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We consider the set of equational classes of finite functions endowed
with the operation of class composition. Thus defined, this set gains a
semigroup structure. This paper is a contribution to the understanding of
this semigroup. We present several interesting properties of this semi-
group. In particular, we show that it constitutes a topological semigroup
that is profinite and we provide a description of its regular elements in
the Boolean case.

This paper is dedicated to Professor I.G. Rosenberg
on the occasion of his 80th birthday.

INTRODUCTION

Throughout this paper, let A be a finite nonempty set. Without loss of gener-
ality, we assume that A = [m] = {0, . . . , m − 1} for some natural number m.
An n-ary function on A is a mapping f : An → A. By a class (of functions)
on A we simply mean a set of such mappings of possibly different arities. In
this paper we shall be particularly interested in classes of functions definable
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2 JORGE ALMEIDA et al.

by certain functional equations, namely, with a unique functional symbol that
binds each variable and that does not occur as argument of itself. In [7] it was
shown that such classes, which we refer to as being equational, are exactly
those classes that are closed under identifications and permutations of vari-
ables as well as addition and deletion of inessential variables. For further
background and variants, see e.g. [5, 7, 9, 10, 15].

If K1 and K2 are two classes of functions on A, then their composition
K1K2 is defined as the set of all compositions of functions in K1 with func-
tions in K2, i.e.,

K1K2 := { f (g1, . . . , gn) : f ∈ K1, g1, . . . , gn ∈ K2} .

When restricted to equational classes of functions on A, class composition
is associative, and thus it endows the set of all equational classes on a set A
with a (fairly complicated) semigroup structure. As the size of the underlying
set A determines this semigroup up to isomorphism, we denote by Em the
semigroup of all equational classes on an m-element set.

Apart from the theoretical interest, this study is motivated by the many
connections to areas pertaining to the multiple valued logic and universal
algebra communities. For instance, idempotent elements of Em subsume so-
called clones (composition-closed classes of functions that contain the pro-
jections), which are of key importance in multiple-valued logic. The study
of these semigroups may bring additional information and lead to a better
understanding of the complex structure of the lattice of clones.

In Section 1 we recall the necessary definitions and preliminary results on
equational classes and clones, in particular, clones of Boolean functions and
idempotent elements of E2. We introduce a metric on Em in Section 2 and
show that Em is a compact topological semigroup with respect to the topol-
ogy induced by this metric. We focus on the semigroup E2 made of equa-
tional classes of Boolean functions in Section 3. In particular, we describe
its regular elements and we determine the restriction of the Green relations
to the regular D-classes. For general background on Green’s relations see,
e.g., [18].

1 PRELIMINARIES

The set of all n-ary functions on A = [m] is denoted by O(n)
m , and the set of

all functions on A = [m] is Om := ∪n≥1O(n)
m . For any class K ⊆ Om and any

positive integer n, let K(n) denote the n-ary part of K, i.e., K(n) := K ∩ O(n)
m .

1.1 The simple minor quasiorder
We say that the i-th variable of a function f ∈ O(n)

m is essential,
if there exist a1, . . . , an, a′

i ∈ [m] such that f (a1, . . . , ai , . . . , an) 	=
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FIGURE 1
The subfunction quasiorder on Boolean functions

f
(
a1, . . . , a′

i , . . . , an
)
. We denote the set of essential variables of f by Ess f ,

and we define the essential arity of f by ess f := |Ess f |.
For f ∈ O(n)

m and g ∈ O(k)
m , we say that g is a simple minor of f , denoted

by g 
 f , if there exists a map σ : {1, 2, . . . , n} → {1, 2, . . . , k} such that

g (x1, . . . , xk) = f
(
xσ (1), . . . , xσ (n)

)
.

Observe that the operation of taking simple minors subsumes permutation
and identification of variables, and addition and deletion of inessential vari-
ables.

The simple minor relation gives rise to a quasiorder on Om (see [9]). The
corresponding equivalence is defined by f ≡ g ⇐⇒ f 
 g and g 
 f , and
it is clear that f and g are equivalent if and only if they differ only in inessen-
tial variables and/or in the order of their variables. We will not distinguish
between equivalent functions in the sequel. For example, {id} will stand for
the set of all projections (x1, . . . , xn) �→ xi , as these are the functions equiv-
alent to the identity function.

Being a quasiorder, the simple minor relation induces naturally a partial
order on Om/≡. This poset was studied in more detail in [9] for m = 2.
Functions on [2] are called Boolean functions, and we will use the nota-
tion � instead of O2 for the set of all Boolean functions. The bottom of
the poset (�/≡,
) is shown in Figure 1. We can see (and it is easy to
prove) that � (or equivalently, �/≡) has four connected components, namely
�00,�11,�01,�10, where

�ab = { f ∈ � : f (0) = a, f (1) = b} (a, b ∈ {0, 1}) .

Hereinafter, 0 and 1 denote the tuples (0, . . . , 0) and (1, . . . , 1), respectively;
the length of the tuples is not specified, as it should be always clear from
the context. For an arbitrary function class K, we will abbreviate K ∩ �ab by
Kab, and we will use the following (hopefully intuitive) notation :

K0* = K00 ∪ K01, K*1 = K01 ∪ K11, K= = K00 ∪ K11.
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4 JORGE ALMEIDA et al.

The minimal elements of (�/≡; 
) are the unary functions: 0, 1, id and ¬
(negation). On the next level we can see the binary functions + (addition
modulo 2), → (implication), ∨ (disjunction), ∧ (conjunction) and the ternary
functions μ (majority function), m (minority function), 2

3 m ( 2
3 -minority func-

tion, see [4]) together with their negations. Here negation is taken “from out-
side”, e.g., ¬ 2

3 m is a shorthand notation for the function ¬ 2
3 m (x, y, z) =

1 + 2
3 m (x, y, z) = 1 + xy + yz + xz + x + z.

1.2 Equational classes and composition
A class K ⊆ Om is an equational class if it is an order ideal in the simple
minor quasiorder, i.e., if f ∈ K and g 
 f imply g ∈ K. This terminology is
motivated by the fact that these are exactly the classes that can be defined by
certain functional equations [7, 10]. (Note that in universal algebra this term
is used for equationally definable classes of algebras, also called varieties.)
Two natural examples are the class of monotone (order-preserving) and anti-
monotone (order-reversing) Boolean functions, which can be defined by the
functional equations f (x ∧ y) ∧ f (x) = f (x ∧ y) and f (x ∧ y) ∧ f (x) =
f (x), respectively. Another example is the class �= ⊆ � defined by the
equation f (0) = f (1). Equational classes can be also defined by relational
constraints; we will discuss this approach in more detail in Subsection 1.3.
The equational classes on [m] form a lattice Em with intersection and union
as the lattice operations. This lattice has continuum cardinality already on the
two-element set, and its structure is very complicated [9].

For f ∈ O(n)
m and g1, . . . , gn ∈ O(k)

m , we define their composition as the
function f (g1, . . . , gn) ∈ O(k)

m given by

f (g1, . . . , gn) (x) = f (g1 (x) , . . . , gn (x)) .

We refer to f as the outer function and to g1, . . . , gn as the inner functions
of the composition.

As we saw in the introduction, this notion naturally extends to classes. If
K1,K2 ⊆ Om , then their composition is defined by

K1K2 := { f (g1, . . . , gn) : f ∈ K1, g1, . . . , gn ∈ K2} .

Let us note that the simple minor relation can be defined very compactly
using function class composition:

g 
 f ⇐⇒ g ∈ { f } {id} . (1)

Hence, equational classes can be characterized as those classes K that verify
the condition K = K {id}.
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ON THE SEMIGROUP OF EQUATIONAL CLASSES 5

Now, in general, class composition is not associative. However, it becomes
an associative operation when restricted to equational classes.

Associativity Lemma [7]. Let K1,K2,K3 ⊆ Om. The following assertions
hold:

(i) (K1K2)K3 ⊆ K1(K2K3);
(ii) If K2 is an equational class, then

(K1K2)K3 = K1(K2K3).

Hence Em endowed with class composition can be regarded as a semi-
group. In fact, Em is a monoid with identity element {id}. In the sequel we
will simply write f K instead of { f }K and K f instead of K { f }.

A class K is closed under composition if KK ⊆ K. Clearly, if K is idempo-
tent, i.e., KK = K, then K is closed under composition. It was proved in [21]
that the converse also holds for equational classes of Boolean functions. (Let
us note that this is a distinguishing feature of Boolean functions: if m ≥ 3,
then we can construct a class K ∈ Em such that KK � K.)

Proposition 1.1 [21]. For any equational class K of Boolean functions we
have KK ⊆ K if and only if KK = K.

A class C ⊆ Om is a clone if it is closed under composition and contains
all projections. From (1) it follows that every clone is an equational class.
The converse is not true: the class of antimonotone Boolean functions and
the class �= are both equational classes but neither of them is a clone.

Remark 1.2. It is not hard to see that �= is the largest composition-closed
equational class of Boolean functions that is not a clone (see [21]).

The set of clones on [m] constitutes a lattice, which has continuum cardi-
nality for m ≥ 3 (see [12]) and the description of its structure remains a topic
of active research. However, there are only countably many clones on the
two-element set, and these have been described by E. L. Post in [16] (see Sub-
section 1.4). The clone generated by F ⊆ Om , i.e., the least clone containing
F will be denoted by [F]. For general background on clones and relations
(cf. Subsection 1.3) we refer the reader to the monographs [13] and [17].

1.3 Relational constraints
By a relation of arity k on [m] we mean a set of k-tuples P ⊆ [m]k . If T ∈
[m]k×n is a k × n matrix such that each column of T belongs to P , then we
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6 JORGE ALMEIDA et al.

say that T is a P-matrix. Applying an n-ary function f to the rows of T ,
we obtain the column vector f (T ) ∈ [m]k . A relational constraint of arity
k is a pair (P, Q), where P and Q are k-ary relations. An n-ary function
f satisfies the constraint (P, Q) if f (T ) ∈ Q for every P-matrix T of size
k × n. Satisfaction of relational constraints gives rise to a Galois connection
that defines equational classes of functions. We say that a class K ⊆ Om is
defined by relational constraints if there is a set Q of relational constraints
such that K is the class of all functions that satisfy every member of Q.

Theorem 1.3 [15]. A class K ⊆ Om is an equational class if and only if K
can be defined by relational constraints.

As an illustration of this theorem let us consider our three examples from
Subsection 1.2: the class of monotone and antimonotone Boolean functions
can be defined by the constraints (≤,≤) and (≤,≥), respectively, and the
class �= can be defined by ({(0, 1)} , {(0, 0) , (1, 1)}).

A function f preserves the relation P if f satisfies the constraint (P, P).
This induces the well-known Pol-Inv Galois connection between clones and
relational clones. As for relational constraints, we say that a class K ⊆ Om is
defined by relations if there is a set Q of relations such that K is the class of
all functions that preserve every member of Q.

Theorem 1.4 [3, 11]. A class K ⊆ Om is a clone if and only if K can be
defined by relations.

As an example, let us observe that the clone of monotone Boolean func-
tions is defined by the relation ≤.

Now we present another Galois connection that characterizes
composition-closed equational classes. Let us say that a function f
strongly satisfies the relational constraint (P, Q), if f satisfies both (P, Q)
and (Q, Q) (i.e., f satisfies (P, Q) and preserves Q). As before, we say a
class K ⊆ Om is strongly defined by relational constraints if there is a set Q
of relational constraints such that K is the class of all functions that strongly
satisfy every member of Q.

Theorem 1.5 [21]. A class K ⊆Om is a composition-closed equational class
if and only if K can be strongly defined by relational constraints.

Concerning our three examples, let us note that the class of antimono-
tone functions is not closed under composition, and the class of monotone
functions is strongly defined by the constraint (≤,≤), as we have already
observed. The class �= is also closed under composition, and it is strongly
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ON THE SEMIGROUP OF EQUATIONAL CLASSES 7

defined by ({(0, 1)} , {(0, 0) , (1, 1)}), since the relation {(0, 0) , (1, 1)} is just
the equality relation, and it is preserved by every function.

1.4 The Post lattice
The dual of an n-ary Boolean function f is the function f d defined
by f d (x1, . . . , xn) := ¬ f (¬x1, . . . ,¬xn). We say that f is selfdual if
f d = f and we say that f is reflexive if f = ¬ f d , i.e., f (x1, . . . , xn) =
f (¬x1, . . . ,¬xn). The set of self-dual functions is denoted by S, and the
set of reflexive functions is denoted by N . The dual of a class K ⊆ � is
Kd := {

f d : f ∈ K
}
. Observe that Kd can be also written as ¬K¬ using

function class composition. (Let us recall that here ¬ stands for {¬}, which
in turn is an abbreviation for the class of all functions that are equivalent to
the unary negation function. As we will use composition with this class very
often, it will be convenient to use this simplified notation.)

Figure 2 shows the lattice of clones on [2], usually referred to as the Post
lattice. Only some clones are labelled on the figure; all other Boolean clones

FIGURE 2
The Post lattice
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8 JORGE ALMEIDA et al.

can be obtained as intersections of these:

� � is the clone of all Boolean functions;
� �0* is the clone of 0-preserving functions;
� �*1 is the clone of 1-preserving functions;
� M is the clone of monotone (order-preserving) functions;
� S is the clone of self-dual functions;
� L is the clone of linear functions, i.e., functions of the form x1 + · · · +

xn + c with n ≥ 0, c ∈ {0, 1};
� � consists of conjunctions x1 ∧ · · · ∧ xn (n ≥ 1) and the two constants

0, 1;
� V consists of disjunctions x1 ∨ · · · ∨ xn (n ≥ 1) and the two constants 0, 1;
� �(1) is the clone of essentially at most unary functions;
� {id} is the clone consisting of projections only;
� W k is the clone of functions preserving the relation {0, 1}k \ {0};
� W ∞ = W 2 ∩ W 3 ∩ · · · is the clone generated by implication;
� U k is the dual of W k for k = 2, 3, . . . ,∞.

1.5 Idempotent equational classes
The usual notation for the set of idempotents of a semigroup S is E (S), but
in our case this would lead to the somewhat awkward notation E (Em), there-
fore we will simply write Im for the set of idempotent equational classes on
[m]. If C is a clone, then CC ⊆ C, since C is closed under composition, and
CC ⊇ C {id} = C, since C contains the projections. Therefore, every clone is
idempotent, and this means that for m ≥ 3 it is probably a hopelessly difficult
task to describe the idempotents of Em . However, for m = 2 the idempotents
have been described in [21]. Here we recall some of these results that we will
use in Section 3.

It follows from Proposition 1.1 that I2 is closed under arbitrary intersec-
tions (we allow the empty class), hence it is a complete lattice1. For any clone
C ⊆ �, we define the set

I (C) := {K ∈ I2 : [K] = C} .

Here [K] stands for the clone generated by K, i.e., the least clone containing
K. For each clone C, the set I (C) turns out to be an interval in the lattice
I2, whose greatest element is C, which is obviously the only clone in I (C).
Clearly, these intervals form a partition of I2, hence in order to determine all
idempotents it suffices to describe I (C) for every Boolean clone C.

1We consider the inclusion as the ordering on I2, and not the natural ordering defined by K ≤ K′ ⇐⇒
K = KK′ = K′K.
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ON THE SEMIGROUP OF EQUATIONAL CLASSES 9

Theorem 1.6 [21]. Let C be a Boolean clone. The interval I (C) is one the
following :

1. if C = {id} , {id, 0} , {id, 1} , {id, 0, 1} , L , L0*, L*1, then I (C) =
{C, C=};

2. if C = �,�0*,�*1, then I (C) = {C, C=, C ∩ N };2

3. if 2 ≤ k < ∞, then k + 1 ≤ ∣∣I (
U k

)∣∣ , ∣∣I (
W k

)∣∣ < ∞, whereas I (U∞)
and I (W ∞) have continuum cardinality;

4. for all other clones, I (C) only contains C.

A characterization of the idempotents belonging to I
(
U k

)
and I

(
W k

)
was

also provided in [21]; here we describe only the least elements of these inter-
vals. For every k ≥ 2, let Bk be the class of functions that strongly satisfy
the constraint

({0, 1}k \ {1} , {0, 1}k \ {0}), and let Dk be the dual of Bk .
Moreover, let B∞ = ⋂

k≥2 Bk and D∞ = ⋂
k≥2 Dk . Then the least element

of I
(
W k

)
is Bk and the least element of I

(
U k

)
is Dk for 2 ≤ k ≤ ∞.

2 TOPOLOGICAL PROPERTIES OF EM

2.1 The metric on Em

For A 	= B ⊆ Om , we define the quantities m (A,B) and d (A,B) by

m (A,B) := min {ess f | f ∈ A � B} ,

d (A,B) := 2−m(A,B),

and we put m (A,A) = ∞ and d (A,A) = 0 for all A ⊆ Om . (Here A � B
denotes the symmetric difference of the sets A and B.) It is straightforward to
verify that d is an ultrametric on P(Om), the power set of Om (i.e., a metric
satisfying the strong triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)} for
all x, y, z ∈ P(Om)). Intuitively, two classes are close to each other, if they
coincide up to a large essential arity.

Theorem 2.1. The metric space (Em, d) is compact.

Proof. To prove compactness, we will interpret equational classes as
sequences of ≡-classes of functions, and embed (Em, d) into a compact prod-
uct space.

Equivalent functions have the same essential arity, thus we can speak of
the essential arity of an ≡-class. Let us denote the set of all essentially n-ary

2Let us note that the class of reflexive functions was denoted by R in [21]. In order to avoid confusion
with Green’s R relation, we use the notation N here.
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10 JORGE ALMEIDA et al.

equivalence classes by E (n)
m . Clearly, E (n)

m is a finite set, since its cardinality is
bounded by the number of n-ary functions on [m].

Let us say that K ⊆ Om is saturated, if it is a union of ≡-classes, and
let S denote the set of all saturated subsets of Om . Note that every equa-
tional class is saturated. A saturated set K ⊆ Om can be naturally identified
with a sequence {Kn}n≥0, where Kn ⊆ E (n)

m is the set of essentially n-ary ≡-
classes contained in K. This identification gives rise to a bijection between
S and

∏∞
n=0 P(E (n)

m ). It is easy to see that this bijection is a homeomorphism
between S, equipped with the topology induced by the metric d, and the prod-
uct space

∏∞
n=0 P(E (n)

m ), equipped with the product of the discrete topologies
on each P(E (n)

m ). Since each E (n)
m is finite, this product space is compact by

Tychonoff’s theorem, hence S is also compact. Therefore it only remains to
prove that Em is a closed subset of S. We shall see that, in fact, Em is closed
in P(Om).

Let K be any set of functions that is not an equational class. We will prove
that there is an open ball around K that is contained in P(Om) \ Em . Since K
is not an equational class, there exist f, g ∈ Om such that f ∈ K and g 
 f
(and thus ess g ≤ ess f ), but g /∈ K. Let n = ess f , and let us consider the
open ball of radius 2−n centered at K. Let A ⊆ Om be an arbitrary class in
this ball, that is, such that d (K,A) < 2−n . Then m (K,A) > n, i.e., K and
A coincide up to essential arity n. In particular, we have f ∈ A and g /∈ A,
which implies that A is not an equational class. Therefore, P(Om) \ Em is an
open set and, hence, Em is closed.

As it turns out, the set of those classes K ∈ Em that are not closed under
composition constitutes an open subset of (Em, d). Indeed, if K ∈ Em is not
closed under composition, then there exist f ∈ K(n) and g1, . . . , gn ∈ K(k)

such that h := f (g1, . . . , gn) /∈ K. Let K′ be any equational class in the
open ball of radius 2− max{n,k} centered at K. Then m

(
K,K′) > max {n, k},

i.e., K and K′ coincide up to essential arity max {n, k}. Therefore, we have
f, g1, . . . , gn ∈ K′ and h /∈ K′, and hence K′ is not closed under composi-
tion. This shows that the set of all equational classes that are not closed under
composition forms an open set, and thus we have the following result.

Proposition 2.2. The set of composition-closed equational classes is a
closed subset of Em, hence it is compact.

Remark 2.3. A similar metric (which induces the same topology) was
considered in [14] for clones, and it has been shown that the resulting
“clone space” is compact. We have seen in Proposition 2.2 that the space
of composition-closed equational classes is compact. Clones are just the
composition-closed equational classes that contain the projections, hence we
also obtain the compactness of the clone space from the above results.

D437-MVLSC˙V6 10
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2.2 Finitely generated equational classes
For f ∈ Om , let ↓ f denote the principal ideal generated by f in the sim-
ple minor quasiorder, i.e., ↓ f := {g ∈ Om : g 
 f }. Observe that ↓ f is
the least equational class containing f . We say that an equational class
K is finitely generated if there exist t ≥ 0, f1, . . . , ft ∈ Om such that K =
↓ f1 ∪ · · · ∪ ↓ ft . In this case K is the least equational class containing
{ f1, . . . , ft }. For an equational class K, let degK = max{ess f : f ∈ K},
if this maximum exists, and let degK = ∞ otherwise. Clearly, K ∈ Em is
finitely generated if and only if K contains, up to equivalence, only finitely
many functions. From this it follows that K is finitely generated if and only
if degK < ∞.

As mentioned in Subsection 1.2, a class of functions is an equational class
if and only if it is definable by functional equations. It has been proved
in [10] that finitely generated equational classes can be defined by finitely
many functional equations. The topological counterpart of this notion is that
of being isolated: we say that K ∈ Em is isolated, if {K} is an open set in
the topological space Em , i.e., if K has an open neighborhood in P(Om) that
contains no equational class other than K.

Theorem 2.4. An equational class K ⊆ Om is finitely generated if and only
if it is isolated.

Proof. Let us assume first that K is finitely generated, i.e., d := degK <

∞. We will show that the open ball of radius 2−(d+m) around K contains
no other equational class than K. Suppose for the sake of a contradiction
that there exists K′ ∈ Em with m

(
K,K′) > d + m and K′ 	= K. Then K′ and

K coincide up to essential arity d + m, therefore we have K ⊆ K′ (as all
members of K are essentially at most d-ary). Since K′ 	= K, it follows that
K′ \ K 	= ∅. Let us choose f ∈ K′ \ K of minimum essential arity. If g is any
proper simple minor of f , then g ∈ K by the minimality of ess f , and hence
ess g ≤ degK = d . On the other hand, we have ess f > d + m, and thus the
arity gap gap f := min {ess f − ess g : g ≺ f } of f is greater than m. This
contradicts the fact that the arity gap of any function of several variables
defined on an m-element set is at most m (see [8]).

Now assume that K is not finitely generated, i.e., degK = ∞. For any n ≥
0, let Kn = { f ∈ K : ess f ≤ n}. From degK = ∞, it follows that Kn 	= K
for all n ≥ 0. Moreover, it is clear that d (K,Kn) < 2−n , and thus that K is
not isolated.

Remark 2.5. It was shown in [14] that if a clone C is isolated in the clone
space, then C is a finitely generated clone, i.e., there is a finite set F ⊆ Om
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12 JORGE ALMEIDA et al.

such that C = [F]. Observe that if C is a finitely generated equational class,
then C is a finitely generated clone, but the converse is not true.

Theorem 2.6. Finitely generated equational classes constitute a dense sub-
semigroup of Em.

Proof. We have seen in the second part of the proof of Theorem 2.4 that
if K ∈ Em is not finitely generated, then there exists a sequence {Kn}n≥0 of
finitely generated equational classes Kn such that Kn → K. This shows that
the set of finitely generated equational classes is dense in Em .

In order to prove that they form a subsemigroup, let us consider two
arbitrary finitely generated equational classes K and K′ with degK = r
and degK′ = s. Any function h ∈ KK′ can be written in the form h =
f (g1, . . . , gn) with f ∈ K and g1, . . . , gn ∈ K′. Moreover, we may assume
without loss of generality that f depends on all of its variables, i.e., ess f =
n. If a variable is inessential in all of the inner functions g1, . . . , gn , then it is
also inessential in the composite function h. Thus we have Ess h ⊆ Ess g1 ∪
· · · ∪ Ess gn , and this yields the estimate ess h ≤ ess g1 + · · · + ess gn ≤ n ·
s ≤ r · s. This proves that degKK′ ≤ r · s. Hence, KK′ is indeed finitely gen-
erated.

In general, the estimate degKK′ ≤ degK · degK′ that has been estab-
lished in the above proof is not sharp. As an example, let K be the clone of
term functions of a rectangular band. Then we have KK = K and degK = 2,
thus 2 = degKK < degK · degK = 4. However, it is noteworthy to observe
that for Boolean functions (i.e., when m = 2) we always have an equality.

Theorem 2.7. For any equational classes K,K′ ∈ E2, we have degKK′ =
degK · degK′.

Proof. When dealing with non-finitely generated classes, we use the con-
ventions ∞ · 0 = 0 · ∞ = 0 and n · ∞ = ∞ · n = ∞ · ∞ = ∞ for all n ≥
1. We will also need the following notation: for x ∈ [2]n , 1 ≤ i ≤ n, and
a ∈ [2], let xa

i be the n-tuple whose j-th component is x j if j 	= i , and a
if j = i .

Let K,K′ ∈ E2 with degK = n and degK′ = k, where n, k ∈
{0, 1, . . . ,∞}. If either n = 0 or k = 0, then degKK′ = 0 = degK · degK′

holds trivially, so we will assume that n, k ≥ 1.
Suppose first that K and K′ are both finitely generated, i.e., n, k < ∞.

We have seen in the proof of Theorem 2.6 that degKK′ ≤ n · k. In order
to prove that degK,K′ ≥ n · k, let us fix f ∈ K(n) and g ∈ K′(k) such that
ess f = n and ess g = k. Since f and g depend on all of their variables, for
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each 1 ≤ i ≤ n and 1 ≤ j ≤ k there exist a ∈ [2]n and b ∈ [2]k such that
f (a0

i ) 	= f (a1
i ) and g(b0

j ) 	= g(b1
j ). In particular, the range of both f and g is

[2].
For 0 ≤ i ≤ n − 1, let gi : [2]n·k → [2] be defined by

gi (x1, . . . , xik, xik+1, . . . , x(i+1)k, x(i+1)k+1, . . . , xnk) = g(xik+1, . . . , x(i+1)k).

Consider the function h : [2]n·k → [2] given by h = f (g0, . . . , gn−1).
Observe that gi ≡ g, hence gi ∈ K′ for all 0 ≤ i ≤ n − 1, therefore h ∈ KK′.
We show that x1 is an essential variable of h.

Let a = (a1, . . . , an) ∈ [2]n and b ∈ [2]k such that f (a0
1) 	= f (a1

1) and
g(bu

1) = 0 	= 1 = g(bv
1), for some u, v ∈ [2]. (Note that bu

1 denotes the k-
tuple obtained from b by substituting its first component by u.) For each 2 ≤
i ≤ n, let bi ∈ [2]k be such that g(bi ) = ai , and define c := (b, b2, · · · , bn).
By construction, we have

h(cu
1) = f (a0

1) 	= f (a1
1) = h(cv

1).

This shows that x1 is essential in h. Similarly, it can be shown that the remain-
ing variables xi , 1 ≤ i ≤ nk, are also essential in h, hence ess h = n · k. This
proves that degKK′ ≥ n · k as claimed.

Now let us assume that degK = ∞ and degK′ ∈ {1, 2, . . . ,∞}. Since
degK = ∞, for any n ≥ 0 we can find a function f ∈ K with ess f ≥ n. Let
us choose g ∈ K with ess g = k > 0, and let us construct the function h ∈
KK′ as above. We have seen that ess h = n · k and, hence, degKK′ ≥ n · k.
Since this holds for all n ≥ 0, we have that degKK′ = ∞ = degK · degK′.
If degK′ = ∞, then we can proceed similarly, by letting f be any noncon-
stant function in K and by choosing functions gi ∈ K′ with unbounded essen-
tial arities.

2.3 Continuity of composition
In this subsection we will prove that composition of equational classes is
continuous with respect to the topology induced by the metric d. By making
use of the compactness of Em established in Theorem 2.1, we will show that
Em is a profinite semigroup. The proof will essentially rely on the following
two estimates.

Lemma 2.8. For all K,K1,K2 ∈ Em, we have

m (KK1,KK2) ≥ m (K1,K2) ,

d (KK1,KK2) ≤ d (K1,K2) .
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Proof. The second inequality is an immediate consequence of the first. Let
u = f (g1, . . . , gn) ∈ KK1 be such that ess u < m (K1,K2). We have to show
that u ∈ KK2. Whenever a variable is inessential in u, we may identify that
variable with another variable in every gi , without changing the value of the
function u. In this way we can replace each gi with some g′

i such that ess g′
i ≤

ess u, g′
i 
 gi and u ≡ f

(
g′

1, . . . , g′
n

)
. Since K1 is an equational class, g′

i ∈
K1, and since ess g′

i < m (K1,K2), we have g′
i ∈ K2 for i = 1, 2, . . . , n. Thus

u ≡ f
(
g′

1, . . . , g′
n

) ∈ KK2.

Lemma 2.9. If K = ↓ h1∪ ↓ h2 ∪ · · · ∪ ↓ ht and k = max {ess hi | 1 ≤
i ≤ t}, then for all K1,K2 ∈ Em we have

m (K1K,K2K) ≥ k

√
m (K1,K2)

t
,

d (K1K,K2K) ≤ 2
− k

√
− log2 d (K1,K2)

t .

Proof. We prove only the first inequality, since the second follows from the
first one using the definition of d . Let u = f (g1, . . . , gn) ∈ K1K be such that

l = ess u < k

√
m(K1,K2)

t . We have to show that u ∈ K2K.
Let us suppose that u depends on all of its variables, and let us denote

these variables by x1, x2, . . . , xl . Each of the inner functions gi is a simple
minor of one of h1, . . . , ht , i.e., they are of the form

h j (z1, z2, . . . , zr ) where 1 ≤ j ≤ t, z1, z2, . . . , zr ∈ {x1, x2, . . . , xl} , r ≤ k.

The number of such functions is at most t · lk , so we can index them by (some
of) the numbers 1, 2, . . . , t · lk . Let v1, v2, . . . be the list of these functions.
Let si be the number corresponding to the function gi (i = 1, 2, . . . , n), i.e.,
gi = vsi , and let f ′ be the (t · lk)-ary function defined by

f ′(x1, . . . , xt ·lk ) = f
(
xs1 , xs2 , . . . , xsn

)
.

Since f ′ 
 f and f ∈ K1, we have f ′ ∈ K1. Also ess f ′ ≤ t · lk <

m (K1,K2), and thus f ′ ∈ K2. Since u is equivalent to f ′ (v1, v2, . . .) and
each vi belongs to K, we have that u ∈ K2K.

From Lemma 2.8 we see that multiplication of equational classes is
left continuous in the sense that Kn → K0 implies KKn → KK0. In the
next proposition we prove the analogous right continuity property using
Lemma 2.9.
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Proposition 2.10. Let (Kn)n≥1 be a sequence in Em converging to K0 ∈ Em.
Then, for any K ∈ Em, the sequence KnK converges to K0K.

Proof. Let us fix an arbitrary ε > 0. By Theorem 2.6, the set of finitely gen-
erated equational classes form a dense subset of Em , and thus there exists
a finitely generated equational class K′ such that d

(
K′,K

)
< ε. Using the

ultrametric inequality we have that for each n ≥ 1

d (KnK,K0K) ≤ max{d (
KnK,KnK′) , d

(
KnK′,K0K′) , d

(
K0K′,K0K

)}.
(2)

From Lemma 2.8 it follows that the first and the last terms are at most
d

(
K′,K

)
and thus less than ε. We can apply the estimate of Lemma 2.9

to the middle term, as K′ is finitely generated. Therefore, we obtain
d

(
KnK′,K0K′) → 0, since d (Kn,K0) → 0. Thus, there is a natural number

N such that for all n > N we have d
(
KnK′,K0K′) < 0. From (2) we have

then d (KnK,K0K) < ε for all n > N , and this proves that KnK → K0K.

Theorem 2.11. Composition of equational classes is a continuous operation,
i.e., Em is a topological semigroup.

Proof. Let us assume that Kn → K and K′
n → K′ in Em , and let us fix ε > 0.

By Proposition 2.10, KnK′ → KK′. Hence there exists a natural number N
such that d

(
KnK′,KK′) < ε for all n > N . Since K′

n → K′, there also exists
a natural number N ′ such that d

(
K′

n,K′) < ε for all n > N ′.
Using the ultrametric inequality we get the following upper bound:

d
(
KnK′

n,KK′) ≤ max
{
d

(
KnK′

n,KnK′) , d
(
KnK′,KK′)} . (3)

Let n > max
{

N , N ′}. Then n > N , and hence d
(
KnK′,KK′) < ε. By

Lemma 2.8, we have

d
(
KnK′

n,KnK′) ≤ d
(
K′

n,K′) ,

and the latter is less than ε, since n > N ′. Thus d
(
KnK′

n,KK′) < ε whenever
n > max

{
N , N ′}, and this shows that KnK′

n → KK′.

Now as a metric space, Em is obviously Hausdorff. Moreover, Em is also
compact by Theorem 2.1. From the ultrametric inequality it follows that each
ball of this topological space is clopen, and hence Em is a zero-dimensional
space. Consequently, we have the following corollary (for further background
see, e.g., [2]).
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16 JORGE ALMEIDA et al.

Corollary 2.12. The topological semigroup Em is profinite.

3 REGULAR ELEMENTS OF E2

One of the fundamental tools in the study of a semigroup is the description
of Green’s relations. Recall that two elements of a semigroup are L-related
(R-related, J -related) if they generate the same left ideal (right ideal, two-
sided ideal, respectively). In particular, equational classes K1,K2 ∈ E2 are
L-related if and only if there exist K′,K′′ ∈ E2 such that K1 = K′K2 and
K2 = K′′K1. Similarly, K1,K2 ∈ E2 are R-related if and only if there exist
K′,K′′ ∈ E2 such that K1 = K2K′ and K2 = K1K′′. Furthermore, we also
have the relations H and D that are defined by H = L ∩ R and D = L ◦ R.
All of these five relations are equivalence relations; we use the notation LK
and RK for the L-class and the R-class of K, respectively. We state Green’s
lemma only for the relation R for the semigroup E2, as we shall need this
lemma only in this case. For further background see, e.g., [1, 18].

Green’s lemma. If K1,K2 ∈ E2 are R-related, say K1 = K2K′ and K2 =
K1K′′ for some K′,K′′ ∈ E2, then X �→ XK′ and X �→ XK′′ define mutually
inverse bijection between LK1 and LK2 that preserve the H relation.

Another important concept in the investigation of the structure of a semi-
group is that of a regular element, i.e., elements that are R-related (or, equiv-
alently, L-related) to some idempotent element. As mentioned in Subsec-
tion 1.5, the description of the idempotent elements of Em does not seem
feasible for m > 2; however, they have been completely described for m = 2
in [21]. As we will see, this result constitutes a key step in classifying the
regular elements of E2.

In this section we will justify the latter claim by providing an explicit
description of the regular elements of E2 and, as a by-product, of the structure
of the regular D-classes of E2.3

First we consider classes consisting only of constant functions.

Proposition 3.1. The empty set forms a singleton D-class. The function
classes {0}, {1} and {0, 1} form an L-class with singleton R- and H-classes.
Thus the eggbox pictures of these classes are the following (hereinafter, the
grey background color indicates an H-class containing an idempotent ele-
ment):

∅
{0}
{1}

{0, 1}
3Note that D = J , since E2 is a compact semigroup.
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Proof. The empty class is a two-sided zero element, hence it forms a single-
ton D-class. The classes {0} , {1} and {0, 1} are left zero elements in the sub-
semigroup of nonempty equational classes, hence each of them is a singleton
R-class, and they are all L-equivalent. Moreover, for any nonempty A ∈ E2

we have A {0} ∈ {{0} , {1} , {0, 1}}, therefore the L-class of {0} contains only
the three classes {0} , {1} and {0, 1}.

In the sequel we discard the trivial cases covered by the above propo-
sition, and we only work with equational classes that contain at least one
nonconstant function. It follows from Theorem 2.7 that these classes form
a subsemigroup of E2, which we will denote by Ẽ. Similarly, let us use the
notation Ĩ = I2 ∩ Ẽ and Ĩ (C) = I (C) ∩ Ẽ. (We drop the subscript 2 as we
only work with Boolean functions in this section.) Note that Ĩ (C) = I (C)
for almost all clones, the only exceptions being C = {id}, {id, 0}, {id, 1} and
{id, 0, 1}, for which Ĩ (C) = {C}, whereas I (C) = {C, C=}.

The following result reveals the relation between an equational class K
and the clone [K] generated by it.

Proposition 3.2 [21]. Let K ∈ Ẽ be an idempotent, and let C = [K]. Then
we have CK = K and KC = C.

Since every regular R-class contains an idempotent K and, by Proposi-
tion 3.2, such an idempotent K is R-equivalent to [K], we obtain the follow-
ing result.

Proposition 3.3. Each regular R-class of Ẽ contains a clone.

In fact, our next lemma shows that each R-class (and also each L-class)
of Ẽ contains at most one clone.

Lemma 3.4. If C1, C2 ∈ Ẽ are clones, and C1 R C2 or C1 L C2, then C1 = C2.

Proof. Suppose that C1 and C2 are L-related: C1 = K′C2 and C2 = K′′C1 for
some K′,K′′ ∈ E2. Since C1 and C2 are idempotents, it follows that C1C2 =
K′C2C2 = K′C2 = C1 and similarly C2C1 = K′′C1C1 = K′′C1 = C2. Since id ∈
C1, we have C1 = C1C2 ⊇ C2. By exchanging the roles of C1 and C2, we obtain
C2 ⊇ C1, and thus C1 = C2.

An analogous argument shows that C1 R C2 implies C1 = C2.

According to Proposition 3.3, we can find all regular elements by comput-
ing the R-classes of clones. We will need the following technical lemma.

Lemma 3.5. If K,K′ ∈ Ẽ and id ∈ KK′, then id ∈ K′ or ¬ ∈ K′.
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18 JORGE ALMEIDA et al.

Proof. Suppose for contradiction that id ∈ KK′ but neither id nor ¬ belong
to K′. Then every unary function in K′ is constant, that is, K′(1) ⊆ [2]. Since
id ∈ KK′, there exist f ∈ K(n) and g1, . . . , gn ∈ K′(k) for some n, k ≥ 1, such
that f (g1, . . . , gn) is a projection, i.e.,

f (g1 (x1, . . . , xk) , . . . , gn (x1, . . . , xk)) = x j

holds identically for some j ∈ {1, . . . , k}. By identifying all the variables, we
obtain

f (g1 (x, . . . , x) , . . . , gn (x, . . . , x)) = x . (4)

For each 1 ≤ i ≤ n, the unary function gi (x, . . . , x) is a simple minor of
gi ∈ K′, hence it is a member of K′(1). Since K′(1) contains only constant
functions, this implies that the left hand side of (4) is constant, which yields
the desired contradiction.

Recall that RC and LC denote the R-class and L-class, respectively, of C.

Proposition 3.6. If C ∈ Ẽ is a clone, then RC = Ĩ (C) ∪ Ĩ (C) ¬.

Proof. From Proposition 3.2 it follows that Ĩ (C) ⊆ RC , and then Ĩ (C) ¬ ⊆
RC follows since {¬} is a unit. To prove the inclusion RC ⊆ Ĩ (C) ∪ Ĩ (C) ¬,
let us choose an arbitrary K ∈ RC . Then C = KK′ and K = CK′′ for some
K′,K′′ ∈ Ẽ. It follows that KK′K = CK = CCK′′ = CK′′ = K, as C is idem-
potent. Since id ∈ C = KK′, we have id ∈ K′ or ¬ ∈ K′ by Lemma 3.5.

Let us examine these two cases separately. If id ∈ K′, then K2 = K idK ⊆
KK′K = K, hence K is idempotent by Proposition 1.1. Moreover, C R K
since K ∈ RC , and K R [K] by Proposition 3.2. By transitivity, we have C R
[K], and then C = [K] follows from Lemma 3.4. Thus K is an idempotent
that generates the clone C, hence K ∈ I (C) .

If ¬ ∈ K′, then let K* = K¬. Similarly to the previous case, we can show
that K* is idempotent:

(
K*

)2 = K¬K¬ ⊆ KK′K¬ = K¬ = K*.

Also, we have the following R-relations:

[
K*

]
R K* R K R C.
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Hence,
[
K*

]
R C and, by Lemma 3.4,

[
K*

] = C. This means that K* ∈ I (C)
and thus K = K*¬ ∈ I (C) ¬.

Theorem 3.7. The set of regular elements of Ẽ is Ĩ ∪ Ĩ¬

Proof. Combine Proposition 3.3 and Proposition 3.6.

Remark 3.8. Informally, we can say that the regular elements of Ẽ are
exactly the idempotents and the negations of idempotents. We do not have
to specify whether we mean negation from the left or from the right, since
the left (right) negation of the idempotent K is the same as the right (left)
negation of the idempotent Kd = ¬K¬. Indeed, we have

¬K = (¬K¬) ¬ and K¬ = ¬ (¬K¬) .

Moreover, since K �→ ¬K¬ is an automorphism of the semigroup Ẽ, we also
have that K is idempotent if and only if Kd is idempotent.

Proposition 3.9. If C ∈ Ẽ is a clone, then LC = {C,¬C}.

Proof. Clearly C and ¬C are L-equivalent to C. To see that these are in fact
the only ones, let us consider an arbitrary K ∈ LC . Then K = K′C and C =
K′′K for some K′,K′′ ∈ Ẽ. Since id ∈ C = K′′K, by Lemma 3.5 we have
that id ∈ K or ¬ ∈ K. Moreover, since K is a regular element, either K or
K* := ¬K is idempotent, according to Theorem 3.7 (see also Remark 3.8).
Thus we can separate the following four cases:

1. If K ∈ Ĩ and id ∈ K, then K is a clone, and thus K = C by Lemma 3.4.
2. If K ∈ Ĩ and ¬ ∈ K, then id = ¬¬ ∈ K2 = K, hence K is a clone and

K = C as in the previous case.
3. If K* ∈ Ĩ and ¬ ∈ K, then id ∈ K*, hence K* is a clone. Moreover,

K* L K L C. By Lemma 3.4, K* = C and thus K = ¬C.
4. If K* ∈ Ĩ and id ∈ K, then ¬ ∈ K*, which implies that id ∈ (

K*
)2 =

K*. Therefore K* is a clone, and we have K = ¬C just like in the previ-
ous case.

Now we are ready to present the description of the structure of the regular
D-classes of Ẽ. The contents of the following theorem are illustrated and
summarized in Table 1. (Let us recall that in these eggbox pictures, an H-
class has a grey background if it contains an idempotent element.)
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Theorem 3.10. The regular D-classes of the semigroup Ẽ are the following:

1. a one-element class {C} for a clone C = S, SL ,�(1), {id,¬} ;
2. a two-element class {C, C¬} that consists of a single H-class, for a clone

C = �01, M, M01, S01, SM, L01, {id, 0, 1} , {id} ;
3. a four-element class {C, C¬,¬C,¬C¬} that consists of two R-classes

with singleton H-classes, for a clone C = M0*, U k
01, MU k, MU k

01,�,

�0*,�*1,�01, {id, 0} ;
4. the class {�,�=, N } that consists of one R-class with singleton H-

classes;
5. the class {L , L=} that consists of one R-class with singleton H-classes;
6. the class

{
�0*,�00, N00,�*0,�1*,�11, N11,�*1

}
that consists of two

R-classes with singleton H-classes;
7. the class

{
L0*, L00, L*0, L1*, L11, L*1

}
that consists of two R-classes

with singleton H-classes;
8. the class Ĩ

(
W k

) ∪ Ĩ
(
W k

) ¬ ∪ Ĩ
(
U k

) ∪ Ĩ
(
U k

)¬ that consists of two R-
classes with singleton H-classes, for k = 2, 3, . . . ,∞.

Proof. By Proposition 3.3, it suffices to determine the R-classes of clones,
and we have seen in Proposition 3.6 that RC = Ĩ (C) ∪ Ĩ (C) ¬ for any clone
C ∈ Ẽ. From Proposition 3.9 and Green’s lemma, we obtain LK = {K,¬K}
for all K ∈ RC , and hence the eggbox picture of a regular D-class is the
following:

Ĩ(C)︷ ︸︸ ︷
C · · · K · · ·

¬C · · · ¬K · · ·
︸ ︷︷ ︸

¬̃I(C)

Ĩ(C)¬︷ ︸︸ ︷
· · · K¬ · · · C¬
· · · ¬K¬ · · · ¬C¬

︸ ︷︷ ︸
¬̃I(C)¬

Observe the symmetries of this picture: reflection to the vertical axis of the
rectangle corresponds to negation from the right, reflection to the horizon-
tal axis (i.e., interchanging the two rows) corresponds to negation from the
left, and reflection to the center point of the rectangle corresponds to negation
from both sides (i.e., dualizing). Note also that ¬̃I (C) ¬ = Ĩ (¬C¬) = Ĩ

(
Cd

)
.

The above picture shows a general situation, but for certain clones, there may
be some coincidences, namely, it is possible that there is only one row, or an
H-class contains two elements, or Ĩ (C) and Ĩ (C) ¬ have nonempty intersec-
tion. In the following, we describe explicitly these possible coincidences.

First let us determine the cases when LC is a singleton. By Proposition 3.9,
this holds if and only if C = ¬C, and it is easily seen to be equivalent to
¬ ∈ C. These clones form the principal filter generated by the clone {id,¬}
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C C, C¬
C C¬

¬C ¬C¬
case (1) case (2) case (3)

� �= N L L=

case (4) case (5)

�0* �00 N00 �*0

�1* �11 N11 �*1

L0* L00 L*0

L1* L11 L*1

case (6) case (7)

W k · · · Bk · · · W k¬
U k¬ · · · Dk · · · U k

case (8)

TABLE 1
The regular D-classes of Ẽ (cf. Theorem 3.10)

(the grey square with a single outline and an empty interior in Figure 2) in
the Post lattice.

The H-class of C has two elements if and only if C 	= ¬C ∈ RC = Ĩ (C) ∪
Ĩ (C) ¬ (cf. Proposition 3.6). If ¬C ∈ Ĩ (C), then ¬C is an idempotent that
contains the negation, hence ¬C is a clone. However, the only clone in
Ĩ (C) is C itself, and we have assumed that C 	= ¬C. If ¬C ∈ Ĩ (C) ¬, then
C ∈ ¬̃I (C) ¬ = Ĩ

(
Cd

)
, and then C = Cd , as the only clone in Ĩ

(
Cd

)
is Cd .

Thus we conclude that the H-class of C has two elements if and only if
Cd = C and ¬ /∈ C. Again, these clones can be easily read from the Post lat-
tice.

The above observations and the description of the intervals Ĩ (C) (cf. Theo-
rem 1.6) prove all the statements of the theorem. However, since the descrip-
tion of the intervals Ĩ

(
W k

)
and Ĩ

(
U k

)
is not explicit, we still need to deter-

mine Ĩ
(
W k

) ∩ Ĩ
(
W k

) ¬ and Ĩ
(
U k

) ∩ Ĩ
(
U k

) ¬ to have a complete picture of
the D-class DW k = DU k . So let us consider an arbitrary class K ∈ Ĩ

(
W k

) ∩
Ĩ
(
W k

)¬. Then we have K,K¬ ∈ Ĩ
(
W k

)
, and hence K,K¬ ⊆ W k . In
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particular, if f ∈ K, then both f and f ¬ preserve the relation [2]k \ {0}.4 It is
easy to see that f ¬ preserves [2]k \ {0} if and only if f satisfies the constraint(
[2]k \ {1} , [2]k \ {0}). Therefore, f strongly satisfies

(
[2]k \ {1} , [2]k \ {0})

for all f ∈ K, i.e., K ⊆ Bk . Since K ∈ Ĩ
(
W k

)
and Bk is the least element

of the interval Ĩ
(
W k

)
, it follows that K = Bk . Thus the only possible com-

mon member of Ĩ
(
W k

)
and Ĩ

(
W k

) ¬ is Bk . Since Bk = Bk¬, it follows that
Ĩ
(
W k

) ∩ Ĩ
(
W k

) ¬ = {
Bk

}
. Dually, we have Ĩ

(
U k

) ∩ Ĩ
(
U k

)¬ = {
Dk

}
.

Denote by Ab2 the pseudovariety of all finite (Abelian) groups of exponent
2. For a pseudovariety H of groups, denote by H the pseudovariety consisting
of all finite semigroups whose subgroups lie in H . Taking into account [18,
Lemma 3.1.14], we obtain the following result as an immediate application
of Theorem 3.10.

Corollary 3.11. The regular D-classes of finite continuous homomorphic
images of E2 are either groups of order two or contain no nontrivial sub-
groups. In particular, E2 is a pro-Ab2 semigroup.

4 CONCLUDING REMARKS AND FUTURE WORK

In this paper we have initiated the study of the semigroup Em of equational
classes of functions of several variables defined on an m-element set as a
means of obtaining a better understanding of the structure of composition-
closed systems in m-valued logic. We have introduced a metric on this
semigroup such that the resulting topology is compact, and we have used this
topology to prove that Em is a profinite semigroup. Moreover, we described
the regular elements of E2 and brought light into the understanding of the
structure of its Green’s relations.

In this, the description of the idempotents of E2 (given in [21]) played a
key role. Sadly, such a description is out of reach for m > 2. Nevertheless,
maximal idempotents (with respect to inclusion) of Em have been described
in [22] in the spirit of Rosenberg’s theorem on maximal clones [19], and
Rosenberg’s five-type classification of minimal clones [20] has been also gen-
eralized to composition-closed equational classes.

Finally, let us list some problems that seem relevant for further study of
the semigroups Em .

� Decide whether the regular elements and the regular D-classes of Em can
be described “modulo clones” for m > 2 in a similar manner as they have

4If k = ∞, then this is to be understood as preserving [2]k \ {0} for all k ≥ 2, and similarly in the rest
of the proof.
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been described for m = 2 in Section 3. Does every R-class contain a clone?
Is every member of the L-class of a clone C obtained by multiplying C with
a unit?

� Determine the maximal subgroups of Em .
� Knowing that Em is profinite, the natural question is to ask for the smallest

pseudovariety V of finite semigroups such that Em is a pro-V semigroup.
Seeking the description of this pseudovariety, we come to the problem of
determining all finite continuous homomorphic images of Em .

� Describe the structure of the non-regular D-classes of E2.
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[3] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, B. A. Romov, Galois theory for Post
algebras I-II, (Russian), Kibernetika (Kiev) 3 (1969), 1–10; 5 (1969) 1–9. Translated in
Cybernetics and Systems Analysis, 3 (1969) 243–252; 5 (1969) 531–539.

[4] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Math-
ematics, 78, Springer-Verlag, New York (1981).

[5] M. Couceiro, On the lattice of equational classes of Boolean functions and its closed
intervals, Journal of Multiple-Valued Logic and Soft Computing, 18 (2008) 81–104.

[6] M. Couceiro, S. Foldes, E. Lehtonen, Composition of Post classes and normal forms of
Boolean functions, Discrete Math., 306 (2006) 3223–3243.

[7] M. Couceiro, S. Foldes, Functional equations, constraints, definability of function classes,
and functions of Boolean variables, Acta Cybernet., 18 (2007) 61–75.

[8] M. Couceiro, E. Lehtonen, T. Waldhauser, Decompositions of functions based on arity
gap, Discrete Math., 312 (2012) 238–247.

D437-MVLSC˙V6 23



24 JORGE ALMEIDA et al.

[9] M. Couceiro, M. Pouzet, On a quasi-ordering on Boolean functions, Theoret. Comput.
Sci., 396 (2008) 71–87.

[10] O. Ekin, S. Foldes, P. Hammer, L. Hellerstein, Equational characterizations of Boolean
function classes, Discrete Math., 211 (2000) 27–51.

[11] D. Geiger, Closed systems and functions of predicates, Pacific J. Math., 27 (1968) 95–
100.
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