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Algebraic structures

◮ Analysis = study of functions

◮ Algebra = study of algebraic structures

Definition
An algebraic structure is a set equipped with some operations:

A = (A; f1, f2, . . .) , where

fi : Ani → A, (a1, . . . , ani
) 7→ f (a1, . . . , ani

) .

Examples

◮ groups: (G ; ·) or rather
(
G ; ·,−1 , 1

)

◮ rings: (R; +, ·)

◮ lattices: (L;∧,∨)



Lattices

Definition
Let (L;≤) be a partially ordered set in which every two elements
have a greatest common lower bound (gclb) and a least common
upper bound (lcub). Let us endow L with these two operations:

meet ∧ : L2 → L, (x , y) 7→ x ∧ y = gclb (x , y) = inf {x , y} ;

join ∨ : L2 → L, (x , y) 7→ x ∨ y = lcub (x , y) = sup {x , y} .

The resulting algebraic structure (L;∧,∨) is called a lattice.

Examples
real numbers x ∧ y = min (x , y) x ∨ y = max (x , y)

natural numbers x ∧ y = gcd (x , y) x ∨ y = lcm (x , y)

2A (power set of A) x ∧ y = x ∩ y x ∨ y = x ∪ y

subspaces x ∧ y = x ∩ y x ∨ y = x + y

subgroups x ∧ y = x ∩ y x ∨ y = 〈x ∪ y〉

normal subgroups x ∧ y = x ∩ y x ∨ y = 〈x ∪ y〉 = xy



Algebras and functions

Let A = (A; f1, f2, . . .) be an arbitrary algebra.
Composing the basic opearations fi , we can build expressions like

g (x1, x2, x3) := f1 (x1, f2 (a, f1 (x2, x1, b)) , f1 (f2 (x2, x3) , x3, a)) .

In the case of rings or fields, the resulting functions are called
polynomial functions.

Definition
We say that a function g : An → A is a polynomial function of the
algebra A if g can be built from variables and constants via
finitely many applications of the basic operations of A.

Definition
We say that a function g : An → A is a term function of the
algebra A if g can be built from variables via finitely many
applications of the basic operations of A.



Malcev conditions

Fact
Many properties of an algebra depend only on its term functions,

and not on the particular basic operations.

Example

Groups have a ternary term function p satisfying the identities

p (x , x , y) = y = p (y , x , x) ,

namely p (x , y , z) = xy−1z . This is “the” reason why normal
subgroups of a group satisfy the following modular law:

∀L, M, N ⊳ G : L ≤ N =⇒ L∨ (M ∧N) = (L∨M) ∧N.

This modular law lies behind several results of group theory (e.g.,
Schreier, Jordan-Hölder, Krull-Schmidt). These results have been
extended to arbitrary algebras that have a term function p

satisfying the identities above.



Clones

If A is an algebra and C is the set of its term functions, then

◮ C is closed under composition of functions, and

◮ C contains the projections p
(n)
i : (x1, . . . , xn) 7→ xi .

Such a closed class of functions is called a clone on A.



The clone lattice

The set of all clones on a fixed underlying set is a lattice with the
lattice operations

C1 ∧ C2 = C1 ∩ C2

C1 ∨ C2 = 〈C1 ∪ C2〉 ,

where 〈·〉 denotes closure under composition.

One approach to investigate algebras is to study clones and the
clone lattices.

A prominent result in this direction is Post’s description of all
clones over A = {0, 1} around 1920 . . .



The Post lattice
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Some famous functions on {0, 1}

x ¬x

0 1
1 0

x y x ∧ y x ∨ y x → y x ↔ y x ⊕ y

0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 0 0 1
1 1 1 1 1 1 0

Some observations:

¬x = x ⊕ 1;

x ↔ y = x ⊕ y ⊕ 1 = ¬ (x ⊕ y);

∨ is the dual of ∧:
x ∨ y = ¬ (¬x ∧ ¬y) .

x y z m (x , y , z)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1



The Post lattice
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◮ Ω = all functions on {0, 1}

◮ Ω0∗ = {f : f (0) = 0}

◮ Ω∗1 = {f : f (1) = 1}

◮ L = 〈⊕, 0, 1〉 = {x1 ⊕ · · · ⊕ xn ⊕ c}

◮ M = 〈∧,∨〉 ={isotone functions}=
{f : x ≤ y ⇒ f (x) ≤ f (y)}

◮ S = {selfdual functions} =
{f : f (x) = ¬f (¬x)}

◮ S ∩M = 〈m〉

◮ W ∞ = 〈→〉

◮ Λ = 〈∧, 0, 1〉 = {x1 ∧ · · · ∧ xn, 0, 1}

◮ V = 〈∨, 0, 1〉 = {x1 ∨ · · · ∨ xn, 0, 1}

◮ {id} = {projections}



Clones on the three-element set

! LaTeX Error:

File ‘clone lat 3.eps’ not found.



Clones on finite sets

Theorem (Janov, Mučnik, 1959)

If A is a finite set with at least three elements, then the lattice of

clones on A has continuum cardinality.

◮ Jablonskĭı (1958): maximal clones on {0, 1, 2}

◮ Rosenberg (1970): maximal clones on finite sets

◮ Csákány (1983): minimal clones on {0, 1, 2}

◮ Rosenberg (1983): classification of minimal clones on finite
sets (five types, complete description only for types I and IV)

◮ Szczepara (1995): minimal clones of type II on {0, 1, 2, 3}

◮ W. (2000): minimal clones of type III on {0, 1, 2, 3}

◮ Schölzel (2013): minimal clones of type V on {0, 1, 2, 3}



“Clones”without projections on {0, 1}
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The lattice of all closed classes on {0, 1}
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Boolean and pseudo-Boolean functions

Definition

◮ Boolean function: f : {0, 1}n → {0, 1} (cf. Post)

◮ pseudo-Boolean function: f : {0, 1}n → R

Applications:

◮ computer science

◮ voting theory

◮ decision making

◮ cooperative games

◮ etc.



Partial derivatives

Definition
The partial derivative of f : {0, 1}n → R w.r.t. xk is the function
∆k f : {0, 1}n → R defined by

∆k f (x) := f (x1
k) − f (x0

k)

= f (x1, . . . , 1, . . . , xn) − f (x1, . . . , 0, . . . , xn) .

Observe that ∆k f does not depend on xk .

Example

The partial derivatives of the Boolean sum
f (x1, x2) = x1 ⊕ x2 = x1 + x2 − 2x1x2 are

∆1f (x1, x2) = f (1, x2) − f (0, x2) = 1− 2x2,

∆2f (x1, x2) = f (x1, 1) − f (x1, 0) = 1− 2x1.



Lattice derivatives

Definition
We define the partial lattice derivatives of f : {0, 1}n → R with
respect to xk by

∧k f : {0, 1}n → R, ∧k f (x) = f (x0
k) ∧ f (x1

k) = min
(
f (x0

k), f (x1
k)

)
,

∨k f : {0, 1}n → R, ∨k f (x) = f (x0
k) ∨ f (x1

k) = max
(
f (x0

k), f (x1
k)

)
.

Example

The lattice derivatives of the Boolean sum f (x1, x2) = x1 ⊕ x2 are

∧1f (x1, x2) = f (1, x2) ∧ f (0, x2) = (1⊕ x2) ∧ x2 = 0,

∨1f (x1, x2) = f (1, x2) ∨ f (0, x2) = (1⊕ x2) ∨ x2 = 1.

The second-order lattice derivatives are

∨2 ∧1 f (x1, x2) = ∨20 = 0,

∧1 ∨2 f (x1, x2) = ∧11 = 1.



Lattice derivatives

Proposition

For any functions f , g : {0, 1}n → R and j 6= k ∈ [n], the

following hold:

◮ ∧k ∧k f = ∧k f and ∨k ∨k f = ∨k f ;

◮ if f ≤ g, then ∧k f ≤ ∧kg and ∨k f ≤ ∨kg;

◮ ∧j ∧k f = ∧k ∧j f and ∨j ∨k f = ∨k ∨j f ;

◮ ∨k ∧j f ≤ ∧j ∨k f .

Proof.
Trivial, except for the last one, which follows from the inequality

(a ∧ b) ∨ (c ∧ d) ≤ (a ∨ c) ∧ (b ∨ d) .



Permutable lattice derivatives

Theorem
For any Boolean function f , the following conditions are equivalent:

◮ ∨k ∧j f = ∧j ∨k f for all j 6= k;

◮

∣∣∆k f (x) − ∆k f (y)
∣∣ ≤ ∑i 6=k |xi − yi |;

◮ |∆jk f | ≤ 1 for all j 6= k .

Definition
We say that f : {0, 1}n → R has p-permutable lattice derivatives,
if

Ok1
· · ·Okp

f = Ok
π(1)

· · ·Ok
π(p)

f

holds for every p-element set {k1, . . . , kp} ⊆ [n], for all operators
Oki

∈ {∧ki
,∨ki

} and for every permutation π ∈ Sp.

Theorem
If a function has (p + 1)-permutable lattice derivatives, then it has

p-permutable lattice derivatives.



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(1, 1, 0)

f(1, 0, 1)

f(1, 1, 1)

f(0, 1, 1)



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(1, 1, 0)



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

g(0, 0)

g(1, 0)

g(0, 1)

g(1, 1)



Forbidden sections

Theorem
If a function is nice, then all of its sections are also nice, where

“nice” can stand for various properties.

b

b
b

nice

ugly

Corollary

A function is nice if and only if none of the minimal ugly functions

appear among its sections.

Theorem
A Boolean function has 2-permutable lattice derivatives if and only

if neither x1 ⊕ x2 nor x1 ⊕ x2 ⊕ 1 appears among its sections.
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Definitions
◮ f , g : {0, 1}n → R are equivalent, if they can be obtained

from each other by negating some of the variables, i.e.,

f (x1, . . . , xn) = g (x1 ⊕ ε1, . . . , xn ⊕ εn)

for suitable ε1, . . . , εn ∈ {0, 1}.

◮ f is isotone (nondecreasing) in xk if
◮ f

(
x1
k

)
≥ f

(
x0
k

)
for all x ∈ {0, 1}n, or equivalently

◮ ∆k f (x) ≥ 0 for all x ∈ {0, 1}n.

◮ f is antitone (nonincreasing) in xk if
◮ f

(
x1
k

)
≤ f

(
x0
k

)
for all x ∈ {0, 1}n, or equivalently

◮ ∆k f (x) ≤ 0 for all x ∈ {0, 1}n.

◮ f is monotone in xk if
◮ f is either isotone or antitone in xk , or equivalently
◮ ∆k f (x) does not change sign.

◮ f is isotone (antitone, monotone) if f is isotone (antitone,
monotone) in every variable.



Some facts

Fact

◮ A pseudo-Boolean function is monotone if and only if it is

equivalent to an isotone function.

◮ All unary functions are monotone.

◮ The only non-monotone binary Boolean functions are

x1 ⊕ x2 and x1 ⊕ x2 ⊕ 1.

◮ A Boolean function is isotone if and only if

x ⊕ 1 does not appear among its sections.



Local monotonicities

Definition
We say that f : {0, 1}n → R is p-locally monotone, if its partial
derivatives do not change sign between two points that are at
distance less then p from each other.
Formally: for every k ∈ [n] and every x, y ∈ {0, 1}n, we have

∑
i∈[n]\{k}

|xi − yi | < p ⇒ ∆k f (x)∆k f (y) ≥ 0.

Fact

◮ p-local monotonicity implies (p − 1)-local monotonicity.

◮ Every function is 1-locally monotone.

◮ An n-ary function is n-locally monotone if and only if it is

monotone.



2-local monotonicity

Theorem
For any Boolean function f , the following conditions are equivalent:

◮ f is 2-locally monotone;

◮ f has 2-permutable lattice derivatives;

◮

∣∣∆k f (x) − ∆k f (y)
∣∣ ≤ ∑i 6=k |xi − yi |;

◮ |∆jk f | ≤ 1 for all j 6= k .



Local monotonicities vs. permutable lattice derivatives

Theorem
If a function is p-locally monotone, then it has p-permutable

lattice derivatives.

Example

Let f : {0, 1}n → {0, 1} be the function that takes the value 0 on
all tuples of the form

(

m︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) with 0 ≤ m ≤ n,

and takes the value 1 everywhere else. Then f has n-permutable
lattice derivatives, but it is only 2-locally monotone.

Theorem
For symmetric functions, p-local monotonicity is equivalent to

p-permutability of lattice derivatives.
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Shadows of pseudo-Boolean functions
Let us fix x ∈ {0, 1}n, and let

Ok =

{
∧k if xk = 0,
∨k if xk = 1.

Applying these operators to f : {0, 1}n → R in the order given by
a permutation π ∈ Sn, we get a constant function

f̂π (x) := O
π(1)

· · ·O
π(n)

f .

Definition
The lower shadow and the upper shadow of f : {0, 1}n → R are
the functions defined by

f∨∧ : {0, 1}n → R, x 7→
∧

π∈Sn

f̂π (x) ,

f∧∨ : {0, 1}n → R, x 7→
∨

π∈Sn

f̂π (x) .



Shadows of pseudo-Boolean functions

Proposition

For any f : {0, 1}n → R and x ∈ {0, 1}n
, we have

f∨∧ (x) = ∨g1
· · · ∨gr

∧b1
· · · ∧bs

f ,

f∧∨ (x) = ∧b1
· · · ∧bs

∨g1
· · · ∨gr

f ,

where

◮ G := {g1, . . . , gr} = {k ∈ [n] : xk = 1} ,

◮ B := {b1, . . . , bs} = {k ∈ [n] : xk = 0} .

Definition
If f∨∧ = f∧∨, then we say that f has a unique shadow; otherwise we
say that f is skew.

Fact
A function f : {0, 1}n → R has a unique shadow if and only if it

has n-permutable lattice derivatives.



Good guys, bad guys

Let f : 2[n] → R be a cooperative game, and let [n] = G ∪̇B be a
partition of the set of players into good (maximizing) and bad
(minimizing) players. We can regard this as a two-player zero-sum
game.
The good guys can ensure that the outcome will be at least

max
G0⊆G

min
B0⊆B

f (G0 ∪ B0) = f∨∧ (G ) ,

whereas the bad guys can ensure that the outcome will be at most

min
B0⊆B

max
G0⊆G

f (G0 ∪ B0) = f∧∨ (G ) .

These two values coincide (i.e., the game is strictly determined) for
all partitions [n] = G ∪̇B, if and only if f has a unique shadow.



Two extremal cases

Example (skewest functions)

Let f (x1, . . . , xn) = x1 ⊕ · · · ⊕ xn. Then we have

f∨∧ (x) = x1 ∧ · · · ∧ xn,

f∧∨ (x) = x1 ∨ · · · ∨ xn.

Theorem
The shadows are always isotone. Moreover, if f is monotone, then

f∨∧ = f∧∨, and there exist ε1, . . . , εn ∈ {0, 1}, such that

f (x1, . . . , xn) = f∨∧ (x1 ⊕ ε1, . . . , xn ⊕ εn) .



Some statistics for n = 4: unique shadows

◮ 4336 Boolean functions up to equivalence

◮ 384 of them have a uniqe shadow

◮ 168 possibilities for the shadow



Some statistics for n = 4: lower shadows

◮ 4336 Boolean functions up to equivalence

◮ 168 possibilities for the lower shadow



Forbidden sections

Theorem
If a function has a unique shadow, then all of its sections have a

unique shadow as well.

b

b
b

unique shadow

skew

Corollary

A function has a unique shadow if and only if none of the minimal

skew functions appear among its sections.



Minimal skew functions
Let gn : {0, 1}n → {0, 1} be the Boolean function defined by

gn (x1, . . . , xn) = (x1 ∧ · · · ∧ xn) ⊕ (x1 ∨ · · · ∨ xn) ,

and let hn : {0, 1}n → {0, 1} be the function that takes the value
0 on all tuples of the form

(1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1),

and takes the value 1 everywhere else.

Conjecture

A Boolean function f : {0, 1}n → {0, 1} is a minimal skew
function iff f is equivalent to one of the functions
gn, hn, gn ⊕ 1, hn ⊕ 1.
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