and U ∪{Gi} covers U for every i ∈ I. Moreover, if V is an

upset with U ⊂ V, then U ∪ {Gi} ⊆ V for some i ∈ I. Indeed, for any element

H ∈ V \ U , we have H → Gi for some i ∈ I, hence Gi ∈ V, as V is an upset.

This shows that the only covers of U are U ∪ {Gi} (i ∈ I). �

Remark 5.14. Choosing the ascending chain K3 → K4 → . . . in the first half

of the proof of Theorem 5.13, we obtain U = ∅, since every finite graph has a

finite chromatic number. This shows that the empty set has no upper cover

in Upsets (A), consequently A ∪̇ ∅⊕K2 = A has no upper cover in Sub (G1).

To conclude this subsection, we prove, as promised in Section 4, that

〈K2 ⊕ L〉�∪G1 has no lower covers in Sub (G), or, equivalently, that G1 has no

lower covers in Sub (G1). Actually, we shall prove more: no matter how small

a step we take downwards from G1, we already have passed an uncountable

part of the jungle.

Theorem 5.15. For every 6�-closed set H ⊂ G1, the interval
[
H,G1

]
has

continuum cardinality.

Proof. Let us consider the decomposition H = H1 ∪̇ H⊕K2
2 as in Theorem 5.6.

If H2 = A, then also H1 = A, since H1 ⊇ H2, and then H = A ∪̇ A⊕K2 =

A ∪̇ B = G1 (cf. Remark 5.5), contrary to our assumption.

Thus H2 ⊂ A, hence A ∪̇ H⊕K2
2 ⊂ G1; moreover, A ∪̇ H⊕K2

2 is 6�-closed by

Theorem 5.6. Let G ∈ A\H2, and let H ∈ A be a graph below G, i.e., H → G

and G 9 H (for example, let H = Cg+2, where g is the odd girth of G).

Since G /∈ H2 and H2 is an upset, it follows that H /∈ H2. Therefore, A \ H2

contains two comparable graphs (namely G and H), and then (the proof of)

Theorem 5.10 shows that there is a continuum of 6�-closed sets in the interval[
A ∪̇ H⊕K2

2 ,G1
]
. Clearly, we have H = H1 ∪̇ H⊕K2

2 ⊆ A ∪̇ H⊕K2
2 , hence these

6�-closed sets are all above H. �

5.3. The lower part of the jungle. The lower part of the jungle, i.e., the

interval [∅,A] = Sub (A), seems to be more complicated than the upper part.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Vol. 00, XX On an interval of strong partial clones of Boolean functions 21

We only prove here the analogue of Theorem 5.15: every nonempty 6�-closed

subset of G1 has a continuum of 6�-closed subsets. This implies immediately

the promised result that ∅ has no upper covers in Sub (G1), or, equivalently,

〈K2 ⊕ L〉� has no upper covers in Sub (G). The proof of this result relies on

the following construction of “blowing up” a graph by replacing its vertices

by complete graphs. For an arbitrary graph G and natural number `, let G`

denote the graph defined by

V
(
G`
)

= V (G)× {1, . . . , `} = {(v, i) : v ∈ V (G) , i ∈ {1, . . . , `}} ;

E
(
G`
)

= {((v, i) , (v′, i′)) : vv′ ∈ E (V ) or v = v′ and i 6= i′} .

(This is a special case of the so-called strong product of graphs, namely G` =

G�K`.)

Lemma 5.16. For every G ∈ G1 and ` ≥ 2, we have G` ∈ 〈K`〉6�.

Proof. If uv is an edge in G, then {u, v} × {1, . . . , `} is a clique of size 2`

in G`, and these cliques cover every edge of G`. Therefore, by Lemma 3.4,

G` ∈ 〈K2`〉 6�, which is actually more than what we had to prove. �

Lemma 5.17. If n > m ≥ 5 are odd numbers, then C`m 9 C`n.

Proof. As mentioned in the proof of Lemma 5.16, every edge of an arbitrary

graph G gives rise to a clique of size 2` in G`. Moreover, if G contains no

triangles (cliques of size 3), then these are the only cliques of size 2` in G.

Therefore, a homomorphism ϕ : G` → H` for triangle-free graphs G and H

induces a mapping ψ : E (G) → E (H) such that if two edges e1, e2 ∈ E (G)

have a common endpoint, then ψ (e1) and ψ (e2) also have a common endpoint.

Now let us assume that ϕ : C`m → C`n is a homomorphism for some n >

m > 3. Since Cn and Cm are triangle-free, we can consider the corresponding

map ψ : E (Cm) → E (Cn). Let e1, . . . , em be the edges of Cm in the cyclical

order. Then ψ (e1) , . . . , ψ (em) determine a connected subgraph with at most

m edges in Cn. Since n > m, there is a vertex v ∈ V (Cn) that does not belong

to this subgrah. Then ϕ
(
C`m
)

is disjoint from {v}×{1, . . . , `} ⊆ V
(
C`n
)
, hence

ϕ maps C`m into P `n, where Pn is the path of length n obtained from Cn by

removing the vertex v. Clearly, Pn → K2, consequently P `n → K2`. Thus

we have C`m → P `n → K2`, which implies that χ
(
C`m
)
≤ 2`. However, it is

easy to see that C`m is not 2`-colorable. (Actually, by a result of Stahl [22],

χ
(
C`2k+1

)
= 2`+ 1 +

[
`−1
k

]
.) This contradiction shows that C`m 9 C`n. �

Lemma 5.18. If n ≥ 4 and m ≥ 3, then K`
m 9 C`n.

Proof. If n ≥ 4 then Cn contains no triangles, and then the largest cliques in

C`n are the cliques of size 2` (cf. the proofs of Lemma 5.16 and Lemma 5.17).

If m ≥ 3 then the size of K`
m = Km` is m` > 2`, hence K`

m 9 C`n. �

Lemma 5.19. Let N = {5, 7, 9, . . . } and let Tn = K`
n ⊕ C`n. Then for every

n ∈ N , we have Tn /∈ 〈{Tm : m ∈ N,m 6= n}〉 6�.
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Proof. Assume that Tn ∈ 〈{Tm : m ∈ N,m 6= n}〉6� for some odd integer n ≥ 5.

By Lemma 3.4, there exist m1, . . . ,mk ∈ N \{n} such that there is a complete

homomorphism ϕ : Tm1
⊕ · · · ⊕ Tmk

� Tn. If mi > n then Tmi
9 Tn, as

Tmi has a clique of size mi`, whereas the largest clique in Tn is of size n`.

Therefore, we have mi < n for i = 1, . . . , k. By Lemma 5.17 and Lemma 5.18,

C`mi
9 C`n and K`

mi
9 C`n, hence ϕ maps Tmi into K`

n for each i. However,

this contradicts the surjectivity of ϕ. �

Lemma 5.20. For every G ∈ G1 and n ≥ 3 we have Kn ∈ 〈G〉6� if and only

if χ (G) ≤ n.

Proof. If Kn ∈ 〈G〉 6�, then, by Lemma 3.4, there exists a complete homomor-

phism ϕ : k ·G� Kn for some k ≥ 1. Restricting ϕ to any one of the k copies

of G, we get a homomorphism (not necessarily complete) G → Kn, and this

shows that χ (G) ≤ n.

Now assume that χ (G) ≤ n, and let us use the numbers 1, 2, . . . , n for the

n colors in proper n-colorings of G. Let us fix an edge uv ∈ E (G), and for

each pair of colors i 6= j let us choose a proper n-coloring of G such that u

and v receive the colors i and j, respectively. Joining all these
(
n
2

)
colorings

we obtain a homomorphism
(
n
2

)
· G → Kn, which is complete, as each edge

ij ∈ E (Kn) is the image of one of the
(
n
2

)
copies of the edge uv. This proves

that Kn ∈ 〈G〉6�. �

Theorem 5.21. For every 6�-closed set H ⊃ ∅, the interval
[
∅,H

]
has con-

tinuum cardinality.

Proof. Let H be an arbitrary element of H, and let ` = χ (H). Accord-

ing to Lemma 5.20, we have K` ∈ 〈H〉 6� ⊆ H. By Lemma 5.19, the map

S 7→ 〈{Tm : m ∈ S}〉 6� embeds the power set of N into Sub (G1). Moreover,

〈{Tm : m ∈ S}〉6� ⊆ H for every S ⊆ N , since, by Lemma 5.16, Tn ∈ 〈K`〉 6� ⊆
H for all n ∈ N . �
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