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ON CATEGORICAL EQUIVALENCE OF FINITE p-RINGS

KALLE KAARLI AND TAMÁS WALDHAUSER

Abstract. We prove that finite categorically equivalent p-rings have isomorphic
additive groups (in particular, they have the same cardinality) and that the num-

ber of generators is a categorical invariant for finite rings. We also classify rings

of size p3 up to categorical equivalence.

1. Introduction

This paper is a continuation of the paper [9]. Therefore, concerning the background
and motivation, we refer to that paper.

Every finite ring can be represented as a direct product of p-rings for different
primes p. In [9] we proved that finite rings R and S are categorically equivalent if and
only if there is a bijection between their p-components such that the corresponding
p-components are categorically equivalent. This reduces the problem of describing all
categorical equivalences between finite rings to the case where R is a p-ring and S is
a q-ring for possibly different primes p and q. The case p 6= q was completely settled
in [9] by the following theorem.

Theorem 1.1 ([9]). Let R be a finite p-ring and let S be a finite q-ring for dis-
tinct primes p and q. Then R and S are categorically equivalent if and only if
R ∼= GF(pk1) × · · · × GF(pkt) and S ∼= GF(qk1) × · · · × GF(qkt) for some positive
integers k1, . . . , kt.

Now it remains to consider the case where R and S are both p-rings for the same
prime p. We recall some results from [9] concerning this case.

Theorem 1.2 ([9]). Categorically equivalent finite p-rings have the same character-
istic.

Theorem 1.3 ([9]). Categorically equivalent finite semisimple p-rings are isomorphic.

Theorem 1.4 ([9]). Let R and S be finite categorically equivalent p-rings. If at least
one of R and S is either simple (i.e., isomorphic to a full matrix ring over a finite
field GF(pk) for some k ∈ N) or cyclic (i.e., isomorphic to Zpk for some k ∈ N) or is

of size p2 (i.e., isomorphic to one of the rings Zp2 , GF(p2), Zp × Zp, Zp [x] /
(
x2
)

by
[5]), then R and S are isomorphic.

Thus, trying to understand when can two finite non-isomorphic p-rings R and S
be categorically equivalent, we may restrict to non-semisimple p-rings of the same
characteristic.

Let us describe the structure of the paper. Section 3 that comes after Preliminar-
ies, has a technical nature but its content is crucial for the rest of the paper. It is
well known that categorically equivalent algebras always have isomorphic congruence
lattices. Hence, categorically isomorphic rings have isomorphic ideal lattices. In our
approach, if S is a subring of R then it is assumed that 1R ∈ S. However, it is also
useful to consider so-called subrngs of R, that is, the subgroups of the additive group
of R that are closed with respect to multiplication (but need not contain 1R). Since
every subrng of R is an ideal of some subring of R, it turns out that categorically
equivalent rings have isomorphic subrng lattices. This is important because it allows
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us to apply the methods and results of Korobkov [11, 12, 13] who has extensively
studied rngs with isomorphic subrng lattices.

In Section 4 one of the main results of the paper is proved: categorically equivalent
finite p-rings (for the same prime p) have isomorphic additive groups. In Section 5
the rings of order p3 are classified in the sense of categorical equivalence. It turns out
that most of the non-isomorphic rings of order p3 are categorically non-equivalent.
There is a single pair of non-isomorphic but categorically equivalent (actually weakly
isomorphic) rings of order p3.

Recall that in [9] we conjectured that if two finite p-rings of the same characteristic
are categorically equivalent then they must be either isomorphic or anti-isomorphic.
The new results show that this conjecture does not hold but is not too far from the
truth. Indeed, on one hand categorically equivalent finite p-rings have isomorphic
additive groups just as isomorphic or anti-isomorphic rings. On the other hand, the
pair of rings of order p3 above are not anti-isomorphic because they are commutative.
Our new conjecture is that two categorically equivalent p-rings for the same p are
necessarily weakly isomorphic.

In Section 6 it is proved that the number of generators is a categorical invariant for
finite rings. We first reduce the problem to p-rings and then prove that in that case
the property to be one-generated is categorical. This proof is relatively complicated,
Korobkov’s methods play an essential role in it. The step from one generator to
any finite number of generators is easy. An interesting corollary from this result is
that freedom is a categorical property, too, i.e., if a functor F witnesses a categorical
equivalence between p-rings R and S then F maps free rings of the variety HSP(R)
to free rings of the variety HSP(S).

2. Preliminaries

2.1. Rings. In this paper, by a ring we always mean a finite associative ring with
identity. The identity element of the ring R is denoted by 1R; the subscript will be
sometimes omitted, if there is no risk of ambiguity. We will sometimes also consider
rings that do not necessarily have an identity; following Jacobson [8], we call such
structures rngs, and these will be also assumed to be finite without further mention.
As a notational convention, we will use boldface letters for rings and normal letters
for rngs. Using this terminology, if R is a r(i)ng and S ⊆ R is a nonempty subset that
is closed under addition, additive inverses and multiplication, then we say that S is a
subrng of R. If R is a ring and S is a subrng of R such that 1R ∈ S, then we say that
S is a subring of R, and we denote this by S ≤ R. Let Subrng (R) and Subring (R)
denote the lattice of all subrngs and the lattice of all subrings of R, respectively. The
smallest subrng containing a nonempty set H ⊆ R is denoted by 〈H〉, and the smallest
subring containing H ⊆ R is denoted by 〈H〉1, i.e., 〈H〉1 = 〈H ∪ {1R}〉. Note that if
I is an ideal of R (notation: I C R), then we have 〈I〉 = I and 〈I〉1 = I + 〈1R〉 =
I + 〈1R〉1, and 〈1R〉1 ∼= Zc, where c is the characteristic of R. The principal ideal in
the ring R generated by an element r ∈ R is denoted by (r).

The Galois ring GR (pn,m) is defined as the quotient ring Zpn [x] / (f), where
f ∈ Zpn [x] is a polynomial of degree m, such that f is irreducible over Zp. This
ring is determined up to isomorphism by p, n and m. We have the special cases
GR (pn, 1) ∼= Zpn and GR (p,m) = GF(pm).

2.2. Categorical equivalence. Algebras A and B are said to be categorically equiv-
alent, denoted by A ≡c B, if there is a categorical equivalence functor F : HSP (A)→
HSP (B) between the varieties generated by A and B such that F (A) = B. Cate-
gorical equivalence of finite algebras has been characterized by R. McKenzie [15] in
terms of matrix powers and by K. Denecke and O. Lüders [4] in terms of relational
clones. In the following we briefly explain the latter characterization.

If ρ ∈ SPfin (A) is (the underlying set of) a subalgebra of a finite direct power of A,
then ρ is said to be an invariant relation of A. The set of all invariant relations of A
is the relational clone of A, which is equipped with the operations of direct product,
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diagonalization and projection, which we shall define next. The direct product of
ρ ≤ Ak and σ ≤ Am is defined by

ρ× σ = {(x1, . . . , xk+m) : (x1, . . . , xk) ∈ ρ and (xk+1, . . . , xk+m) ∈ σ} ≤ Ak+m.

If ρ ≤ Ak and ε is an equivalence relation on {1, . . . , k}, then the diagonalization
of ρ with respect to ε is the invariant relation

∆ε (ρ) = {(x1, . . . , xk) : (x1, . . . , xk) ∈ ρ and iεj =⇒ xi = xj} ≤ Ak.

The projection pri1,...,im (ρ) of ρ to the coordinates i1, . . . , im ∈ {1, . . . , k} is defined
by

pri1,...,im (ρ) = {(xi1 , . . . , xim) : (x1, . . . , xk) ∈ ρ} ≤ Am.

Note that the indices i1, . . . , im are not assumed to be in increasing order, hence the
projection operator can be used to permute coordinates. Observe also that intersec-
tions of relations of the same arity and the usual relational product of binary relations
can be expressed with the above defined three operations.

If F : HSP (A) → HSP (B) is a categorical equivalence between the varieties gen-
erated by the algebras A and B such that F (A) = B, then the restriction of F to
SPfin (A) gives an isomorphism between the relational clones of A and B, i.e., F is a
bijection F : SPfin (A)→ SPfin (B) that commutes with direct products, diagonaliza-
tions and projections [3]. Conversely, every isomorphism between the relational clones
SPfin (A) and SPfin (B) extends to a categorical equivalence of the varieties of A and
B [4]. Therefore, A ≡c B holds if and only if A and B have isomorphic relational
clones. We summarize this characterization of categorical equivalence in the following
theorem.

Theorem 2.1 ([3, 4]). Let A and B be finite algebras, and let F : HSP (A) →
HSP (B) be a categorical equivalence with F (A) = B. Then F provides an isomor-
phism between the relational clones of A and B, i.e., F : SPfin (A) → SPfin (B) is a
bijection, and the following hold:

(i) if ρ ≤ Ak and σ ≤ Am, then F (ρ× σ) = F (ρ)× F (σ);
(ii) if ρ ≤ Ak and ε is an equivalence relation on {1, . . . , k}, then F (∆ε (ρ)) =

∆ε (F (ρ));
(iii) if ρ ≤ Ak and i1, . . . , im ∈ {1, . . . , k}, then F

(
pri1,...,im (ρ)

)
= pri1,...,im (F (ρ)).

Conversely, if A and B are finite algebras and F : SPfin (A) → SPfin (B) is a bijec-
tion satisfying the above three properties, then F extends to a categorical equivalence
between HSP (A) and HSP (B) such that F (A) = B.

Note that the above theorem implies that a categorical equivalence functor witness-
ing A ≡c B yields an isomorphism between the subalgebra lattices of A and B, and the
corresponding subalgebras are categorically equivalent. Similarly, categorically equiv-
alent algebras have isomorphic congruence lattices, and the corresponding quotient
algebras are categorically equivalent. Regarding automorphisms (endomorphisms) as
binary invariant relations, we can also conclude that categorically equivalent algebras
have isomorphic automorphism groups (endomorphism monoids).

Algebras A and B are said to be term equivalent, if they have the same clone of term
operations (this requires, of course, that the two algebras have the same underlying
set). In this case A and B are categorically equivalent by Theorem 2.1, since they
have the very same relational clone. If A is term equivalent to an isomorphic copy of
B, then we say that A and B are weakly isomorphic. Weakly isomorphic algebras are
necessarily categorically equivalent, and, in light of the above considerations, we can
regard weak isomorphism as a trivial case of categorical equivalence.

3. Ideals under categorical equivalence

Let us now turn our attention to rings. Congruences of rings correspond to ideals,
hence one can define the image F (I) of an ideal I C R under a categorical equivalence
functor F . In this section we work out the technical details concerning the definition
of F (I), and we prove some auxiliary results about the behavior of ideals under
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categorical equivalence. We will use properties (i), (ii) and (iii) of Theorem 2.1 without
further mention.

For an arbitrary ring R and I C R, let ϑI denote the congruence relation of R
that corresponds to I:

ϑI :=
{

(a, b) ∈ R2 : a− b ∈ I
}
≤ R2.

If F : HSP (R) → HSP (S) is a categorical equivalence such that F (R) = S, then
F (ϑI) ≤ S2 is a congruence on S, and we shall denote the ideal of S corresponding
to F (ϑI) simply by F (I). Now, if T is a subring of R containing I, then I is also
an ideal of T, hence one could interpret F (I) as the ideal of F (T) that corresponds

to the congruence F
(
ϑI ∩ T 2

)
. However, since F

(
ϑI ∩ T 2

)
= F (ϑI)∩F (T )

2
, we see

that F
(
ϑI ∩ T 2

)
is the restriction of F (ϑI) to F (T )

2
, and this means that the ideal

of F (T) corresponding to the congruence F
(
ϑI ∩ T 2

)
is the same as the ideal of S

corresponding to the congruence F (ϑI). Thus the meaning of F (I) does not depend
on whether we regard I as an ideal of R or as an ideal of T.

It is clear that F commutes with intersections and sums of ideals (it gives an
isomorphism between the ideal lattices of R and S), and similarly for subrings. In
the following lemma we consider the intersection and sum of an ideal I C R and a
subring T ≤ R. Clearly I + T ≤ R, but in general I ∩ T is neither an ideal nor a
subring of R. However, I ∩ T is an ideal of T, hence F (I ∩ T ) can be defined.

Lemma 3.1. Let R and S be finite rings, and let F : HSP (R) → HSP (S) be a
categorical equivalence with F (R) = S. If I C R and T ≤ R, then

F (I ∩ T ) = F (I) ∩ F (T ) and F (I + T ) = F (I) + F (T ) .

In particular, we have F (〈I〉1) = 〈F (I)〉1.

Proof. As mentioned above, I ∩ T is understood as an ideal of T, thus F (I ∩ T ) is

the ideal of F (T) that corresponds to the congruence F
(
ϑI ∩ T 2

)
= F (ϑI) ∩ F (T )

2

of F (T), and this ideal is clearly F (I) ∩ F (T ).
For the second statement, we only need to observe that the subring I + T consists

of those elements x of R for which there exists t ∈ T such that xϑIt. Thus I + T can
be expressed from the invariant relations ϑI ≤ R2 and T ≤ R using the relational
clone operations: I + T = pr1 (∆ε (ϑI × T )), where ε is the equivalence relation on
{1, 2, 3} corresponding to the partition {{1} , {2, 3}}. Since F is an isomorphism of
relational clones, it follows that

F (I + T ) = F (pr1 (∆ε (ϑI × T ))) = pr1 (∆ε (F (ϑI)× F (T ))) = F (I) + F (T ) .

Setting T = 〈1R〉1, we obtain

F (〈I〉1) = F (I + 〈1R〉1) = F (I) + F (〈1R〉1) = F (I) + 〈1S〉1 = 〈F (I)〉1 ,
because F (〈1R〉1) = 〈1S〉1, as 〈1R〉1 and 〈1S〉1 are the smallest subrings of R and S,
respectively. �

Lemma 3.2. Subrngs are exactly the ideals of subrings:

Subrng (R) = {I ⊆ R : ∃T ≤ R such that I C T} .

Proof. It is straightforward to verify that if I is a subrng, then the subring generated
by I is 〈I〉1 = I + 〈1〉1, and I is an ideal of 〈I〉1. Conversely, it is obvious that ideals
of subrings are subrngs. �

Lemma 3.3. Let R and S be finite p-rings, and let F : HSP (R) → HSP (S) be a
categorical equivalence with F (R) = S. Then F induces a lattice isomorphism from
Subrng (R) to Subrng (S)

Proof. Lemma 3.2 implies that F (I) is a subrng of S whenever I is a subrng of R,
since I C T ≤ R implies that F (I) C F (T) ≤ F (R). Conversely, every subrng
of R is the image of some subrng of S under F−1. Thus F and F−1 induce maps
between the sets Subrng (R) and Subrng (S), and these two maps are the inverses of
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each other, thus both of them are bijections. It remains to prove that both maps are
order-preserving. We prove it only for F ; the proof for F−1 is similar.

Assume that I, J ∈ Subrng (R) and I ⊆ J . It is easy to see that the subrngs I
and 〈I〉1 ∩ J generate the same subring T ≤ R, hence they both are ideals of the
ring T. Since I ⊆ 〈I〉1 ∩ J , we have F (I) ⊆ F (〈I〉1 ∩ J) and, in view of Lemma 3.1,
F (〈I〉1 ∩ J) = F (〈I〉1) ∩ F (J). Thus, F (I) ⊆ F (J). �

Lemma 3.3 allows us to apply results of Korobkov [11, 12, 13] about rngs with
isomorphic subrng lattices. In particular, in the next proposition we determine p-
rings that are categorically equivalent to a Galois p-ring.

Proposition 3.4. If a p-ring R is categorically equivalent to a Galois ring GR (pn,m),
then R ∼= GR (pn,m).

Proof. If R is categorically equivalent to GR (pn,m), then Lemma 3.3 implies that
Subrng (R) ∼= Subrng (GR (pn,m)). Theorem 4 of [12] then shows that R ∼= GR (pn,m)
if n > 1 and m > 1. If n = 1, then we have GR (pn,m) = GF(pm), and if m = 1, then
we have GR (pn,m) = Zpn , and in both cases Theorem 1.4 gives R ∼= GR (pn,m). �

In the following lemma we prove that categorical equivalences commute with com-
mutators of ideals.

Lemma 3.5. Let R and S be finite rings, and let F : HSP (R) → HSP (S) be a
categorical equivalence with F (R) = S. If I and J are ideals of R, then F ([I, J ]) =
[F (I) , F (J)], where [I, J ] = I · J + J · I is the commutator of the ideals I and J . In
particular, if I is a nilpotent subrng of R, then F (I) is a nilpotent subrng of S.

Proof. The commutator of ideals corresponds to the commutator of congruences. For
congruence modular varieties, the commutator is a categorical notion, as it is shown
by the following characterization [6]. If ϑ, ψ and α are congruences of an algebra A
belonging to a congruence modular variety V, then α ≥ [ϑ, ψ] if and only if there
exists B ∈ V, a surjective homomorphism f : B→ A and congruences σ, τ on B such
that

(1) σ ∨ f−1 (α) ≥ f−1 (ψ);
(2) τ ∨ f−1 (α) ≥ f−1 (ϑ);
(3) f−1 (α) ≥ σ ∧ τ .

A categorical equivalence functor induces an isomorphism of congruence lattices of
the corresponding algebras, and surjectivity of homomorphisms is also a categorical
property [2, 15], hence the first statement of the lemma follows from the above char-
acterization of the commutator. For the second claim, recall that if I is a subrng of
R, then I is an ideal of some subring T ≤ R by Lemma 3.2, hence F (I) is an ideal
of F (T). Assuming In = 0 and viewing In as the n-fold commutator of I by itself,
we see that F (I)

n
= 0. �

Next we investigate the images of annihilators under categorical equivalence func-
tors. Let us denote by AnnR (I) the two-sided annihilator of the ideal I C R, i.e., let
AnnR (I) = {r ∈ R : r · I = 0 and I · r = 0}.

Lemma 3.6. Let R and S be finite rings, and let F : HSP (R) → HSP (S) be a
categorical equivalence with F (R) = S. If I is an ideal of R, then F (AnnR (I)) =
AnnS (F (I)).

Proof. This follows immediately from Lemma 3.5, since AnnR (I) is the join of all
ideals X C R satisfying [X, I] = 0. �

In our last two lemmas we consider the relationship between the size of an ideal
and the subring generated by that ideal.

Lemma 3.7. If R is a finite ring and I C R, then we have |〈I〉1| = |I| · char (R/I).
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Proof. Let us assume for notational simplicity that 〈1R〉1 = Zc, where c = char (R).
Since 〈I〉1 = I + 〈1R〉1 = I + Zc, the first isomorphism theorem yields 〈I〉1 /I ∼=
Zc/ (I ∩ Zc). The intersection I ∩ Zc is an ideal in Zc, thus it is of the form d · Zc

for some divisor d of c, hence 〈I〉1 /I ∼= Zc/ (d · Zc) ∼= Zd. It remains to verify that
char (R/I) = d, but this is clear: for every positive integer m, we have

m · 1R ∈ I ⇐⇒ m · 1R ∈ d · Zc ⇐⇒ d | m. �

Lemma 3.8. Let R and S be finite p-rings for some prime number p, and let us
assume that F : HSP (R) → HSP (S) is a categorical equivalence with F (R) = S. If
I C R, then |F (〈I〉1)| = |F (I)| · char (R/I).

Proof. By Lemma 3.1, we have F (〈I〉1) = 〈F (I)〉1, and Lemma 3.7 gives |〈F (I)〉1| =
|F (I)|·char (S/F (I)). The rings S/F (I) = F (R) /F (I) = F (R/I) and R/I are cat-
egorically equivalent p-rings, hence they have the same characteristic by Theorem 1.2,
and this completes the proof. �

4. Additive groups of categorically equivalent p-rings

In this section we prove the main result of the paper: categorically equivalent finite
p-rings have isomorphic additive groups. The key step is to verify that R ≡c S implies
|R| = |S| for arbitrary finite p-rings R and S. We will prove this by induction on the
size of R, namely we will apply the induction hypothesis to the rings 〈I〉1 and R/I for
a suitably chosen ideal I C R. For this we need that both 〈I〉1 and R/I are strictly
smaller than R, i.e., 〈I〉1 6= R and I 6= 0. Such an ideal need not always exist, so
our first task is to compile the list of those “bad” rings for which there is no such
ideal. We shall do this in Proposition 4.2, whose proof requires the following technical
lemma proof of which we will leave to the reader.

Lemma 4.1. If I is an ideal of the ring R such that I2 = 0 and 〈I〉1 = R, then every
additive subgroup of I is an ideal of R.

Proposition 4.2. For every finite ring R, the following two conditions are equivalent:

(i) for every nonzero ideal I C R, we have 〈I〉1 = R;
(ii) R is either simple (i.e., isomorphic to a full matrix ring over a finite field) or

cyclic (i.e., isomorphic to Zm for some positive integer m) or R has size p2

for some prime number p (i.e., isomorphic to one of the rings Zp2 , GF(p2),

Zp × Zp, Zp [x] /
(
x2
)

by [5]).

Proof. It is easy to check that (ii) implies (i). For the other implication, we consider
an arbitrary finite ring R, and we prove that it has a nonzero ideal I with 〈I〉1 6= R
unless R is isomorphic to one of the rings listed in (ii).

Assume first that R is directly decomposable: R = R1 × R2, where R1 and R2

are nontrivial rings. If R1 6= 〈1R1
〉1, then I = 0R1

×R2 is a nonzero ideal of R with
〈I〉1 6= R, since I is contained in the subring 〈1R1

〉1 ×R2 < R. A similar argument
works if R2 6= 〈1R2〉1. If R1 = 〈1R1〉1 and R2 = 〈1R2〉1, then R ∼= Zm1 × Zm2 for
some integers m1,m2 ≥ 2. If m1 and m2 have a common prime divisor p, then the
ideal I = p · Zm1

× p · Zm2
satisfies 〈I〉1 6= Zm1

× Zm2
, since for every (a1, a2) ∈ 〈I〉1

we have a1 ≡ a2 (mod p). Moreover, if at least one of m1 and m2 is different from p,
then I 6= 0 (otherwise we have R ∼= Zp × Zp). Finally, if R ∼= Zm1

× Zm2
, where m1

and m2 are relatively prime, then R ∼= Zm1m2 .
From now on we assume that R is directly indecomposable; in particular, R is a

p-ring for some prime p, hence char (R) = pn for some positive integer n. We deal
with the cases n ≥ 2 and n = 1 separately.

If n ≥ 2, then we let I be the principal ideal I = pn−1 ·R. Since n ≥ 2, we have
I2 = p2n−2 · R = 0. Then the conditions of Lemma 4.1 are satisfied, therefore for
every additive subgroup A of I, we have A C R. In particular, A = pn−1 · 〈1R〉 is an
ideal of R. But then R = 〈A〉1 = 〈1R〉1, that is, R ∼= Zpn .

Let now n = 1 and suppose first that R is semisimple. Then, due to direct inde-
composability, it is simple and we are done. Let now R be non-semisimple. Then it
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has a nonzero nilpotent ideal, hence also a nonzero ideal I with zero multiplication.
By Lemma 4.1, we may take I of cardinality p. Since R = I + 〈1R〉1, we conclude
|R| ≤ p2. This proves the proposition. �

Now we are ready to perform the induction argument outlined at the beginning of
this section. Luckily, rings categorically equivalent to any of the “bad” rings listed
in item (ii) of the above proposition have been completely determined in [9] (see
Theorem 1.4).

Theorem 4.3. If R and S are finite categorically equivalent p-rings, then |R| = |S|.
Proof. We prove the theorem by induction on the size of R. If |R| = p, then R ∼= Zp,
and then S ∼= Zp follows from Theorem 1.4.

Now let |R| > p, and assume that the theorem holds for all p-rings of size less than
|R|. Let F : HSP (R)→ HSP (S) be a categorical equivalence with F (R) = S. If R is
one of the rings listed in item (ii) of Proposition 4.2, then we can use again Theorem 1.4
to see that R ∼= S. Otherwise R has a nonzero ideal I such that 〈I〉1 6= R. Then
both R/I and 〈I〉1 are p-rings that are smaller than R, so the induction hypothesis
implies that |R/I| = |F (R/I)| and |〈I〉1| = |F (〈I〉1)|. The first equality shows that
|R/I| = |F (R) /F (I)| = |S/F (I)|. The second equality together with Lemmas 3.7
and 3.8 yields

|I| · char (R/I) = |〈I〉1| = |F (〈I〉1)| = |F (I)| · char (R/I) ,

from which |I| = |F (I)| follows. Now we can conclude that |R| = |R/I| · |I| =
|S/F (I)| · |F (I)| = |S|. �

Corollary 4.4. If R and S are finite p-rings and F : HSP (R) → HSP (S) is a
categorical equivalence with F (R) = S, then we have |F (I)| = |I| for all subrngs (in
particular, for all ideals) I of R.

Proof. First, let I C R. Then:

|F (I)| = |F (R)|
|F (R) /F (I)|

=
|F (R)|
|F (R/I)|

=
|R|
|R/I|

= |I| . �

The general case now follows from Lemma 3.2.

For proving one of the central results of the present paper we need the following
lemma.

Lemma 4.5. Let A be a finite abelian group of exponent pn. Then the sizes of
subgroups pk ·A (k = 1, . . . , n) determine the group A up to isomorphism.

Proof. This fact should be well known but since we could not find a good reference,
we provide a hint of proof. Let pak =

∣∣pk−1 ·A
∣∣ and let bk be the number cyclic direct

summands of order pk in the canonical decomposition of A, k = 1, . . . , n. Then it is
easy to see that

ak = bk + 2bk+1 + · · ·+ (n− k + 1)bn, (k = 1, . . . , n).

Obviously, this system of linear equations uniquely determines the integers b1, . . . , bn.
�

Theorem 4.6. If R and S are finite categorically equivalent p-rings, then R and S
have isomorphic additive groups.

Proof. Assume that F : HSP (R)→ HSP (S) is a categorical equivalence functor that
maps R to S. Then R and S have the same characteristic by Theorem 1.2: let
charR = charS = pn.

One can characterize pk · R by the property that it is the least ideal I C R such
that the characteristic of R/I is at most pk (cf. the proof of Lemma 3.7). Since F
preserves quotients and characteristics (by Theorem 1.2), we have that F

(
pk ·R

)
is

the least ideal of S such that the characteristic of the corresponding quotient ring
is at most pk, hence F

(
pk ·R

)
= pk · S. Thus, in view of Corollary 4.4, we have∣∣pk ·R∣∣ =

∣∣pk · S∣∣. It remains to apply Lemma 4.5. �
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5. Rings of order p3

In [9] we described categorical equivalence for rings of order p2. The next step is
naturally the case of rings of order p3. By Theorem 4.3, if |R| = p3 and R ≡c S,
then |S| = p3, therefore it suffices to determine categorical equivalences among rings
of order p3. Let us recall the list of these rings from [16].

Theorem 5.1 ([16]). For every odd prime p, there are 12 rings with identity of size
p3, and there are 11 rings with identity of size 23 up to isomorphism (type (xii) is
missing in the case p = 2, since there is no quadratic nonresidue modulo 2):

(i) R1 = Zp3 ;

(ii) R2 = GF(p3);

(iii) R3 = Zp2 × Zp;

(iv) R4 = GF(p2)× Zp;

(v) R5 = Zp × Zp × Zp;

(vi) R6 = Zp ×
{(

a b
0 a

)
: a, b ∈ Zp

}
;

(vii) R7 =


a b c

0 a b
0 0 a

 : a, b, c ∈ Zp

;

(viii) R8 =


a b c

0 a 0
0 0 a

 : a, b, c ∈ Zp

;

(ix) R9 =

{(
a b
0 c

)
: a, b, c ∈ Zp

}
(this is the only noncommutative one);

(x) R10 = Zp2 [x] /
(
x2, px

)
;

(xi) R11 = Zp2 [x] /
(
x2 − up, px

)
, where u ∈ Z∗p is a quadratic residue modulo p;

(xii) R12 = Zp2 [x] /
(
x2 − up, px

)
, where u ∈ Z∗p is a quadratic nonresidue modulo

p.

Remark 5.2. The rings R7 and R8 can be given by polynomials as follows:

R7
∼= Zp [x] /

(
x3
)
, R8

∼= Zp [x, y] /
(
x2, y2, xy, yx

)
.

Lemma 5.3. The only nontrivial categorical equivalences between rings of size p3 can
be between rings of types (xi) and (xii).

Proof. Taking direct decompositions, Theorem 1.2 and Theorem 1.4 into account, we
see that the only possible categorical equivalences can be within the sets {R7,R8,R9}
and {R10,R11,R12}.

We show, by comparing their radicals, that the three rings in the first set cannot
be categorically equivalent. By Corollary 12 of [9] and by Corollary 4.4, the radicals
of categorically equivalent finite p-rings must have the same size. It is easy to see that
the radicals of the rings R7,R8 and R9 consist precisely of matrices0 b c

0 0 b
0 0 0

 ,

0 b c
0 0 0
0 0 0

 and

(
0 b
0 0

)
, (b, c ∈ Zp),

respectively. Hence, neither R7 nor R8 can be categorically equivalent to R9. That
R7 and R8 are not categorically equivalent, follows from Lemma 3.6. Indeed, the
radical of R8 is square-zero, i.e., it annihilates itself while the radical of R7 is not.

Also, we can see that neither R11 nor R12 can be categorically equivalent to R10, by
looking at the ideal lattices. Let us write R11 and R12 as

{
a+ bϑ : a ∈ Zp2 , b ∈ Zp

}
,



ON CATEGORICAL EQUIVALENCE OF FINITE p-RINGS 9

where pϑ = 0 and ϑ2 = pu. The ideal lattices of these rings are four-element chains
regardless of the value of u (as long as u is not congruent to 0 modulo p):

(0) ⊂
(
ϑ2
)

= (p) ⊂ (ϑ) ⊂ (1) .

On the other hand, the ideal lattice of R10 is not a chain. Indeed, we can represent
R10 in the form R10 =

{
a+ bε : a ∈ Zp2 , b ∈ Zp

}
with ε2 = pε = 0, and, for instance,

the ideals (p) and (ε) are incomparable. �

Next we prove that R11 ≡c R12 for every odd prime p. In fact, we shall see that
these two rings are weakly isomorphic. Using the notation introduced in the proof of
the previous lemma, let Ru =

{
a+ bϑ : a ∈ Zp2 , b ∈ Zp

}
with pϑ = 0 and ϑ2 = pu,

where u ∈ Z∗p. Thus the multiplication of Ru is given by

(a+ bϑ) · (c+ dϑ) = (ac+ pubd) + (ad+ bc)ϑ.

We need to prove that Ru and Rv are term equivalent for all u, v ∈ Z∗p (we will not
use the fact that the rings Ru can fall into only two isomorphism classes depending on
the quadratic character of u modulo p). Since the addition operations of the two rings
are the same, it suffices to express the multiplication of one ring as a term operation
of the other.

Lemma 5.4. Let f (x) = (xp − x)
2
. Then f (a+ bϑ) = pub2 for all a+ bϑ ∈ Ru.

Proof. From pϑ = 0 and ϑ2 = pu it follows that ϑ3 = ϑpu = 0. Therefore, we can
ignore all terms involving ϑi (i ≥ 3) from the binomial expansion of (a+ bϑ)

p
:

(a+ bϑ)
p

= ap + p · ap−1bϑ+ p · p− 1

2
· ap−2b2ϑ2.

The last two terms also disappear, since pϑ = 0, hence we have (a+ bϑ)
p

= ap. Now
we can compute f (a+ bϑ):

f (a+ bϑ) = ((ap − a)− bϑ)
2

= (ap − a)
2 − 2 (ap − a) bϑ+ b2ϑ2.

By Fermat’s theorem, ap − a is divisible by p, so (ap − a)
2 ≡ 0

(
mod p2

)
and

(ap − a)ϑ = 0 (as pϑ = 0). We can conclude that f (a+ bϑ) = b2ϑ2 = pub2. �

Theorem 5.5. The rings Ru and Rv are term equivalent for all u, v ∈ Z∗p.

Proof. As noted above, it suffices to represent the multiplication of Rv by a term
operation of Ru, i.e., we need to find a binary term t (x, y) of Ru such that

t (a+ bϑ, c+ dϑ) = (ac+ pvbd) + (ad+ bc)ϑ.

Let g (x, y) = 2−1 · (f (x+ y)− f (x)− f (y)), where 2−1 denotes the multiplicative
inverse of 2 modulo p (e.g., one can put 2−1 = (p+ 1) /2). Using Lemma 5.4, we
obtain

g (a+ bϑ, c+ dϑ) = 2−1 ·
(
pu (b+ d)

2 − pub2 − pud2
)

= 2−1 · pu · 2bd = pubd.

Now let t (x, y) = xy +
(
u−1v − 1

)
· g (x, y) where u−1 is the multiplicative inverse of

u modulo p. By the above calculations, we have

t (a+ bϑ, c+ dϑ) = (ac+ pubd) + (ad+ bc)ϑ+
(
u−1v − 1

)
· pubd

= (ac+ pvbd) + (ad+ bc)ϑ.

�

Corollary 5.6. If R is a ring of order p3 and S is a finite p-ring, then R ≡c S if and
only if either R ∼= S or R ∼= Zp2 [x] /

(
x2 − up, px

)
and S ∼= Zp2 [x] /

(
x2 − vp, px

)
,

where one of u, v ∈ Z∗p is a quadratic residue modulo p and the other one is a quadratic
nonresidue.
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6. The number of generators

In this section we prove that the number of generators is a categorical invariant in
case of finite rings, i.e., if R ≡c S and R is n-generated for some natural number n
then S is n-generated, too. The crucial part of the proof is to handle the case n = 1,
i.e., to show that “one-generatedness” is a categorical property for finite rings. We say
that R is one-generated if there exists an element r ∈ R such that R = 〈r〉1. Observe
that a finite ring is one-generated if and only if its p-components are one-generated,
therefore we can assume without loss of generality that R is a p-ring. We will build
on studies of Korobkov [13] about one-generated rings; however, the definition of one-
generatedness in [13] is different from ours: it requires the existence of an element
r ∈ R with R = 〈r〉. Nevertheless, only minor modifications are needed in order to
adapt the results of [13] to our situation.

Given any (universal) algebra A, let Φ(A) be its Frattini subalgebra, that is, the
intersection of all maximal subalgebras of A. As usually, if A has no maximal sub-
algebras then Φ(A) = A. It is well known that the elements of Φ(A) are the non-
generators of A, that is, such elements a ∈ A that can be removed from any generating
set of A. In what follows, the Frattini subr(i)ng Φ(R) of a r(i)ng R is the intersection
of all maximal subr(i)ngs of R. However, we warn the reader that the same term has
been used in a different meaning, as the name of the intersection of all maximal right
ideals of a given r(i)ng.

We start with a very useful lemma that for rngs was proved in [13]. Only minor
modifications are needed in the ring case.

Lemma 6.1. If R is a finite p-r(i)ng then pR ⊆ Φ(R).

Corollary 6.2. A finite p-ring R is one-generated if and only if the quotient ring
R/pR is one-generated.

Let R be a finite ring of characteristic p with radical J . Then R is a finite di-
mensional algebra over GF(p), hence Wedderburn’s theorem [7] applies. Therefore R
contains a subring G such that R = G⊕J (direct sum of additive subgroups). Clearly
G ∼= R/J and actually G is a maximal semisimple subring of R. Obviously, if R is
commutative then G is a direct sum of fields. Moreover, if R is commutative and
local then G is a field.

Lemma 6.3. Let R be a finite commutative local ring of characteristic p, let J be
its radical and let G be a maximal semisimple subring of R. Then the following are
equivalent:

(1) the ring R is one-generated;
(2) J is a principal ideal of R;
(3) there is a nilpotent element r ∈ R such that R = 〈G, r〉1 (equivalently, R =
〈G, 〈r〉〉1).

Proof. (1)⇒ (2) Let e ∈ G and r ∈ J be such that e+ r generates the ring R. Then,
given any s ∈ J there exists a polynomial f(x) ∈ Z[x] such that f(e+ r) = s. Since R
is commutative, s = f(e+ r) = f(e) + s′ where s′ ∈ (r). Since, f(e) ∈ G and s, s′ ∈ J ,
we conclude s = s′ ∈ (r). Thus, J is a principal ideal of R generated by r.

(2)⇒ (3) This is obvious because R = G⊕ J and J is nilpotent.
(3)⇒ (1) Assume that R = 〈G, r〉1 where r is nilpotent. Note that in our situation

G is a Galois field, hence it is one-generated. Let e ∈ G be a generator for G. Since
char(R) = p and the ring R is commutative, the mapping x 7→ xp is an endomorphism
of R. Obviously, the restriction of this mapping to G is an automorphism of G, thus,
there is a positive integer k such that the k’th power of it is the identity mapping

on G, in particular, ep
k

= e. We may choose k big enough to have rp
k

= 0. Then

e = (e+ r)p
k ∈ 〈e+ r〉1 and also r = e+ r− e ∈ 〈e+ r〉1. But then 〈G, r〉1 = 〈e, r〉1 ⊆

〈e+ r〉1, hence e+ r generates the ring R. �

Now we state a lemma about nilpotent rngs, which is mentioned as a remark and
applied in [11]. For the sake of self-containedness, we include the proof of this lemma.
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Lemma 6.4. Let R and S be finite p-rngs with isomorphic subrng lattices. If there
is a nilpotent element r ∈ R such that R = 〈r〉, then there is an element s ∈ S such
that S = 〈s〉.

Proof. If M is the Frattini subrng of R, then M = R2 + pR (see [14]). Clearly, M
is an ideal of R, and R/M is a rng of characteristic p with zero multiplication. If
R = 〈r〉, then R/M = 〈r +M〉, hence the additive group of R/M is cyclic; in fact,
it must be a cyclic group of order p, as the characteristic of R/M is p. Thus M is
a subrng of index p, therefore it is a maximal subrng. Since M is the intersection of
all maximal subrngs, it follows that M is the only maximal subrng of R. Now since
Subrng (R) ∼= Subrng (S), the rng S has a unique maximal subrng, and obviously
S = 〈s〉 holds for every element s outside of this maximal subrng. �

Theorem 6.5. Let R and S be finite categorically equivalent rings of characteristic
p. If R is local and one-generated then R ∼= S.

Proof. Assume that R is local and one-generated. Since, R is one-generated, it is
commutative. Thus, by Lemma 6.3, R is generated by a Galois subfield G and a
subrng 〈r〉 where r is a nilpotent element of R.

Let F be a categorical equivalence such that F (R) = S. Then by Lemma 3.3,
F (R) is generated by F (G) and the subrng F (〈r〉). Note that by [1], G ∼= F (G).
By Lemma 3.3, the subrng lattices of rngs 〈r〉 and F (〈r〉) are isomorphic, thus by
Lemma 6.4, there is s ∈ S such that F (〈r〉) = 〈s〉. Since R is commutative, the ideal
(r) is nilpotent, thus contained in the radical of R. Since F maps the radical of R
to the radical of S and the radical of a finite ring is nilpotent, it follows that s is
nilpotent.

Our next step is to prove that the ring S is commutative. Here we actually repeat
Korobkov’s argument in his proof of [13], Lemma 15. The ring S is obviously com-
mutative if r = 0 or G = GF(p). Thus, assume that r 6= 0 and G = GF(pm) where
m > 1. Let first m be a prime power. Then R is the ring of type R14 from Theorem
3 of [10]. Hence, R has exactly two maximal subrngs (which actually are subrings).
Then, by Lemma 3.3, S also has exactly two maximal subrngs which implies that S
is one-generated, hence commutative. (Indeed, if the maximal subrings are M1 and
M2, then for any m1 ∈M1 \M2, m2 ∈M2 \M1we have m1 +m2 /∈M1 ∪M2, hence
m1 +m2 generates R.)

Assume now that m is not a prime power. Then m is a product of prime powers
m1, . . . ,mk (k > 1), for different primes, which implies that the ring G is generated by
subfields Gi = GF(pmi) (i = 1, . . . , k). It follows that the set X = G1 ∪ · · · ∪Gk ∪{s}
generates the ring S. Thus, in order to prove commutativity of S, it suffices to prove
that arbitrary x, y ∈ X permute. There are three possiblities: 1) if x = y = s then
obviously xy = yx, 2) if x, y ∈ G1 ∪ · · · ∪ Gk then xy = yx because G1 ∪ · · · ∪ Gk is
contained in the field G, 3) if x ∈ Gi for some i and y = s then xy = yx because the
ring 〈Gi, s〉 is commutative by the previous part of the proof.

We have proved that S is commutative and generated by a Galois subfield and a
nilpotent element. Thus, by Lemma 6.3 S is one-generated. It remains to observe
that the rings R and S are isomorphic. Obviously, if ru = 0 but ru−1 6= 0 then
R ∼= G[x]/(xu). Similarly, if sv = 0 but sv−1 6= 0 then S ∼= G[x]/(xv). Since by
Theorem 4.3 R and S are of same size, we conclude u = v, hence R ∼= S. �

Corollary 6.6. Let R and S be finite categorically equivalent rings of characteristic
p. If R is one-generated then R ∼= S.

Proof. This follows from the well-known fact that every finite commutative ring is
isomorphic to a direct product of local rings. �

Corollary 6.7. Let R and S be finite categorically equivalent p-rings. If R is one-
generated then S is one-generated, too.
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Proof. If R is one-generated then so is R/pR. The pR is the smallest ideal I C R with
the property that R/I is of characteristic p. Therefore R ≡c S implies R/pR ≡c S/pS.
Now Corollary 6.2 yields that S is one-generated. �

Corollary 6.8. Let R and S be finite categorically equivalent p-rings. If R is n-
generated then S is n-generated, too.

Proof. Suppose R is n-generated. Then R has one-generated subrings R1, . . . ,Rn

such that R = 〈R1, . . . , Rn〉1. Let F be a categorical equivalence functor that takes
R to S and let F (Ri) = Si (i = 1, . . . , n). Then S = 〈S1, . . . , Sn〉1. By Corollary 6.7,
the rings S1, . . . ,Sn are one-generated, hence the ring S is n-generated. �

Corollary 6.9. Let R and S be finite categorically equivalent p-rings. If R is free in
the variety it generates then S is free in the variety it generates, too.

Proof. This follows from Corollary 6.8, Theorem 4.3 and the fact that in every finitely
generated variety the free algebra in n generators is the largest n-generated algebra
of that variety. �

7. Concluding remarks

Our results show that in the class of finite p-rings (for fixed p) the categorically
equivalent rings have very similar structure though they need not be isomorphic. We
conjecture that finite categorically equivalent p-rings are necessarily weakly isomor-
phic. Another important open question is whether the commutativity of finite rings
is a categorical property. We plan to attack these problems in our further research
work.
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