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Algebraic structures

I Analysis = study of functions

I Algebra = study of algebraic structures

Definition
An algebraic structure is a set equipped with some operations:

A = (A; f1, f2, . . .) , where

fi : Ani → A, (a1, . . . , ani ) 7→ f (a1, . . . , ani ) .

Examples

I groups: (G ; ·) or rather
(
G ; ·,−1 , 1

)
I rings: (R; +, ·)

I lattices: (L;∧,∨)



Lattices

Definition
Let (L;≤) be a partially ordered set in which every two elements
have a greatest common lower bound (gclb) and a least common
upper bound (lcub). Let us endow L with these two operations:

meet ∧ : L2 → L, (x , y) 7→ x ∧ y = gclb (x , y) = inf {x , y} ;

join ∨ : L2 → L, (x , y) 7→ x ∨ y = lcub (x , y) = sup {x , y} .

The resulting algebraic structure (L;∧,∨) is called a lattice.

Examples
real numbers x ∧ y = min (x , y) x ∨ y = max (x , y)

natural numbers x ∧ y = gcd (x , y) x ∨ y = lcm (x , y)

2A (power set of A) x ∧ y = x ∩ y x ∨ y = x ∪ y

subspaces x ∧ y = x ∩ y x ∨ y = x + y

subgroups x ∧ y = x ∩ y x ∨ y = 〈x ∪ y〉
normal subgroups x ∧ y = x ∩ y x ∨ y = 〈x ∪ y〉 = xy



Algebras and functions

Let A = (A; f1, f2, . . .) be an arbitrary algebra.
Composing the basic opearations fi , we can build expressions like

g (x1, x2, x3) := f1 (x1, f2 (a, f1 (x2, x1, b)) , f1 (f2 (x2, x3) , x3, a)) .

In the case of rings or fields, the resulting functions are called
polynomial functions.

Definition
We say that a function g : An → A is a polynomial function of the
algebra A if g can be built from variables and constants via finitely
many applications of the basic operations of A.

Definition
We say that a function g : An → A is a term function of the
algebra A if g can be built from variables via finitely many
applications of the basic operations of A.



Malcev conditions

Fact
Many properties of an algebra depend only on its term functions,
and not on the particular basic operations.

Example

Groups have a ternary term function p satisfying the identities

p (x , x , y) = y = p (y , x , x) ,

namely p (x , y , z) = xy−1z . This is “the” reason why normal
subgroups of a group satisfy the following modular law:

∀L,M,N C G : L ≤ N =⇒ L ∨ (M ∧ N) = (L ∨M) ∧ N.

This modular law lies behind several results of group theory (e.g.,
Schreier, Jordan-Hölder, Krull-Schmidt). These results have been
extended to arbitrary algebras that have a term function p
satisfying the identities above.



Clones

Let A be an algebra and let C is the set of its term functions.
Then C is a class of functions of several variables on A that is
closed under composition of functions.
Such a closed class of functions is called a clone on A.

Holy smokes, I’ve been cloned!



The clone lattice

The set of all clones on a fixed underlying set is a lattice with the
lattice operations

C1 ∧ C2 = C1 ∩ C2
C1 ∨ C2 = 〈C1 ∪ C2〉 ,

where 〈·〉 denotes closure under composition.

One approach to investigate algebras is to study clones and the
clone lattices.

A prominent result in this direction is Post’s description of all
clones over A = {0, 1} around 1920 . . .



The Post lattice



Some famous functions on {0, 1}

x ¬x

0 1
1 0

x y x ∧ y x ∨ y x → y x ↔ y x ⊕ y

0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 0 0 1
1 1 1 1 1 1 0

Some observations:

¬x = x ⊕ 1;

x ↔ y = x ⊕ y ⊕ 1 = ¬ (x ⊕ y);

∨ is the dual of ∧:
x ∨ y = ¬ (¬x ∧ ¬y) .

x y z m (x , y , z)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1



The Post lattice

I Ω = all functions on {0, 1}
I Ω0∗ = {f : f (0) = 0}
I Ω∗1 = {f : f (1) = 1}
I L = 〈⊕, 0, 1〉 = {x1 ⊕ · · · ⊕ xn ⊕ c}
I M = {monotone functions} =
{f : x ≤ y⇒ f (x) ≤ f (y)}

I S = {selfdual functions} =
{f : f (x) = ¬f (¬x)}

I S ∩M = 〈m〉
I W∞ = 〈→〉
I Λ = 〈∧, 0, 1〉 = {x1 ∧ · · · ∧ xn, 0, 1}
I V = 〈∨, 0, 1〉 = {x1 ∨ · · · ∨ xn, 0, 1}
I {id} = {projections}



Clones on the three-element set

! LaTeX Error:

File ‘clone lat 3.eps’ not found.



Clones on finite sets

Theorem (Janov, Mučnik, 1959)

If A is a finite set with at least three elements, then the lattice of
clones on A has continuum cardinality.

I Jablonskĭı (1958): maximal clones on {0, 1, 2}

I Rosenberg (1970): maximal clones on finite sets

I Csákány (1983): minimal clones on {0, 1, 2}

I Rosenberg (1983): classification of minimal clones on finite
sets (five types, complete description only for types I and IV)

I Szczepara (1995): minimal clones of type II on {0, 1, 2, 3}

I W. (2000): minimal clones of type III on {0, 1, 2, 3}

I Schölzel (2013): minimal clones of type V on {0, 1, 2, 3}



Boolean and pseudo-Boolean functions

Definition

I Boolean function: f : {0, 1}n → {0, 1} (cf. Post)

I pseudo-Boolean function: f : {0, 1}n → R

Note that {0, 1}n ≡ power set of [n] = {1, 2, . . . , n}, hence
a pseudo-Boolean function assigns numbers to (sub)sets.

Applications:

I computer science

I voting theory

I decision making

I cooperative games

I etc.



Partial derivatives

Definition
The partial derivative of f : {0, 1}n → R w.r.t. xk is the function
∆k f : {0, 1}n → R defined by

∆k f (x) := f (x1k)− f (x0k)

= f (x1, . . . , 1, . . . , xn)− f (x1, . . . , 0, . . . , xn) .

Observe that ∆k f does not depend on xk .

Example

The partial derivatives of the Boolean sum
f (x1, x2) = x1 ⊕ x2 = x1 + x2 − 2x1x2 are

∆1f (x1, x2) = f (1, x2)− f (0, x2) = 1− 2x2,

∆2f (x1, x2) = f (x1, 1)− f (x1, 0) = 1− 2x1.



Lattice derivatives

Definition
We define the partial lattice derivatives of f : {0, 1}n → R with
respect to xk by

∧k f : {0, 1}n → R, ∧k f (x) = f (x0k) ∧ f (x1k) = min
(
f (x0k), f (x1k)

)
,

∨k f : {0, 1}n → R, ∨k f (x) = f (x0k) ∨ f (x1k) = max
(
f (x0k), f (x1k)

)
.

Example

The lattice derivatives of the Boolean sum f (x1, x2) = x1 ⊕ x2 are

∧1f (x1, x2) = f (1, x2) ∧ f (0, x2) = (1⊕ x2) ∧ x2 = 0,

∨1f (x1, x2) = f (1, x2) ∨ f (0, x2) = (1⊕ x2) ∨ x2 = 1.

The second-order lattice derivatives are

∨2 ∧1 f (x1, x2) = ∨20 = 0,

∧1 ∨2 f (x1, x2) = ∧11 = 1.



Permutable lattice derivatives

Theorem
For any Boolean function f , the following conditions are equivalent:

I ∨k ∧j f = ∧j ∨k f for all j 6= k;

I
∣∣∆k f (x)−∆k f (y)

∣∣ ≤∑i 6=k |xi − yi |;
I |∆jk f | ≤ 1 for all j 6= k .

Definition
We say that f : {0, 1}n → R has p-permutable lattice derivatives, if

Ok1 · · ·Okp f = Okπ(1)
· · ·Okπ(p)

f

holds for every p-element set {k1, . . . , kp} ⊆ [n], for all operators
Oki ∈ {∧ki ,∨ki} and for every permutation π ∈ Sp.

Theorem
If a function has (p + 1)-permutable lattice derivatives, then it has
p-permutable lattice derivatives.



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(1, 1, 0)

f(1, 0, 1)

f(1, 1, 1)

f(0, 1, 1)



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

f(0, 0, 0)

f(1, 0, 0)

f(0, 1, 0)

f(1, 1, 0)



Sections
A section of a function f is any function g that can be obtained
from f by substituting constants to some of the variables of f .

For example, if f : {0, 1}3 → R, then
g : {0, 1}2 → R, g (x1, x2) := f (x1, x2, 0) is a section of f .

g(0, 0)

g(1, 0)

g(0, 1)

g(1, 1)



Forbidden sections

Theorem
If a function is nice, then all of its sections are also nice, where
“nice” can stand for various properties.

Corollary

A function is nice if and only if none of the minimal ugly functions
appear among its sections.



Nice = monotone

Theorem
The only minimal ugly Boolean function is x ⊕ 1.

Corollary

A Boolean function is monotone if and only if x ⊕ 1 does not
appear among its sections.



Nice = 2-permutable lattice derivatives

Theorem
There are two minimal ugly Boolean functions, namely x1 ⊕ x2 and
x1 ⊕ x2 ⊕ 1.

Corollary

A Boolean function has 2-permutable lattice derivatives if and only
if neither x1 ⊕ x2 nor x1 ⊕ x2 ⊕ 1 appears among its sections.



Nice = permutable lattice derivatives
Let gn : {0, 1}n → {0, 1} be the Boolean function defined by

gn (x1, . . . , xn) = (x1 ∧ · · · ∧ xn)⊕ (x1 ∨ · · · ∨ xn) ,

and let hn : {0, 1}n → {0, 1} be the function that takes the value 0
on all tuples of the form

(1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1),

and takes the value 1 everywhere else.

Conjecture

Up to a certain kind of equivalence, the only minimal ugly Boolean
functions are gn and hn (n = 1, 2, . . .).



Tovább is van, mondjam még?

MONDJAD! NE MONDJAD!



There is more, shall I go on?

YES NO



Shadows of pseudo-Boolean functions

Let f : {0, 1}n → R be a function with permutable lattice
derivatives, and let us choose an operator Ok ∈ {∧k ,∨k} for each
k ∈ [n]. This choice of operators can be encoded by a tuple
x ∈ {0, 1}n as follows:

xk :=

{
0 if Ok = ∧k ,
1 if Ok = ∨k .

Applying these operators to a function f : {0, 1}n → R, we get a
constant function, which we denote by

f̂ (x) := O1 · · ·Onf .

The resulting function f̂ : {0, 1}n → R is called the shadow of f .
If the function f does not have permutable lattice derivatives,
then the order of the operators does matter, hence f̂ (x) cannot be
defined.



Example

Let us compute the shadow of f (x1, x2) = x1 → x2.

f̂ (0, 0) = ∧1 ∧2 f = 0

f̂ (1, 0) = ∨1 ∧2 f = 1

f̂ (0, 1) = ∧1 ∨2 f = 1

f̂ (1, 1) = ∨1 ∨2 f = 1

Thus, f̂ (x1, x2) = x1 ∨ x2.

Example

Let us compute the shadow of g (x1, x2) = x1 ∨ x2.

ĝ (0, 0) = ∧1 ∧2 g = 0

ĝ (1, 0) = ∨1 ∧2 g = 1

ĝ (0, 1) = ∧1 ∨2 g = 1

ĝ (1, 1) = ∨1 ∨2 g = 1

Thus, ĝ (x1, x2) = x1 ∨ x2.



Which functions are shadows?

Theorem

I The shadows are always monotone.

I Every monotone function appears as a shadow:
if f is monotone, then f̂ = f .

I If a function f can be made monotone by negating some of its
variables, then f̂ is this monotone function. Formally, if there
exist ε1, . . . , εn ∈ {0, 1} such that

g (x1, . . . , xn) := f (x1 ⊕ ε1, . . . , xn ⊕ εn)

is a monotone function, then f̂ = g.

Example

The function f (x1, x2) = x1 → x2 can be made monotone by
negating its first variable:

g (x1, x2) := f (x1 ⊕ 1, x2 ⊕ 0) = f (¬x1, x2) = ¬x1 → x2 = x1 ∨ x2.

Hence, f̂ (x1, x2) = x1 ∨ x2.



Some statistics for n = 4

I 4336 Boolean functions up to equivalence

I 384 of them have permutable lattice derivatives

I 168 possibilities for the shadow



Good guys, bad guys
Let f : 2[n] → R be a cooperative game, and let [n] = G ∪̇B be a
partition of the set of players into good (maximizing) and bad
(minimizing) players. We can regard this as a two-player zero-sum
game.
The good guys can ensure that the outcome will be at least

max
G0⊆G

min
B0⊆B

f (G0 ∪ B0)

whereas the bad guys can ensure that the outcome will be at most

min
B0⊆B

max
G0⊆G

f (G0 ∪ B0) .

These two values coincide for all partitions [n] = G ∪̇B, if and only
if f has permutable lattice derivatives. In this case the shadow
gives the above maximin (=minimax) value:

f̂ (G ) = max
G0⊆G

min
B0⊆B

f (G0 ∪ B0) = min
B0⊆B

max
G0⊆G

f (G0 ∪ B0) .



Enjoy your night in Szeged!
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Read this!
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