Analysis on the two-element set

Tamás Waldhauser joint work with Miguel Couceiro and Jean-Luc Marichal

University of Tartu

17 October 2013

Algebras and clones

Partial derivatives

Local monotonicity

Shadows

Algebras and clones

Partial derivatives

Local monotonicity

Shadows

Algebraic structures

- Analysis = study of functions
- Algebra = study of algebraic structures

Definition

An algebraic structure is a set equipped with some operations:

$$\mathbb{A} = (A; f_1, f_2, \ldots), \text{ where}$$
$$f_i \colon A^{n_i} \to A, \ (a_1, \ldots, a_{n_i}) \mapsto f(a_1, \ldots, a_{n_i}).$$

Examples

- groups: $(G; \cdot)$ or rather $(G; \cdot, -1, 1)$
- rings: $(R; +, \cdot)$
- ▶ lattices: $(L; \land, \lor)$

Lattices

Definition

Let $(L; \leq)$ be a partially ordered set in which every two elements have a greatest common lower bound (gclb) and a least common upper bound (lcub). Let us endow L with these two operations:

$$\begin{array}{ll} \text{meet} & \wedge \colon L^2 \to L, \ (x, y) \mapsto x \wedge y = \operatorname{gclb}(x, y) = \inf \left\{ x, y \right\};\\ \text{join} & \vee \colon L^2 \to L, \ (x, y) \mapsto x \vee y = \operatorname{lcub}(x, y) = \sup \left\{ x, y \right\}. \end{array}$$

The resulting algebraic structure $(L; \land, \lor)$ is called a lattice.

Examples

real numbers natural numbers 2^A (power set of A) subspaces subgroups normal subgroups

$$\begin{aligned} x \wedge y &= \min(x, y) & x \lor y &= \max(x, y) \\ x \wedge y &= \gcd(x, y) & x \lor y &= \operatorname{lcm}(x, y) \\ x \wedge y &= x \cap y & x \lor y &= x \cup y \\ x \wedge y &= x \cap y & x \lor y &= x + y \\ x \wedge y &= x \cap y & x \lor y &= \langle x \cup y \rangle \\ x \wedge y &= x \cap y & x \lor y &= \langle x \cup y \rangle \\ x \wedge y &= x \cap y & x \lor y &= \langle x \cup y \rangle &= xy \end{aligned}$$

Algebras and functions

Let $\mathbb{A} = (A; f_1, f_2, ...)$ be an arbitrary algebra. Composing the basic opearations f_i , we can build expressions like

 $g(x_1, x_2, x_3) := f_1(x_1, f_2(a, f_1(x_2, x_1, b)), f_1(f_2(x_2, x_3), x_3, a)).$

In the case of rings or fields, the resulting functions are called polynomial functions.

Definition

We say that a function $g: A^n \to A$ is a polynomial function of the algebra \mathbb{A} if g can be built from variables and constants via finitely many applications of the basic operations of \mathbb{A} .

Definition

We say that a function $g: A^n \to A$ is a term function of the algebra \mathbb{A} if g can be built from variables via finitely many applications of the basic operations of \mathbb{A} .

Malcev conditions

Fact

Many properties of an algebra depend only on its term functions, and not on the particular basic operations.

Example

Groups have a ternary term function p satisfying the identities

$$p(x, x, y) = y = p(y, x, x),$$

namely $p(x, y, z) = xy^{-1}z$. This is "the" reason why normal subgroups of a group satisfy the following modular law:

$$\forall L, M, N \lhd G : L \leq N \implies L \lor (M \land N) = (L \lor M) \land N.$$

This modular law lies behind several results of group theory (e.g., Schreier, Jordan-Hölder, Krull-Schmidt). These results have been extended to arbitrary algebras that have a term function p satisfying the identities above.

Clones

If $\mathbb A$ is an algebra and $\mathcal C$ is the set of its term functions, then

- \blacktriangleright ${\mathcal C}$ is closed under composition of functions, and
- C contains the projections $p_i^{(n)}: (x_1, \ldots, x_n) \mapsto x_i$.

Such a closed class of functions is called a clone on A.

The clone lattice

The set of all clones on a fixed underlying set is a lattice with the lattice operations

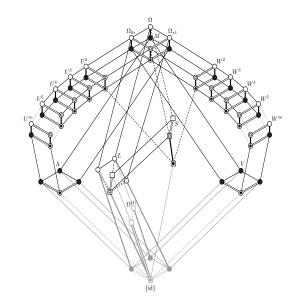
$$egin{aligned} \mathcal{C}_1 \wedge \mathcal{C}_2 &= \mathcal{C}_1 \cap \mathcal{C}_2 \ \mathcal{C}_1 ee \mathcal{C}_2 &= \langle \mathcal{C}_1 \cup \mathcal{C}_2
angle \, , \end{aligned}$$

where $\langle \cdot \rangle$ denotes closure under composition.

One approach to investigate algebras is to study clones and the clone lattices.

A prominent result in this direction is Post's description of all clones over $A = \{0, 1\}$ around 1920 . . .

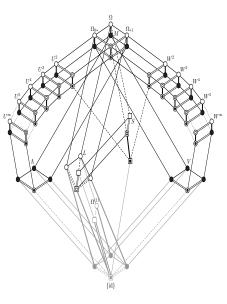
The Post lattice



Some famous functions on $\{0, 1\}$

$x \mid \neg x$	x	у	$x \wedge y$	$x \lor y$	<i>x</i> –	→ y	x	$\leftrightarrow y$	$x \oplus y$
0 1	0	0	0	0	1	L	1		0
1 0	0	1	0	1	1	L		0	1
'	1	0	0	1	()	0		1
	1	1	1	1	1	L			0
			ļ.						
					x	у	Ζ	m(x, y, z)	
Some observations:					0	0	0	0	
					0	0	1	0	
$\neg x = x \oplus 1;$					0	1	0	0	
					0	1	1		1
$x \leftrightarrow y = x \oplus y \oplus 1 = \neg (x \oplus y);$					1	0	0	0	
					1	0	1		1
\lor is the dual of \land :					1	1	0	1	
$x \lor y = \neg (\neg x \land \neg y).$					1	1	1	1	

The Post lattice



• $\Omega =$ all functions on $\{0, 1\}$

•
$$\Omega_{0*} = \{ f : f(\mathbf{0}) = 0 \}$$

•
$$\Omega_{*1} = \{ f : f(\mathbf{1}) = 1 \}$$

$$\blacktriangleright L = \langle \oplus, 0, 1 \rangle = \{ x_1 \oplus \cdots \oplus x_n \oplus c \}$$

•
$$M = \langle \land, \lor \rangle = \{\text{isotone functions}\} = \{f : \mathbf{x} \le \mathbf{y} \Rightarrow f(\mathbf{x}) \le f(\mathbf{y})\}$$

►
$$S = \{ \text{selfdual functions} \} =$$

 $\{f: f(\mathbf{x}) = \neg f(\neg \mathbf{x}) \}$

•
$$S \cap M = \langle m \rangle$$

$$\blacktriangleright W^{\infty} = \langle \rightarrow \rangle$$

- $\blacktriangleright \Lambda = \langle \land, 0, 1 \rangle = \{ x_1 \land \cdots \land x_n, 0, 1 \}$
- $\blacktriangleright V = \langle \lor, 0, 1 \rangle = \{x_1 \lor \cdots \lor x_n, 0, 1\}$
- ${id} = {projections}$

Clones on the three-element set

```
!
  LaTeX Error:
File 'clone_lat_3.eps' not found.
```

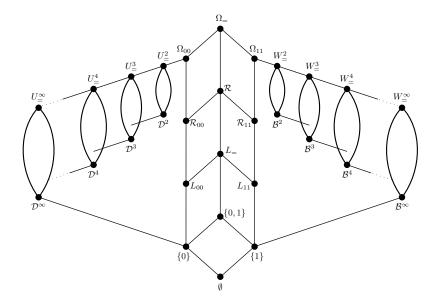
Clones on finite sets

Theorem (Janov, Mučnik, 1959)

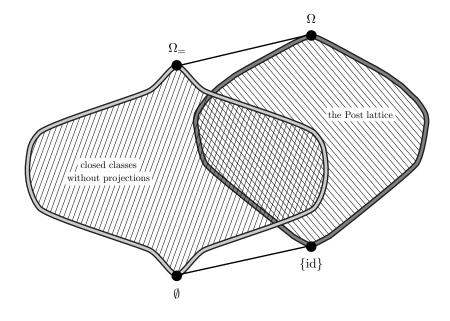
If A is a finite set with at least three elements, then the lattice of clones on A has continuum cardinality.

- ► Jablonskiĭ (1958): maximal clones on {0, 1, 2}
- Rosenberg (1970): maximal clones on finite sets
- Csákány (1983): minimal clones on {0, 1, 2}
- Rosenberg (1983): classification of minimal clones on finite sets (five types, complete description only for types I and IV)
- ▶ Szczepara (1995): minimal clones of type II on {0, 1, 2, 3}
- ▶ W. (2000): minimal clones of type III on {0, 1, 2, 3}
- ▶ Schölzel (2013): minimal clones of type V on {0, 1, 2, 3}

"Clones" without projections on $\{0, 1\}$



The lattice of all closed classes on $\{0, 1\}$



Algebras and clones

Partial derivatives

Local monotonicity

Shadows

Boolean and pseudo-Boolean functions

Definition

- Boolean function:
- pseudo-Boolean function:

$$f: \{0,1\}^n \to \{0,1\} \quad (cf. Post)$$
$$f: \{0,1\}^n \to \mathbb{R}$$

- computer science
- voting theory
- decision making
- cooperative games
- etc.

Partial derivatives

Definition The partial derivative of $f: \{0,1\}^n \to \mathbb{R}$ w.r.t. x_k is the function $\Delta_k f: \{0,1\}^n \to \mathbb{R}$ defined by

$$\Delta_k f(\mathbf{x}) := f(\mathbf{x}_k^1) - f(\mathbf{x}_k^0) = f(x_1, \dots, 1, \dots, x_n) - f(x_1, \dots, 0, \dots, x_n).$$

Observe that $\Delta_k f$ does not depend on x_k .

Example

The partial derivatives of the Boolean sum $f(x_1, x_2) = x_1 \oplus x_2 = x_1 + x_2 - 2x_1x_2$ are

$$\Delta_1 f(x_1, x_2) = f(1, x_2) - f(0, x_2) = 1 - 2x_2,$$

$$\Delta_2 f(x_1, x_2) = f(x_1, 1) - f(x_1, 0) = 1 - 2x_1.$$

Lattice derivatives

Definition

We define the partial lattice derivatives of $f: \{0,1\}^n \to \mathbb{R}$ with respect to x_k by

$$\wedge_k f: \{0,1\}^n \to \mathbb{R}, \ \wedge_k f(\mathbf{x}) = f(\mathbf{x}_k^0) \wedge f(\mathbf{x}_k^1) = \min\left(f(\mathbf{x}_k^0), f(\mathbf{x}_k^1)\right), \\ \vee_k f: \{0,1\}^n \to \mathbb{R}, \ \vee_k f(\mathbf{x}) = f(\mathbf{x}_k^0) \vee f(\mathbf{x}_k^1) = \max\left(f(\mathbf{x}_k^0), f(\mathbf{x}_k^1)\right).$$

Example

The lattice derivatives of the Boolean sum $f(x_1, x_2) = x_1 \oplus x_2$ are

$$\wedge_1 f(x_1, x_2) = f(1, x_2) \wedge f(0, x_2) = (1 \oplus x_2) \wedge x_2 = 0, \\ \vee_1 f(x_1, x_2) = f(1, x_2) \vee f(0, x_2) = (1 \oplus x_2) \vee x_2 = 1.$$

The second-order lattice derivatives are

$$\vee_2 \wedge_1 f(x_1, x_2) = \vee_2 0 = 0,$$

 $\wedge_1 \vee_2 f(x_1, x_2) = \wedge_1 1 = 1.$

Lattice derivatives

Proposition

For any functions $f, g: \{0, 1\}^n \to \mathbb{R}$ and $j \neq k \in [n]$, the following hold:

•
$$\wedge_k \wedge_k f = \wedge_k f$$
 and $\vee_k \vee_k f = \vee_k f$;

• if
$$f \leq g$$
, then $\wedge_k f \leq \wedge_k g$ and $\vee_k f \leq \vee_k g$;

$$\land_j \land_k f = \land_k \land_j f \text{ and } \lor_j \lor_k f = \lor_k \lor_j f;$$

$$\lor \lor_k \wedge_j f \leq \wedge_j \lor_k f.$$

Proof.

Trivial, except for the last one, which follows from the inequality

$$(a \wedge b) \lor (c \wedge d) \leq (a \lor c) \land (b \lor d).$$

Permutable lattice derivatives

Theorem

For any Boolean function f, the following conditions are equivalent:

$$\lor \lor_k \land_j f = \land_j \lor_k f \text{ for all } j \neq k;$$

$$\blacktriangleright |\Delta_k f(\mathbf{x}) - \Delta_k f(\mathbf{y})| \leq \sum_{i \neq k} |x_i - y_i|;$$

•
$$|\Delta_{jk}f| \leq 1$$
 for all $j \neq k$.

Definition

We say that $f: \{0,1\}^n \to \mathbb{R}$ has *p*-permutable lattice derivatives, if

$$O_{k_1}\cdots O_{k_p}f=O_{k_{\pi(1)}}\cdots O_{k_{\pi(p)}}f$$

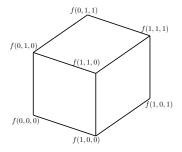
holds for every *p*-element set $\{k_1, \ldots, k_p\} \subseteq [n]$, for all operators $O_{k_i} \in \{ \wedge_{k_i}, \vee_{k_i} \}$ and for every permutation $\pi \in S_p$.

Theorem

If a function has (p + 1)-permutable lattice derivatives, then it has p-permutable lattice derivatives.

Sections

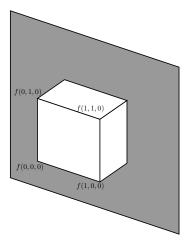
A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f. For example, if $f: \{0,1\}^3 \to \mathbb{R}$, then $g: \{0,1\}^2 \to \mathbb{R}$, $g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.



Sections

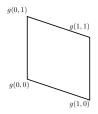
A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f.

For example, if $f: \{0, 1\}^3 \to \mathbb{R}$, then $g: \{0, 1\}^2 \to \mathbb{R}$, $g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.



Sections

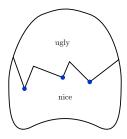
A section of a function f is any function g that can be obtained from f by substituting constants to some of the variables of f. For example, if $f: \{0,1\}^3 \to \mathbb{R}$, then $g: \{0,1\}^2 \to \mathbb{R}$, $g(x_1, x_2) := f(x_1, x_2, 0)$ is a section of f.



Forbidden sections

Theorem

If a function is nice, then all of its sections are also nice, where "nice" can stand for various properties.



Corollary

A function is nice if and only if none of the minimal ugly functions appear among its sections.

Theorem

A Boolean function has 2-permutable lattice derivatives if and only if neither $x_1 \oplus x_2$ nor $x_1 \oplus x_2 \oplus 1$ appears among its sections.

Algebras and clones

Partial derivatives

Local monotonicity

Shadows

Definitions

- *f*, *g*: {0,1}ⁿ → ℝ are equivalent, if they can be obtained from each other by negating some of the variables, i.e.,
 f(x₁,...,x_n) = *g*(x₁ ⊕ ε₁,...,x_n ⊕ ε_n) for suitable ε₁,..., ε_n ∈ {0,1}.
- f is isotone (nondecreasing) in x_k if
 - $f(\mathbf{x}_{k}^{1}) \geq f(\mathbf{x}_{k}^{0})$ for all $\mathbf{x} \in \{0, 1\}^{n}$, or equivalently

•
$$\Delta_k f(\mathbf{x}) \ge 0$$
 for all $\mathbf{x} \in \{0, 1\}^n$.

- f is antitone (nonincreasing) in x_k if
 - $f(\mathbf{x}_{k}^{1}) \leq f(\mathbf{x}_{k}^{0})$ for all $\mathbf{x} \in \{0, 1\}^{n}$, or equivalently
 - $\Delta_k f(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in \{0, 1\}^n$.
- f is monotone in x_k if
 - f is either isotone or antitone in x_k , or equivalently
 - $\Delta_k f(\mathbf{x})$ does not change sign.
- f is isotone (antitone, monotone) if f is isotone (antitone, monotone) in every variable.

Some facts

Fact

- A pseudo-Boolean function is monotone if and only if it is equivalent to an isotone function.
- All unary functions are monotone.
- The only non-monotone binary Boolean functions are

 $x_1 \oplus x_2$ and $x_1 \oplus x_2 \oplus 1$.

► A Boolean function is isotone if and only if x ⊕ 1 does not appear among its sections.

Local monotonicities

Definition

We say that $f: \{0, 1\}^n \to \mathbb{R}$ is *p*-locally monotone, if its partial derivatives do not change sign between two points that are at distance less then *p* from each other.

Formally: for every $k \in [n]$ and every $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$, we have

$$\sum_{i\in[n]\setminus\{k\}}|x_i-y_i|$$

Fact

- ▶ *p*-local monotonicity implies (*p* − 1)-local monotonicity.
- Every function is 1-locally monotone.
- An n-ary function is n-locally monotone if and only if it is monotone.

2-local monotonicity

Theorem

For any Boolean function f, the following conditions are equivalent:

- ► f is 2-locally monotone;
- f has 2-permutable lattice derivatives;
- $\blacktriangleright |\Delta_k f(\mathbf{x}) \Delta_k f(\mathbf{y})| \le \sum_{i \ne k} |x_i y_i|;$
- $|\Delta_{jk}f| \leq 1$ for all $j \neq k$.

Local monotonicities vs. permutable lattice derivatives

Theorem

If a function is p-locally monotone, then it has p-permutable lattice derivatives.

Example

Let $f: \{0,1\}^n \to \{0,1\}$ be the function that takes the value 0 on all tuples of the form

$$(\overbrace{1,...,1}^{m}, 0, ..., 0)$$
 with $0 \le m \le n$,

and takes the value 1 everywhere else. Then f has n-permutable lattice derivatives, but it is only 2-locally monotone.

Theorem

For symmetric functions, p-local monotonicity is equivalent to p-permutability of lattice derivatives.

Algebras and clones

Partial derivatives

Local monotonicity

Shadows

Shadows of pseudo-Boolean functions Let us fix $\mathbf{x} \in \{0, 1\}^n$, and let

$$\mathcal{O}_k = egin{cases} \wedge_k & ext{if } x_k = 0, \ ee_k & ext{if } x_k = 1. \end{cases}$$

Applying these operators to $f: \{0, 1\}^n \to \mathbb{R}$ in the order given by a permutation $\pi \in S_n$, we get a constant function

$$\widehat{f}_{\pi}(\mathbf{x}) := O_{\pi(1)} \cdots O_{\pi(n)} f.$$

Definition

The lower shadow and the upper shadow of $f: \{0, 1\}^n \to \mathbb{R}$ are the functions defined by

$$\begin{split} f_{\vee\wedge} \colon \left\{ 0,1 \right\}^{n} &\to \mathbb{R}, \ \mathbf{x} \mapsto \bigwedge_{\pi \in S_{n}} \widehat{f}_{\pi} \left(\mathbf{x} \right), \\ f_{\wedge\vee} \colon \left\{ 0,1 \right\}^{n} &\to \mathbb{R}, \ \mathbf{x} \mapsto \bigvee_{\pi \in S_{n}} \widehat{f}_{\pi} \left(\mathbf{x} \right). \end{split}$$

Shadows of pseudo-Boolean functions

Proposition

For any $f: \{0,1\}^n \to \mathbb{R}$ and $\mathbf{x} \in \{0,1\}^n$, we have

$$\begin{split} f_{\vee\wedge}\left(\mathbf{x}\right) &= \vee_{g_{1}} \cdots \vee_{g_{r}} \wedge_{b_{1}} \cdots \wedge_{b_{s}} f, \\ f_{\wedge\vee}\left(\mathbf{x}\right) &= \wedge_{b_{1}} \cdots \wedge_{b_{s}} \vee_{g_{1}} \cdots \vee_{g_{r}} f, \end{split}$$

where

•
$$G := \{g_1, \ldots, g_r\} = \{k \in [n] : x_k = 1\},$$

• $B := \{b_1, \ldots, b_s\} = \{k \in [n] : x_k = 0\}.$

Definition

If $f_{\vee\wedge} = f_{\wedge\vee}$, then we say that f has a unique shadow; otherwise we say that f is skew.

Fact

A function $f: \{0,1\}^n \to \mathbb{R}$ has a unique shadow if and only if it has n-permutable lattice derivatives.

Good guys, bad guys

Let $f: 2^{[n]} \to \mathbb{R}$ be a cooperative game, and let $[n] = G \dot{\cup} B$ be a partition of the set of players into good (maximizing) and bad (minimizing) players. We can regard this as a two-player zero-sum game.

The good guys can ensure that the outcome will be at least

$$\max_{G_0 \subseteq G} \min_{B_0 \subseteq B} f(G_0 \cup B_0) = f_{\vee \wedge}(G),$$

whereas the bad guys can ensure that the outcome will be at most

$$\min_{B_0\subseteq B}\max_{G_0\subseteq G}f(G_0\cup B_0)=f_{\wedge\vee}(G).$$

These two values coincide (i.e., the game is strictly determined) for all partitions $[n] = G \dot{\cup} B$, if and only if f has a unique shadow.

Two extremal cases

Example (skewest functions)

Let $f(x_1, \ldots, x_n) = x_1 \oplus \cdots \oplus x_n$. Then we have $f_{\vee \wedge}(\mathbf{x}) = x_1 \wedge \cdots \wedge x_n,$ $f_{\wedge \vee}(\mathbf{x}) = x_1 \vee \cdots \vee x_n.$

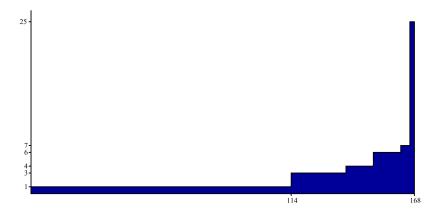
Theorem

The shadows are always isotone. Moreover, if f is monotone, then $f_{\forall\wedge} = f_{\wedge\forall}$, and there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$, such that

$$f(x_1,\ldots,x_n)=f_{\vee\wedge}(x_1\oplus\varepsilon_1,\ldots,x_n\oplus\varepsilon_n).$$

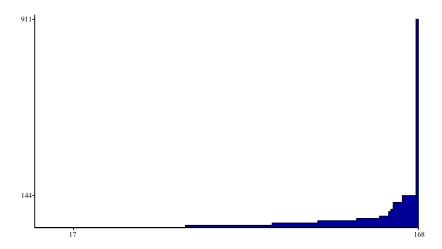
Some statistics for n = 4: unique shadows

- ▶ 4336 Boolean functions up to equivalence
- 384 of them have a uniqe shadow
- 168 possibilities for the shadow



Some statistics for n = 4: lower shadows

- ▶ 4336 Boolean functions up to equivalence
- 168 possibilities for the lower shadow



Forbidden sections

Theorem

If a function has a unique shadow, then all of its sections have a unique shadow as well.

Corollary

A function has a unique shadow if and only if none of the minimal skew functions appear among its sections.

Minimal skew functions

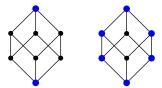
Let $g_n \colon \{0,1\}^n \to \{0,1\}$ be the Boolean function defined by

$$g_n(x_1,\ldots,x_n)=(x_1\wedge\cdots\wedge x_n)\oplus(x_1\vee\cdots\vee x_n)$$

and let h_n : $\{0,1\}^n \to \{0,1\}$ be the function that takes the value 0 on all tuples of the form

 $(1,\ldots,1,0,\ldots,0) \quad \text{and} \quad (0,\ldots,0,1,\ldots,1),$

and takes the value 1 everywhere else.



Conjecture

A Boolean function $f: \{0, 1\}^n \to \{0, 1\}$ is a minimal skew function iff f is equivalent to one of the functions $g_n, h_n, g_n \oplus 1, h_n \oplus 1$.

Read these!

- M. Couceiro, J.-L. Marichal, T. Waldhauser, Locally monotone Boolean and pseudo-Boolean functions, Discrete Appl. Math. 160 (2012), 1651–1660. arXiv:1107.1161.
- T Waldhauser,

On composition-closed classes of Boolean functions J. Mult.-Valued Logic Soft Comput. **19** (2012), 493-518. arXiv:1102.4355.