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MULTIPLICATION OF MATRICES OVER LATTICES
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Dedicated to the memory of Ivo Rosenberg.

Abstract. We study the multiplication operation of square matrices over lat-
tices. If the underlying lattice is distributive, then matrices form a semigroup;

we investigate idempotent and nilpotent elements and the maximal subgroups of
this matrix semigroup. We prove that matrix multiplication over nondistributive

lattices is antiassociative, and we determine the invertible matrices in the case

when the least or the greatest element of the lattice is irreducible.

1. Introduction

Multiplication of matrices over a lattice L can be defined in the same way as for
matrices over rings, letting the join operation play the role of addition and the meet
operation play the role of multiplication. For notational convenience, we will actually
write the lattice operations as addition and multiplication. Thus, throughout the
paper, L = (L; +, ·) denotes a lattice, and Mn(L) stands for the set of all n × n
matrices over L. To exclude trivial cases, we will always assume without further
mention that L has at least two elements and n ≥ 2. If L has a least and a greatest
element (these will be denoted by 0 and 1), then we can define the identity matrix
I ∈Mn(L) with ones on the diagonal and zeros everywhere off the diagonal, and it is
easy to see that I is indeed the identity element of Mn(L).

In Section 2 we focus on the semigroup Mn(2) of n × n matrices over the two-
element lattice 2 = {0, 1}. We can regard a matrix A ∈Mn(2) as the characteristic
function of a set α ⊆ X2 where X := {1, . . . , n}, thus matrices over 2 correspond
to binary relations, and Mn(2) is isomorphic to the semigroup of binary relations on
the set X. We recall various results about this semigroup in Section 2, namely, the
description of idempotent elements, Green’s relations and maximal subgroups. We
also present a visual proof of B. Schein’s characterization of idempotents of Mn(2)
[20] by interpreting the graph corresponding to a matrix as a transportation network.

Sections 3 and 4 deal with matrices over bounded distributive lattices; these can be
viewed as multiple-valued analogues of binary relations. Boundedness is not a serious
restriction, since most of the time we shall work in a finitely generated sublattice
(for instance, in the sublattice generated by the n2 entries of an n × n matrix), and
finitely generated distributive lattices are finite. A bounded distributive lattice is a
semiring, and matrices over any semiring form a semiring [7]. In particular, Mn(L)
is a semigroup under multiplication for every distributive lattice L; see [1] for an
overview of various properties of these semigroups.

Generalizing results of Section 2 to this multiple-valued setting, we describe idem-
potents and maximal subgroups in some special cases; the full description of maximal
subgroups constitutes a topic for further research. We also determine nilpotent matri-
ces over certain distributive lattices, including chains, which are the most important
cases from the viewpoint of applications, and then we discuss connections to a problem
related to fuzzy relations [9].

Matrix multiplication over arbitrary lattices is not always associative, and if it is
not, then we may ask how far it is from being associative. There are several ways to
measure associativity; one of them is the associative spectrum introduced in [5]. The
number of possibilities of inserting parentheses (or brackets) into a product x1 · . . . ·xn
is given by the Catalan number Cn−1 = 1

n

(
2n−2
n−1

)
. If multiplication is associative,
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then all these different bracketings give the same result, but if the multiplication is
not associative, then some of the bracketings may induce different n-variable term
functions. The associative spectrum of a binary operation is the sequence {sn}∞n=1

that counts the number of different term functions induced by bracketings of the
product x1 · . . . · xn. Clearly s1 = s2 = 1, and 1 ≤ sn ≤ Cn−1 holds for all natural
numbers n, and we can say that the faster the spectrum grows, the less associative the
multiplication is. In particular, if the associative spectrum is the sequence of Catalan
numbers, then the multiplication is said to be antiassociative. Of course, there are
plenty of operations that fall between the two extreme cases of being associative or
antiassociative; examples of associative spectra of various growth rates can be found
in [5, 13].

We shall see in Section 5 that there is a dichotomy for matrix multiplication over
lattices: if L is distributive, then Mn(L) is a semigroup, while if L is not distribu-
tive, then the multiplication of Mn(L) is antiassociative. Nonassociativity has some
unfortunate consequences; for example, powers of matrices and inverse matrices are
not always well defined. On the other hand, we prove that if L is bounded and 0
is meet-irreducible or 1 is join-irreducible, then inverses are unique (even if L is not
distributive), and we describe explicitly the invertible matrices in this case, showing
that they form a group isomorphic to the symmetric group Sn. (Recall that an ele-
ment a ∈ L \ {1} is said to be meet-irreducible if a = b · c implies that a = b or a = c;
join-irreducibility can be defined dually.)

Some personal remarks from the second author about Ivo Rosenberg: As a graduate
student working in clone theory under the supervision of Béla Csákány, I certainly
learned the name of Ivo Rosenberg early in my studies. His theorems on maximal and
minimal clones are cornerstones of the theory of clones, and I always imagined the
discoverer of these theorems as an unapproachable “giant”. It is no wonder that I was
thrilled to meet him at the AAA58 conference in Vienna in 1999. Unfortunately, it was
our first and last personal encounter. We spoke only a few words, and he apologized
very kindly for not being able to attend my talk. I was a bit disappointed, but much
more astonished for receiving such friendly apologies from this giant of clone theory
as a first-year doctoral student. My talk was about measuring associativity, and our
joint paper with Béla Csákány about associative spectra appeared in this journal 20
years ago, in the special issue dedicated to the 65th birthday of Ivo Rosenberg. Now
this is a special issue for a much more sad occasion, and I can only hope that this
modest contribution is worthy to commemorate Ivo Rosenberg.

2. Preliminaries

To each n× n matrix A over the two-element lattice 2 = {0, 1}, we can associate a
binary relation α defined on the set X := {1, . . . , n}, by letting (i, j) ∈ α ⇐⇒ aij = 1.
Matrix multiplication translates to relational product in this interpretation: if the
relations corresponding to A,B ∈Mn(2) are α and β, then AB describes the relation

α ◦ β = {(x, y) ∈ X ×X : ∃z ∈ X, (x, z) ∈ α and (z, y) ∈ β}.

Therefore, Mn(2) is isomorphic to the semigroup of binary relations on the n-element
set. If α ⊆ β holds, then we have aij ≤ bij (i, j = 1, . . . , n) for the entries of the
corresponding matrices A,B ∈Mn(2); in this case we write A ≤ B.

Remark 2.1. We can regard the relation α ⊆ X2 corresponding to A ∈ Mn(2) as
the edge set of a directed graph with vertex set X, having A as its adjacency matrix.
We can think of this graph as a transportation network: the vertices are sites (cities,
store-houses, etc.), and the edges are (possibly one-way) roads, on which trucks can
transport goods between the sites. If aii = 0 (i.e., (i, i) /∈ α), then trucks are not
allowed to stop at site i, while if aii = 1 (i.e., there is a loop (i, i) ∈ α), then there
is a parking lot at site i, where trucks can wait as long as they wish. Powers of A
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account for routes1 in our graph: if A` = (wij)
n
i,j=1, then wij = 1 if and only if there

is a directed route of length ` from i to j.

The semigroup of binary relations plays a prominent role in semigroup theory; we
recall a few of the plethora of results about this semigroup in this section.

2.1. Idempotent matrices. The characterization of idempotent elements of Mn(2)
was given by B. Schein [20] in terms of so-called pseudo-orders. A reflexive transitive
relation is called a quasi-order. The symmetric part α ∩ α−1 of a quasi-order α is
an equivalence relation, and α induces a natural partial order on the blocks of this
equivalence relation. We usually use the symbol . for a quasi-order on the set X;
we denote the corresponding equivalence relation by ∼, and the partially ordered set
(poset, for short) corresponding to the quasi-order . is (X/∼;≤). We say that an
element y ∈ X covers x ∈ X (notation: x ≺ y), if x/∼ is strictly less than y/∼, and
there is no third ∼-block between them:

x ≺ y ⇐⇒ x . y, x � y and ∀z ∈ X : x . z . y =⇒ x ∼ z or z ∼ y.
A pseudo-order relation is obtained from a quasi-order by removing some of the

loops (i.e., edges of the form (x, x)) in such a way, that loops can be removed only
from singleton ∼-blocks, and it is not allowed to remove loops from both members of
a covering pair.

Definition 2.2. Let α ⊆ X2 be a binary relation, and let Qα denote the set of
vertices with a loop: Qα = {x ∈ X : (x, x) ∈ α}. We say that α is a pseudo-order if
the reflexive closure α∪{(x, x) : x ∈ X \Qα} is a quasi-order (as above, we denote this
quasi-order by . and we use the symbols ∼ and ≺ for the corresponding equivalence
relation and cover relation), and Qα satisfies the following two conditions:

(a) ∀x ∈ X \Qα : x/∼= {x},
(b) ∀x, y ∈ X : x ≺ y =⇒ x ∈ Qα or y ∈ Qα.

Remark 2.3. Let us note that if α is a pseudo-order, then α ∩ α−1 is the restriction
of ∼ to Qα, i.e., α∩α−1 = ∼∩Q2

α. Indeed, since α ⊆., we have α∩α−1 ⊆. ∩ &=∼.
Furthermore, if (x, y) ∈ α ∩ α−1 and x 6= y, then x and y belong to the same non-
singleton ∼-block, hence condition (a) implies x, y ∈ Qα, while if x = y, then it is
obvious from the definition of Qα that x ∈ Qα. Conversely, if x ∼ y and x, y ∈ Qα,
then (x, y), (y, x) ∈ α, since . and α differ only on X \Qα.

Remark 2.4. We can interpret pseudo-orders in terms of the transportation network
outlined in Remark 2.1 as follows. A relation α ⊆ X2 is a pseudo-order if and only if
whenever you drive from site x to site y,

(a′) you can choose a direct route (formally: if there is a route from x to y, then
(x, y) is an edge), and

(b′) it is also possible to plan your route so that you will have a chance to take
a rest in a parking lot on the way (formally: if there is a route from x to y,
then there is a route that includes a vertex with a loop).

Indeed, condition (a) in Definition 2.2 ensures that the removal of loops from the
underlying quasi-order . does not ruin transitivity, thus (a′) holds for every pseudo-
order. (Observe that (a′) is actually equivalent to transitivity.) To verify (b′), choose
a longest possible route that does not pass through any ∼-block more than once; then
each edge in this route is a covering pair, and at least one member of a covering pair
has a loop (if any of them belongs to a non-singleton ∼-block, then condition (a),
otherwise condition (b) provides a loop).

Conversely, let us assume that (a′) and (b′) hold for α, and let us denote the
reflexive closure of α by .. Condition (a′) implies that α is transitive, hence . is also
transitive, thus it is a quasi-order. Transitivity of α also implies that (a) holds. To

1We use the term route for a sequence of connecting edges (with possible repetitions). The usual

terminology would be walk, but we would like to avoid the uncanny image of a walking truck. . .
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verify (b), consider a covering pair x ≺ y. If the ∼-block of x or y is not a singleton,
then condition (a) shows that there is a loop at x or y. Otherwise, by the definition
of covering, no route from x to y passes through any vertex other than x and y.
Therefore, the parking lot guaranteed by (b′) must be at x or at y, and this proves
(b).

We conclude this subsection by stating the characterization of idempotent binary
relations given by B. Schein [20]. For the reader’s convenience, we provide a proof for
this important result using the description of pseudo-orders given in Remark 2.4.

Theorem 2.5. [20] A matrix over 2 is idempotent if and only if the corresponding
binary relation is a pseudo-order.

Proof. Let α be the binary relation on X corresponding to the matrix A ∈ Mn(2).
As a preliminary observation, let us note that α is transitive if and only if α ◦ α ⊆ α,
which in turn is equivalent to A2 ≤ A.

Assume first that A is idempotent. Then A2 ≤ A, so α is transitive, hence condition
(a′) of Remark 2.4 holds. Idempotence of A implies A = A2 = A3 = . . . , thus
whenever there is a route from x to y, there are arbitrarily long routes from x to y.
A long enough route must include a directed cycle, and every vertex of such a cycle
has a loop, by transitivity. This proves (b′), therefore α is a pseudo-order.

Now let us suppose that α is a pseudo-order. Then α is transitive by condition (a′),
hence A2 ≤ A. Multiplying this inequality by Am−1, we get Am+1 ≤ Am for every
positive integer m, thus the powers of A form a decreasing sequence: A ≥ A2 ≥ A3 ≥
· · · . Since Mn(2) is a finite set, this sequence cannot be strictly decreasing, i.e., there
is a positive integer ` such that

(1) A ≥ A2 ≥ A3 ≥ · · · ≥ A` = A`+1 = A`+2 = · · · = lim
m→∞

Am.

Here the limit is understood in the discrete topology on Mn(2), but this is not very
important, as an ultimately constant sequence converges in every topology. For every
edge (x, y) ∈ α, condition (b′) provides a route from x to y with a parking lot on the
way. We can park there as long as we wish, before continuing our trip to y, thus there
are arbitrarily long routes from x to y. This means that A ≤ limm→∞Am, which
together with the inequalities of (1) implies that A = A2 = A3 = . . . , hence A is
idempotent. �

2.2. Green’s relations. Green’s equivalence relations L, R, H and D can be defined
in any semigroup, but we write out the definition only for the semigroup Mn(L),
where L is a distributive lattice. Two elements A,B ∈ Mn(L) are in L relation if
they generate the same principal left ideal, that is, if and only if there exist C,D ∈
Mn(L) such that CA = B and DB = A. Similarly, the relation R can be defined by
(A,B) ∈ R if and only if there exist C,D ∈Mn(L) such that AC = B and BD = A.
The relation L∩R is denoted by H, and the join L∨R is denoted by D. It is known
that L and R commute in every semigroup, thus we have L∨R = L ◦R. For further
background on semigroup theory, and in particular on Green’s relations, see [8].

Green’s relations in Mn(2) can be described in terms of in- and out-neighborhoods
in the graphs corresponding to matrices over 2. We introduce the following notation
for any relation α ⊆ X2:

• α+(x) = {z | (x, z) ∈ α} ⊆ X is the out-neighborhood of x ∈ X,

• α+(Y ) = {z | (y, z) ∈ α for some y ∈ Y } =
⋃
y∈Y α

+(y) is the out-neighbor-
hood of a set Y ⊆ X, and

• α+ = {α+(Y ) | Y ⊆ X} is the set of all out-neighborhoods.

The in-neighborhoods α−(x) and α−(Y ) and the set α− of all in-neighborhoods are
defined dually.

Note that α+ and α− form lattices under inclusion. The bottom element of both
lattices is α+(∅) = α−(∅) = ∅, but the top elements of the two lattices might be
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different. The join operation in α+ and in α− is just the union, i.e., α+(Y )∨α+(Z) =
α+(Y )∪α+(Z) = α+(Y ∪Z). However the meet operation need not be the intersection.

The following description of Green’s relations on Mn(2) follows from results ob-
tained by K. A. Zaretskii in [26] (see also [18]).

Proposition 2.6. [18, 26] Let A,B ∈Mn(2) and let α, β ⊆ X2 be the corresponding
binary relations. Then the following hold:

(1) (A,B) ∈ L if and only if α+ = β+;

(2) (A,B) ∈ R if and only if α− = β−;

(3) (A,B) ∈ H if and only if α+ = β+ and α− = β−;

(4) (A,B) ∈ D if and only if the lattices α+ and β+ are isomorphic.

Remark 2.7. Let A ∈ Mn(2) be an idempotent matrix and let α ⊆ X2 be the
corresponding pseudo-order relation. Let T be a complete system of representatives
of the blocks of the equivalence relation α ∩ α−1 = ∼ ∩ Q2

α (cf. Remark 2.3). Then
the relation α̃ := α ∩ T 2 is a partial order on the set T ⊆ X (the elements of X \ T
are isolated points in α̃). Relations of this form, i.e., partial orders on subsets of X,
are called reduced idempotents. This notion was introduced by J. S. Montague and
R. J. Plemmons, and it was proved in [15] that if a D-class contains an idempotent
(these are called regular D-classes), then it also contains a reduced idempotent. The
structure of the poset (T ; α̃) is independent of the choice of T ; let us denote (the
isomorphism type of) this poset by T (α).

2.3. Maximal subgroups. According to Green’s Theorem, if E is an idempotent
matrix in Mn(L), then there is a maximal subgroup “around” E, having E as its
identity element, and this maximal subgroup is nothing else but the H-class HE of E.
Moreover, if two idempotents E,F belong to the same D-class, then the groups HE

and HF are isomorphic. In this subsection we recall the description of these maximal
subgroups of Mn(2) [4, 15, 17, 18, 19, 26].

For any permutation π ∈ Sn, we define the permutation matrix corresponding to π
as the matrix Pπ = (pij)

n
i,j=1 ∈Mn(L) given by

pij =

{
1, if j = π(i);

0, otherwise.

Remark 2.8. Just as over commutative rings, the matrix PπA is obtained from A by
permuting its rows according to the permutation π; similarly, APπ is obtained from A
by permuting its columns according to the permutation π−1. In particular, we have
PπPσ = Pπσ for all π, σ ∈ Sn, and the (unique) inverse of Pπ is Pπ−1 .

Theorem 2.9. [15, 18] Let A ∈Mn(2) be an idempotent matrix with the correspond-
ing pseudo-order α ⊆ X2. Assume that A is a reduced idempotent, i.e., α is a partial
order on the set T := Qα ⊆ X. Then a matrix B ∈Mn(2) belongs to the H-class of
A if and only if it can be written as B = PfA, where f is a permutation on X such
that f(T ) = T and the restriction of f to T is an automorphism of the poset (T ;α).

Theorem 2.9 immediately yields the following corollary (see also [4, 17, 19]).

Corollary 2.10. [15] Let A ∈Mn(2) be an idempotent matrix with the corresponding
pseudo-order α ⊆ X2. Then the H-class containing A is isomorphic to the automor-
phism group of the poset T (α)

3. Idempotent and nilpotent matrices

Throughout this section L = (L; +, ·) is assumed to be a bounded distributive
lattice with least element 0 and greatest element 1. By Birkhoff’s representation
theorem, L can be embedded into the lattice P(Ω) of subsets of a set Ω in such a way
that 0 is mapped to ∅ and 1 is mapped to Ω. Identifying L with its embedded image,
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we can actually assume that L is a sublattice of P(Ω) with 0 = ∅ and 1 = Ω. This
allows us to define a homomorphism Γω from L to 2 = {0, 1} for each ω ∈ Ω by

Γω(a) =

{
1, if ω ∈ a;

0, if ω /∈ a.

We call Γω(a) the cut of the element a (at ω) [28] (also called ωth constituent [21] and
section or zero pattern [10]). Since a ⊆ Ω is exactly the set of those elements ω ∈ Ω
for which Γω(a) = 1, every element of L is uniquely determined by its cuts. Extending
Γω to matrices entrywise, we get cut homomorphisms Γω : Mn(L) → Mn(2) for all
ω ∈ Ω, and matrices are also uniquely determined by their cuts:

(2) ∀A,B ∈Mn(L) : A = B ⇐⇒ [∀ω ∈ Ω: Γω(A) = Γω(B) ].

Remark 3.1. Let us give an interpretation of matrices over L in the spirit of Re-
mark 2.1. As before, we regard the elements of X = {1, . . . , n} as sites numbered
from 1 to n, and we think of the elements of Ω as different types of vehicles that can
travel between these sites. The entry aij ⊆ Ω of the matrix A ∈ Mn(L) determines
which vehicles can (or are allowed to) pass through the road from i to j (the diagonal
entry aii is the set of vehicles that can park at site i). In other words, we have a
complete directed graph on n vertices, and each edge (i, j) has a “capacity” aij ⊆ Ω.
(In reality, the graph is rarely complete; we can take non-existing connections into
account by assigning capacity ∅.) Given a route i = v0 → v1 → · · · → v` = j of
length `, the set of vehicles that can travel all the way along this route from i to j
is the intersection (product) of the capacities of the edges involved in the route, i.e.,
aiv1 · . . . · av`−1j . We will call this element of L the capacity of the route. The set of
vehicles that can go from i to j on some route of length ` can be computed as the join
(sum) of the capacities of the routes of length ` from i to j, which is nothing else but
the (i, j)-entry of A`.

In the following we study idempotent and nilpotent elements of the semigroup
Mn(L). For a review of results about powers of matrices over distributive lattices, we
refer the reader to the survey paper [1] and to the references therein.

3.1. Idempotent matrices. From (2) and from the fact that each Γω is a homo-
morphism, it follows that a matrix is idempotent if and only if all of its cuts are
idempotent [2, 3, 10, 21]:

A = AA ⇐⇒ ∀ω ∈ Ω: Γω(A) = Γω(AA)

⇐⇒ ∀ω ∈ Ω: Γω(A) = Γω(A)Γω(A).

Combining this observation with Theorem 2.5, we get the following description of
idempotent matrices over distributive lattices.

Proposition 3.2. A matrix A ∈ Mn(L) over a distributive lattice L ≤ P(Ω) is
idempotent if and only if the binary relation αω ⊆ X2 corresponding to the cut matrix
Γω(A) is a pseudo-order for each ω ∈ Ω.

Although Proposition 3.2 certainly characterizes idempotent matrices, this char-
acterization does not give a complete picture about the idempotent elements of the
semigroup Mn(L), since it does not tell us which systems of pseudo-orders αω (ω ∈ Ω)
can arise as cuts of idempotent matrices. In full generality perhaps one cannot expect
a feasible solution for this problem, but for chains we can give a simple criterion. We
represent the m-element chain in the power set of Ω = {1, . . . ,m− 1} as

(3) ∅ ⊂ {1} ⊂ {1, 2} ⊂ · · · ⊂ {1, 2, . . . ,m− 1},
so that the cut homomorphisms are Γ1, . . . ,Γm−1.

Theorem 3.3. If L is the m-element chain, then a matrix A ∈ Mn(L) is idempo-
tent if and only if the binary relations corresponding to the cut matrices Γk(A) (k =
1, . . . ,m− 1) form a system of nested pseudo-orders α1 ⊇ · · · ⊇ αm−1.
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Proof. Since we represent L by the chain of sets (3), we have the implication k ∈
a =⇒ k − 1 ∈ a for all a ∈ L and k ∈ {2, . . . ,m − 1}. This implies the inequalities
Γ1(A) ≥ · · · ≥ Γm−1(A) for every matrix A ∈Mn(L) (idempotent or not), and these
inequalities translate to the containments α1 ⊇ · · · ⊇ αm−1 of the corresponding
relations. This together with Proposition 3.2 proves the necessity of the condition
formulated in the proposition.

For sufficiency, assume that we have a nested sequence of pseudo-orders α1 ⊇ · · · ⊇
αm−1 on X. Define the matrix A = (aij)

n
i,j=1 ∈Mn(L) by

aij =
{
k ∈ {1, . . . ,m− 1} : (i, j) ∈ αk

}
.

Observe that the assumed containments of the relations αk guarantee that aij is an
element of L. Thus A is indeed a matrix over L, and the binary relations corresponding
to the cuts of A are exactly the relations α1, . . . , αm−1. Since these are all pseudo-
orders, each cut of A is idempotent by Theorem 2.5, and then idempotence of A
follows from Proposition 3.2. �

3.2. Nilpotent matrices. First we recall a simple criterion for the nilpotency of a
matrix in terms of the underlying directed graph, and then we use it to explicitly
describe nilpotent matrices over bounded distributive lattices with a meet-irreducible
bottom element.

Lemma 3.4. [6, 24, 27] A matrix A ∈ Mn(L) over a bounded distributive lattice L
is nilpotent if and only if every cycle in the directed graph corresponding to A has
capacity 0. Moreover A is nilpotent if and only if An = 0.

Remark 3.5. Several other characterizations have been given for nilpotent matrices;
see, e.g., [11, 16, 23, 25]. It is obvious that the determinant of a nilpotent matrix
is zero (the determinant of a lattice matrix can be defined in a similarly way as for
matrices over rings). In [16] it is claimed that the converse is also true. However, as
the following counterexample shows, this is not the case. Let us consider the matrix
A ∈M2(L) over an arbitrary bounded distributive lattice L:

A =

(
1 0
0 0

)
.

This matrix has zero determinant, but it is not nilpotent; in fact, it is easy to see that
A is idempotent, hence An = A for all natural numbers n.

By a strictly upper triangular matrix we mean a matrix A ∈Mn(L) that has zeros
below its main diagonal as well as on the main diagonal, i.e., aij 6= 0 =⇒ i < j.

Theorem 3.6. Let L be a bounded distributive lattice in which 0 is meet-irreducible.
Then a matrix A ∈ Mn(L) is nilpotent if and only if it is conjugate to a strictly
upper triangular matrix, i.e., there exists a strictly upper triangular matrix U and an
invertible matrix C such that A = C−1UC.

Proof. If U is a strictly upper triangular matrix, then we have U ≤ V , where V is the
matrix having ones above the diagonal and zeros on and below the diagonal:

(4) V =


0 1 . . . 1 1
0 0 . . . 1 1
...

...
. . .

...
...

0 0 . . . 0 1
0 0 . . . 0 0

 .

In the directed graph corresponding to V , we have an edge from i to j if and only if
i < j. This means that it is impossible to make a route of length n, hence V n = 0.
Since U ≤ V , it follows that Un = 0, which implies that (C−1UC)n = 0 for every
invertible matrix C.

Conversely, let us assume that A ∈ Mn(L) is a nilpotent matrix. Consider the
relation α ⊆ X2 defined by α := {(i, j) : aij 6= 0}. (If L is finite, then meet-
irreducibility of 0 implies that 0 has a unique upper cover. If ω is any element of
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Figure 1. The lattice (2× 2)⊕ 1

the upper cover of 0, then α is the relation corresponding to the matrix Γω(A), i.e.,
(i, j) ∈ α iff trucks of type ω are allowed to travel on the edge from i to j.) By
Lemma 3.4, every cycle in the directed graph corresponding to A has zero capacity,
hence at least one edge of each cycle has capacity 0, as 0 is meet-irreducible. This
means that α contains no directed cycles. Therefore, the reflexive transitive closure
of α is a partial order on X, and this partial order can be extended to a linear order
v. Since v is an extension of α, we have aij 6= 0 =⇒ i @ j for all i, j ∈ X.

Let π be the permutation of X given by π(1) @ · · · @ π(n), and let C = Pπ. We
claim that the matrix U := CAC−1 is strictly upper triangular. By the definition of
the matrix C, we have uij = aπ(i)π(j), hence

uij 6= 0 =⇒ aπ(i)π(j) 6= 0 =⇒ π(i) @ π(j) =⇒ i < j.

(The last implication is justified by the definition of π.) Thus U is indeed strictly
upper triangular, and this completes the proof, as A = C−1UC. �

Remark 3.7. We have seen in Lemma 3.4 that A is nilpotent if and only if An = 0.
This cannot be sharpened: the matrix V given in (4) is nilpotent, but V n−1 6= 0.

Example 3.8. Theorem 3.6 does not necessarily remain true without the assumption

on the irreducibility of 0. Consider the matrix A =

(
0 a
b 0

)
over the lattice (2×2)⊕1

shown in Figure 1. It is easy to verify that A2 = 0, but A is not a conjugate of a
strictly upper triangular matrix. Indeed, we will show later in Theorem 5.7 that if 1
is join-irreducible in a lattice L, then the only invertible matrices in Mn(L) are the
permutation matrices. This is true in particular for the lattice L = (2×2)⊕1, hence
the only conjugates of A are itself and the matrix

P−1
(12) ·A · P(12) =

(
0 1
1 0

)(
0 a
b 0

)(
0 1
1 0

)
=

(
0 b
a 0

)
,

and neither of them is upper triangular.

3.3. Fixed point iteration. Our results on nilpotent matrices have some implica-
tions on a problem about fuzzy relations raised in [9]. The interpretation of a matrix
A ∈Mn(L) as a directed graph with a capacity assigned to each edge (see Remark 3.1),
is almost the same as a fuzzy relation; we only need to regard the entries aij as mem-
bership values instead of capacities. The inequality xA ≤ x and the equation xA = x
were studied in [9] from the viewpoint of fuzzy control. We refer the reader to that
paper for more details about fuzzy relations and their applications, and here we focus
only on the proposed fixed-point iteration method to find solutions of the equation
xA = x.

The solutions of xA = x are exactly the fixed points of the “linear transformation”
x 7→ xA, hence we can hope that the standard fixed-point iteration method can be
used to find solutions [9]. Thus we start with an arbitrary x ∈ Ln, and we form the
sequence

(5) x, xA, xA2, xA3, . . . ,xAk, . . . .
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Even if L is an infinite lattice, each entry of each tuple in our sequence belongs to
the sublattice generated by the n+ n2 elements xi, aij (i, j = 1, . . . , n), which is finite
if L is distributive. Therefore, xAk becomes eventually periodic, but the period can
be longer than 1 (consider a permutation matrix, for example), hence the sequence
might fail to converge. However, if limk→∞(xAk) exists, then it is easy to see that
this limit will be a solution of xA = x. It may happen that (5) converges to the
trivial solution 0 = (0, . . . , 0), hence it is natural to start with the largest possible
initial value, namely x = 1 = (1, . . . , 1). In this case (5) is a monotone sequence, and
this together with periodicity implies that the sequence is ultimately constant (hence
convergent). This observation yields that limk→∞(1Ak) is the greatest solution of the
fixed-point equation xA = x (see [22]).

Remark 3.9. The interpretation of the greatest solution of xA = x in the transporta-
tion network setting of Remark 3.1 is more natural if we work with column vectors
instead of row vectors (or we transpose A). If limk→∞(Ak1) = (z1, . . . , zn), then
zi ∈ L is the set of vehicles that can start arbitrarily long trips at i ∈ X. In other
words, zi is the set of vehicles that can reach a directed cycle from i.

From the considerations above it follows immediately that the fixed-point equation
xA = x has a nonzero solution if and only if the matrix A is not nilpotent. This
was observed for Boolean algebras in [11], and later for bounded distributive lattices
in [23]. If the bottom element of L is irreducible, then combining this result with
Theorem 3.6 and Theorem 5.7, we obtain the following corollary.

Corollary 3.10. Let L be a bounded distributive lattice in which 0 is meet-irreducible.
Then the following are equivalent for any matrix A ∈Mn(L):

(i) the only solution of the fixed-point equation xA = x is x = 0;

(ii) limk→∞(1Ak) = 0;

(iii) A is nilpotent;

(iv) An = 0;

(v) A is conjugate to a strictly upper triangular matrix, i.e., there exists a strictly
upper triangular matrix U and an invertible matrix C such that A = C−1UC;

(vi) one can rearrange the rows and columns of A so that it becomes a strictly
upper triangular matrix, i.e., there exists a permutation π ∈ Sn such that
P−1
π APπ is strictly upper triangular.

Corollary 3.10 applies in particular to chains (which is the most relevant case for
fuzzy relations) and it shows that the fixed-point equation xA = x has a nontrivial
solution except for only a few matrices of a very restricted form.

4. Green’s relations and maximal subgroups

In Section 2 we have seen that every idempotent of the semigroup Mn(2) is D-
related to a reduced idempotent and that the maximal subgroups can be given in
terms of automorphisms of the posets corresponding to these reduced idempotents.
Even though descriptions of Green’s relations of the semigroups Mn(L) are available
(see [10], where Green’s relations are described with the help of row and column spaces
of matrices over commutative semirings), we do not a have a clear picture about the
maximal subgroups of Mn(L) for an arbitrary bounded distributive lattice L.

A possible plan to attack this problem is the following.

1. Find a necessary and sufficient condition for two idempotents to be D-related,
and then use this to determine a set of “nicest” idempotents that forms a
transversal for the regular D-classes.

2. Describe the structure of the H-classes of these nicest idempotents.

For the two-element lattice, a simple solution to the first item can be given using
the results of [15].
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Theorem 4.1. Let A,B ∈ Mn(2) be idempotent matrices and let α, β ⊆ X2 be the
corresponding pseudo-order relations. We have (A,B) ∈ D if and only if the posets
T (α) and T (β) are isomorphic.

Proof. Let us recall from Remark 2.7 that the D-class of α contains a reduced idem-
potent α̃, which is a partial order on a subset T ⊆ X, and T (α) denotes this poset
(it is determined uniquely up to isomorphism). If we use the usual symbol ≤ for this
partial order instead of α̃, then the out- and in-neighborhood of x ∈ T can be written
as:

• α̃+(x) = {y ∈ T : y ≥ x} =: ↑x;

• α̃−(x) = {y ∈ T : y ≤ x} =: ↓x.

The elements of α̃+ (i.e., unions of sets of the form ↑x) are called upper closed sets,
or simply upsets. Thus U ⊆ T is an upset if and only if x ∈ U and y ≥ x imply
y ∈ U for all x, y ∈ T . Dually, the members of α̃− are called downsets. It follows from
Proposition 2.6 that the lattices α+ and α̃+ are isomorphic, and the latter is nothing
but the lattice of upsets of T (α).

Thus, by Proposition 2.6, we only need to prove that the posets T (α) and T (β)
are isomorphic if and only if their upset lattices are isomorphic. The “only if” part
is trivial, and the “if” part follows from the observation that for any finite poset
P , the join-irreducible elements of the upset lattice are exactly the sets of the form
↑x (x ∈ P ), and these sets form a poset that is dually isomorphic to P . �

Theorem 4.1 gives a solution to the first item in the “plan of attack”: reduced idem-
potents, i.e., partial orders on subsets of X represent every regular D-class essentially
uniquely (up to isomorphism of the corresponding posets). Generalizing this to arbi-
trary bounded distributive lattices is a topic for further research, but in Theorem 4.3
below we provide a partial result towards the second item of the plan for finite chains,
which are the most frequently used lattices in applications. As a preparation, we need
a simple auxiliary observation.

Lemma 4.2. If (T ;≤) is a finite poset and f is a permutation of T such that f(x) ≥ x
for all x ∈ T , then f = idT .

Proof. If x is a maximal element, then f(x) = x follows immediately from the as-
sumption f(x) ≥ x. From here we can proceed downwards, proving by induction on
the size of ↑x = {y ∈ X : y ≥ x} that f(x) = x for all x ∈ T . �

We have seen in the previous section that a matrix is idempotent if and only if all
of its cuts are idempotent. The reason behind this observation is that the definition
of idempotence is simply an equality; it does not ask for the existence of certain
elements. For “existentially quantified” notions the situation is more complicated. As
an example, let us recall the definition of the R relation:

(A,B) ∈ R ⇐⇒ ∃C,D ∈Mn(L) : AC = B and BD = A.

Since the cut maps are homomorphisms, AC = B and BD = A imply Γω(A)Γω(C) =
Γω(B) and Γω(B)Γω(D) = Γω(A), hence Γω(A) and Γω(B) are R-related in the
semigroup Mn(2) for all ω ∈ Ω. However, the converse is not necessarily true: given
matrices Cω, Dω ∈Mn(2) such that Γω(A)Cω = Γω(B) and Γω(B)Dω = Γω(A) for all
ω ∈ Ω, it is not guaranteed that there exist matrices C,D ∈Mn(L) whose cuts are Cω
and Dω, respectively. In fact, an example of R-inequivalent matrices A,B ∈ M2(L)
over the three-element chain were presented in [28] such that both of their cuts are
R-related.

Nevertheless, as illustrated by the following theorem, in some special cases we can
recover information about matrices from their cuts.

Theorem 4.3. Let L be the m-element chain, and let A ∈Mn(L) be an idempotent
matrix such that the binary relations αk ⊆ X2 corresponding to the cut matrices
Γk(A) (k = 1, . . . ,m− 1) are all partial orders. Then a matrix B ∈Mn(L) belongs to
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the H-class of A if and only if it can be written as B = PfA, where f is a permutation
on X that is a common automorphism of the posets (X;αk) (k = 1, . . . ,m− 1).

Proof. Assume first that f is an automorphism of each of the posets (X;αk). Re-
garding f as a binary relation, this fact can be expressed as f ◦ αk ◦ f−1 = αk, which
is in turn equivalent to f ◦ αk = αk ◦ f . The latter condition can be formulated in
terms of matrices as PfΓk(A) = Γk(A)Pf . Since every entry of Pf is 0 or 1, we have
Γk(Pf ) = Pf , hence we can conclude that

Γk(PfA) = Γk(Pf )Γk(A) = PfΓk(A) = Γk(A)Pf = Γk(A)Γk(Pf ) = Γk(APf ).

According to (2), this holds for every k if and only if PfA = APf , and the latter
implies that the matrix B = PfA belongs to the H-class of A.

Conversely, assume that B ∈Mn(L) isH-related to A. Since each Γk is a homomor-
phism, (Γk(A),Γk(B)) ∈ H holds in the semigroup Mn(2) for all k ∈ {1, . . . ,m− 1}.
By Theorem 2.9, for each k there exists an automorphism fk of the poset (X;αk) such
that Γk(B) = PfkΓk(A). We are going to prove that f1 = · · · = fm−1.

Denoting by βk the binary relation corresponding to the matrix Γk(B) ∈ Mn(2),
the equality Γk(B) = PfkΓk(A) is equivalent to

(6) ∀x, y ∈ X : (fk(x), y) ∈ αk ⇐⇒ (x, y) ∈ βk (k = 1, . . . ,m− 1).

Since L is a chain, the relations βk form a nested sequence (cf. the beginning of the
proof of Theorem 3.3):

(7) β1 ⊇ · · · ⊇ βm−1.

For every k ∈ {1, . . . ,m − 1} and x ∈ X, we have (fk(x), fk(x)) ∈ αk, as αk was
assumed to be a partial order. Using (6), this implies that (x, fk(x)) ∈ βk, and then
(x, fk(x)) ∈ β1, by (7). Applying (6) with k = 1, we can conclude that (f1(x), fk(x)) ∈
α1. We can rewrite this as (y, fk(f−1

1 (y))) ∈ α1 with the notation y = f1(x). This
holds for every y ∈ X, therefore f1 = fk follows from Lemma 4.2.

We have proved that f := f1 = · · · = fm−1 is a common automorphism of the
posets (X;αk) (k = 1, . . . ,m − 1). It remains to prove that B = PfA. By (2), it
suffices to show that the cuts of B and PfA coincide:

Γk(B) = PfkΓk(A) = PfΓk(A) = Γk(Pf )Γk(A) = Γk(PfA).

(We used again the fact that cuts preserve 0 and 1, hence each cut of the permutation
matrix Pf is itself.) �

Corollary 4.4. Let L be the m-element chain, and let A ∈ Mn(L) be an idempo-
tent matrix such that the binary relations αk ⊆ X2 corresponding to the cut ma-
trices Γk(A) (k = 1, . . . ,m − 1) are all partial orders. Then the H-class containing
A is isomorphic to the group of common automorphisms of the posets (X;αk) (k =
1, . . . ,m− 1).

5. Matrices over arbitrary lattices

5.1. Antiassociativity of matrix multiplication. First we characterize lattices
with associative matrix multiplication.

Proposition 5.1. Multiplication of matrices over a lattice L is associative if and only
if L is a distributive lattice.

Proof. If L is distributive, then one can prove associativity of matrix multiplication
in the same way as it is proved for matrices over commutative rings. (In fact, if L is
bounded, then L is a semiring, hence Mn(L) is also a semiring [7]).

If L is not distributive, then M3 or N5 embeds into L (see Figure 2), so it suffices to
prove nonassociativity of matrix multiplication over these two lattices. Let us consider
the following three matrices from M2(M3) or from M2(N5) :

A =

(
a b
0 0

)
, B =

(
1 0
1 0

)
, C =

(
c 0
0 0

)
.
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Figure 2. The lattices M3 and N5

Then it is easy to verify that (AB)C 6= A (BC). For any n ≥ 2, we can construct
matrices attesting the nonassociativity of multiplication in Mn(L) by inserting A, B
and C into the top left 2 × 2 corner of an n × n matrix and filling all the remaining
entries with 0. �

We can strengthen Proposition 5.1; if L is not distributive, then matrix multipli-
cation over L is not merely nonassociative: it is antiassociative! We derive this as a
corollary of the following general proposition (this has been independently proved by
E. Lehtonen [12]).

Proposition 5.2. If a binary operation has an identity element, then it is either
associative (i.e., the associative spectrum is constant 1) or it is antiassociative (i.e.,
the associative spectrum consists of the Catalan numbers).

Proof. Let (G; ·) be a groupoid with an identity element 1, and assume that (ab)c 6=
a(bc) for some a, b, c ∈ G. We prove by induction on n that any two bracketings p 6= q
of size n induce different term operations on G. For n = 1, 2 this claim is void, and for
n = 3 it holds by the nonassociativity of the multiplication of G. Assume now that
n ≥ 4 and different bracketings of size less than n induce different term functions, and
let p, q be two distinct bracketings of size n.

First we consider the case when the “outermost” multiplication of p and q is
at the same place: p = p1(x1, . . . , xk) · p2(xk+1, . . . , xn) and q = q1(x1, . . . , xk) ·
q2(xk+1, . . . , xn). Since p and q are not the same term, we have p1 6= q1 or p2 6= q2

(perhaps both). If p1 6= q1, then, by the induction hypothesis, there exist elements
a1, . . . , ak ∈ G such that p1(a1, . . . , ak) 6= q1(a1, . . . , ak). This implies

p(a1, . . . , ak, 1, . . . , 1) = p1(a1, . . . , ak) · p2(1, . . . , 1)

= p1(a1, . . . , ak) · 1 = p1(a1, . . . , ak)

6= q1(a1, . . . , ak) = q1(a1, . . . , ak) · 1
= q1(a1, . . . , ak) · q2(1, . . . , 1)

= q(a1, . . . , ak, 1, . . . , 1),

thus the term functions corresponding to p and q are indeed different. If p2 6= q2, then
a similar argument can be used, assigning the value 1 to the variables x1, . . . , xk.

Now assume that the outermost multiplications in p and q are not at the same
place: p = p1(x1, . . . , xk) · p2(xk+1, . . . , xn) and q = q1(x1, . . . , x`) · q2(x`+1, . . . , xn),
where k 6= `. We may suppose without loss of generality that k < `. Let us put
x1 = a, xk+1 = b, x`+1 = c, and assign the value 1 to all the remaining variables.
Then p evaluates to

p1(a, 1, . . . , 1) · p2(b, 1, . . . , 1, c, 1, . . . , 1) = a(bc),

while q gives the value

q1(a, 1, . . . , 1, b, 1, . . . , 1) · q2(c, 1, . . . , 1) = (ab)c,

proving that p and q induce different term functions, as claimed. �

Corollary 5.3. If the lattice L is not distributive, then the multiplication of matrices
over L is antiassociative.
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Figure 3. The lattice K.

Proof. Since L is not distributive, it has a sublattice L1 that is isomorphic to M3 or to
N5. The lattice L1 is bounded, hence Mn(L1) has an identity element, thus its multi-
plication is antiassociative by propositions 5.1 and 5.2. This implies antiassociativity
of the multiplication of Mn(L), as it contains Mn(L1) as a subgroupoid. �

The following example shows that for nondistributive lattices even the definition of
a power of a matrix and the notion of nilpotence can be problematic.

Example 5.4. Let A be the following 5× 5 matrix over M3:

A =


0 a 0 0 0
0 0 b c 0
0 0 0 0 b
0 0 0 0 c
0 0 0 0 0

 .

Then we have (AA)A = 0 6= A(AA). Thus A has two different “cubes”; one of them
is zero, the other one is not.

5.2. Invertible matrices. As another illustration of the unpleasant consequences of
nonassociativity, we present an example of a matrix having several inverses.

Example 5.5. Consider the following two matrices over N5:

A =

(
c b
b c

)
, B =

(
a b
b c

)
.

Then we have AA = AB = BA = I, thus A and B are both inverses of A.

It was proved in [14] that a matrix A over a Boolean algebra is invertible if and
only if it is orthogonal, i.e., AAT = ATA = I. This result was generalized to bounded
distributive lattices in [6] (see also [21, 25]). However, if L is not distributive, then
there might exist invertible matrices over L that are not orthogonal.

Example 5.6. Let A =

(
a b
b c

)
over the lattice K shown in Figure 3. This lattice

is nondistributive, moreover the equations AB = BA = I hold for the matrix B =(
d f
f c

)
over the lattice K. Thus A is invertible, but AAT = A2 6= I, so A is not

orthogonal.

In the next theorem we determine the invertible elements of Mn(L) where L is a
bounded lattice and at least one of 0 and 1 is irreducible, but we omit the assumption
on distributivity of the lattice L. Recall that 0 is meet-irreducible if ab = 0 holds only
if a = 0 or b = 0, and similarly, 1 is join-irreducible if a+ b = 1 implies that a = 1 or
b = 1.

Theorem 5.7. Let L be a bounded lattice in which 0 is meet-irreducible or 1 is join-
irreducible. Then for all matrices A,B ∈ Mn(L), we have AB = I if and only if
A = Pπ and B = Pπ−1 for some permutation π ∈ Sn. Consequently, the invertible
elements of the groupoid Mn(L) form a group that is isomorphic to Sn.
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Proof. The “if” part is clear (see Remark 2.8); so we only prove the “only if” part.
Moreover, it suffices to prove that A = Pπ; then B = Pπ−1 follows by Remark 2.8.
First we make some general observations, assuming only that L is a bounded lattice.

Let A,B ∈ Mn(L) with AB = I. Considering the diagonal entries of AB = I,
we have

∑n
j=1 aijbji = 1 for all i = 1, . . . , n. This implies that for each i there is at

least one j such that aijbji 6= 0. Denoting such an index j by π(i), we get a map
π : {1, . . . , n} → {1, . . . , n} such that

(8) aiπ(i) 6= 0 and bπ(i)i 6= 0 for all i ∈ {1, . . . , n}.

The off-diagonal entries of AB = I yield
∑n
j=1 aijbjk = 0 whenever i 6= k, hence

(9) aijbjk = 0 for all i, j, k ∈ {1, . . . , n} with i 6= k.

Assume first that 1 is join-irreducible. Then at least one of the summands in∑n
j=1 aijbji = 1 must be 1, hence we can replace (8) by the following stronger condi-

tion:

(8’) aiπ(i) = bπ(i)i = 1 for all i ∈ {1, . . . , n}.
Now we can see that π is injective: if we had π(i) = π(k) =: j for some i 6= k, then
(8’) would imply that aij = bjk = 1, contradicting (9). In order to prove that A
is a permutation matrix, let us consider an entry aij in A with j 6= π(i). Letting
k = π−1(j), we have bjk = 1 by (8’); on the other hand, (9) implies aijbjk = 0, as
i 6= k. Thus aij = 0 whenever j 6= π(i), and this together with (8’) proves that
A = Pπ.

Suppose next that 0 is meet-irreducible. Then (9) takes the following form:

(9’) aij = 0 or bjk = 0 for all i, j, k ∈ {1, . . . , n} with i 6= k.

Again, π is injective: if we had π(i) = π(k) =: j for some i 6= k, then (8) would imply
that aij 6= 0 and bjk 6= 0, contradicting (9’). Just as in the previous case, we can
prove that aij = 0 whenever j 6= π(i). Indeed, for k = π−1(j) we have bjk 6= 0 by (8),
and then (9’) implies aij = 0. To show that A = Pπ, it only remains to prove that
aiπ(i) = 1 for every i. This follows from the following inequality:

1 =

n∑
j=1

aijbji = aiπ(i)bπ(i)i ≤ aiπ(i).

�

Remark 5.8. As a consequence of Theorem 5.7, we have that AB = I implies
BA = I for all matrices A,B ∈Mn(L) if L satisfies the irreducibility condition of the
theorem. For monoids (and also for rings), the property AB = I =⇒ BA = I is
called Dedekind-finiteness.

Example 5.9. Theorem 5.7 is not necessarily valid if neither 0 nor 1 is irreducible.

As an example, let A =

(
a b
b a

)
over the lattice 2×2 shown in Figure 4. This lattice

is distributive, hence M2(L) is a semigroup and inverses are unique. It is easy to
verify that A has an inverse (in fact, we have A−1 = A), even though A is not a
permutation matrix.

Remark 5.10. For chains, Theorem 5.7 is a special case of Theorem 4.3. Indeed, if
A = I, then each αk is the equality relation on X, hence the group of automorphisms
is Sn.
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