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LAZY GROUPOIDS

BALÁZS KAPRINAI, HAJIME MACHIDA, AND TAMÁS WALDHAUSER

Abstract. A binary operation f(x, y) is said to be lazy if every operation that

can be obtained from f by composition is equivalent to f(x, y), f(x, x) or x.

We describe lazy operations by identities (i.e., we determine all varieties of lazy
groupoids), and we also characterize lazy groupoids up to isomorphism.

1. Introduction

Given a (not necessarily associative) binary operation f(x, y) = xy, we can form
many other operations by composing f by itself, such as (xy)z, ((xy)(zu))(u(yv)),
x1(x2(x3 · · · (xn−1xn))), etc. These composite operations can have arbitrarily many
variables, but sometimes it happens that they do not depend on all of their variables.
Consider, for example, a rectangular band, i.e., a semigroup satisfying the identities
xx ≈ x (idempotence) and xyz ≈ xz. These identities imply x1x2 · · ·xn ≈ x1xn for
all n ∈ N, thus every product can be reduced to a product of at most two variables.
It is natural to say that the multiplication of a rectangular band is lazy, since it only
generates the operations f(x, y) and f(x, x) (up to renaming variables), and we can
get these from f by simply identifying variables, hence composition is “unproductive”
in this case.

Motivated by this example, we shall say that a binary operation f on a set A is
lazy, if the only operations that can be obtained from f by composition are f(x, y) and
f(x, x). We will give a more precise definition of laziness for operations of arbitrary
arities in the Section 2. The main goal of this paper is to describe all lazy binary
operations and the corresponding groupoids (A; f). In Section 3 we will characterize
lazy groupoids by identities: we will prove that they fall into 15 varieties (Theorem 3.5).
One of these varieties is the semigroup variety defined by (xy)z ≈ x(yz) ≈ xz, which
contains rectangular bands as a subvariety. We will determine all subvarieties of the
15 maximal lazy groupoid varieties in Section 4 (Theorem 4.2).

In Section 5 we give a more concrete description of lazy groupoids: we characterize
them up to isomorphism by explicitly constructing their multiplication tables. This
description is similar in spirit to the well known construction of rectangular bands as
groupoids of the form (A1 × A2; ·), where the multiplication is defined by (a1, a2) ·
(b1, b2) = (a1, b2).

Lazy operations were originally defined in [5] in connection with essentially minimal
clones. The 15 varieties of lazy groupoids were described already in the conference
paper [6] (but the proof of Theorem 3.5 was only sketched there), and then an applica-
tion to essentially minimal clones was given. Thus, the present paper can be regarded
as an extended version of [6], the new contributions being the determination of all
(sub)varieties of lazy groupoids and the explicit description of lazy groupoids up to
isomorphism.

2. Preliminaries

An n-ary operation on a nonempty set A is a map f : An → A. We denote the set

of n-ary operations on A by O(n)
A , and OA stands for the set of all finitary operations
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on A. We say that the i-th variable of f ∈ O(n)
A is essential (in other words, f depends

on its i-th variable) if there exist a1, . . . , ai, a
′
i, . . . , an ∈ A such that

f(a1, . . . , ai, . . . , an) 6= f(a1, . . . , a
′
i, . . . , an).

For 1 ≤ i ≤ n ∈ N we define the i-th n-ary projection e
(n)
i ∈ O(n)

A by e
(n)
i (x1, . . . , xn) =

xi. The set of all projections on A is denoted by JA. Observe that e
(1)
1 = id is the

identity function on A.
A clone is a set C ⊆ OA of operations that is closed under composition and contains

every projection. The clone generated by a given operation f is the clone [f ] contain-
ing all operations that can be obtained from f and the projections by composition.
Equivalently, [f ] is the clone of term functions of the algebra A = (A; f). If f is a
binary operation, then we will use the notation f(x, y) = x · y = xy, and then the
algebra A = (A; f) = (A; ·) is called a groupoid. For the sake of simplicity, let us say
that the groupoid A is essentially binary (essentially at most unary) if f depends on
both of its variables (f depends on at most one variable).

For f ∈ O(n)
A and g ∈ O(m)

A , we say that g is an identification minor (or simply a
minor) of f (notation: g � f), if there exists a map σ : {1, 2, . . . , n} → {1, 2, . . . ,m}
such that

g(x1, . . . , xm) = f(xσ(1), . . . , xσ(n)).

This means that g can be obtained from f by identifying variables, permuting variables
and introducing inessential variables. The relation � gives rise to a quasiorder on OA.
The corresponding equivalence relation is defined by f ≡ g ⇐⇒ f � g and g � f ,
and it is clear that f ≡ g if and only if they differ only in inessential variables and/or
in the order of their variables. Note that for any f ∈ OA, we have f ≡ id if and only
if f ∈ JA. We use the notation ↓ f for the principal ideal (downset) generated by f
in the subfunction quasiorder: ↓f := {g ∈ OA : g � f}. Note that the set ↓f contains
only one unary operation, namely f(x, . . . , x). For more information on the minor
quasiorder and its principal ideals, see [4].

Clearly, JA∪ ↓ f ⊆ [f ] holds for every operation f . If [f ] = JA∪ ↓ f , then we say
that f is a lazy operation and [f ] is a lazy clone. Thus f is a lazy operation if it does
not generate any other operations but its identification minors and projections.

Example 2.1. A unary operation f ∈ O(1)
A is lazy if and only if the algebra (A; f)

satisfies f2(x) ≈ x or f2(x) ≈ f(x) (where f2(x) stands for f(f(x))). Indeed, if f
is lazy, then f2 ∈ JA∪ ↓ f , and the latter set contains only two operations up to
equivalence, namely id and f . Thus we have f2 ≡ id (hence f2(x) ≈ x) or f2 ≡ f
(hence f2(x) ≈ f(x)). Conversely, each one of the given identities implies that [f ] =
{id, f}, and thus f is lazy.

Example 2.2. If f is idempotent, i.e., f(x, . . . , x) ≈ x, then JA ⊆↓ f , hence in this
case laziness is equivalent to [f ] =↓f . Lazy idempotent operations can be constructed
as follows. Let A1, . . . , An be nonempty sets, and let us define an n-ary operation f
on A1 × · · · ×An by

f
(
(a11, . . . , a

1
n), . . . , (an1 , . . . , a

n
n)
)

= (a11, . . . , a
n
n)

for all aji ∈ Ai (i, j = 1, 2, . . . , n). Note that the algebra (A1 × · · · × An; f) is the

direct product of the algebras
(
Ai; e

(n)
i

)
(i = 1, 2, . . . , n). These algebras were called

n-dimensional diagonal algebras in [7] and n-ary rectangular bands in [6] (cf. the
construction of binary rectangular bands in Section 1). It was shown in [7, 6] that an

idempotent operation f ∈ O(n)
A is lazy if and only if (A; f) is (isomorphic to) an n-ary

rectangular band.

Remark 2.3. For f ∈ O(n)
A and k ∈ {1, 2, . . . , n}, let fk ∈ O(2n−1)

A denote the function
obtained from f by substituting f for its k-th variable; more precisely,

fk(x1, . . . , x2n−1) := f(x1, . . . , xk−1, f(xk, . . . , xk+n−1), xk+n, . . . , x2n−1).
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Clearly, if the operation f ∈ O(n)
A is lazy then fk � f or fk ∈ JA for every k ∈

{1, 2, . . . , n}. This is a simple necessary condition for laziness, and it will serve as a
starting point for our investigation of lazy binary operations. Note, however, that this
condition is not sufficient for laziness, as it is shown by the following example. Let us
consider the binary operation f (x, y) = xy on the set A = {0, 1, 2} that is defined by
the multiplication table below.

0 1 2

0 1 1 0

1 1 1 0

2 0 0 0

One can verify that this groupoid satisfies the identities (xy)z ≈ z2 and x(yz) ≈ x2,
which means that the functions f1(x, y) = (xy) z and f2 (x, y) = x(yz) are both minors
of f . However, f is not a lazy operation, because g (x, y, z, u) := (xy)(zu) is constant
1, and g /∈ JA∪ ↓f .

3. Characterizing lazy groupoids by identities

Let f(x, y) = x · y = xy denote a binary operation on an arbitrary nonempty set
A, and let A denote the groupoid (A; f) = (A; ·). The dual of A is the groupoid Ad =
(A; g), where g(x, y) = yx, and the dual of a groupoid variety V is V d =

{
Ad : A ∈ V

}
.

Clearly, a groupoid is lazy if and only if its dual is lazy.
If f depends only on at most one variable, then we have either f(x, y) = g(x) or

f(x, y) = g(y) for some unary operation g. According to Example 2.1, f is lazy if
and only if g satisfies either g(g(x)) ≈ g(x) or g(g(x)) ≈ x. This yields the following
description of essentially at most unary lazy groupoids.

Lemma 3.1. If A is a lazy essentially at most unary groupoid, then A belongs to one
of the following four varieties:

U : xy ≈ xz, (xy)z ≈ xy; Ud : xy ≈ zy, x(yz) ≈ yz;
Ũ : xy ≈ xz, (xy)z ≈ x; Ũd : xy ≈ zy, x(yz) ≈ z.

Proof. The fact that f does not depend on its second variable can be expressed by
the identity xy ≈ xz. Using the unary operation g as above, g(g(x)) ≈ g(x) translates
to (xy)z ≈ xy and g(g(x)) ≈ x translates to (xy)z ≈ x, yielding the varieties U and

Ũ . If f does not depend on its first variable, then we obtain the dual varieties Ud and

Ũd. �

In the sequel, we will assume that f depends on both of its variables. We have
f1(x, y) = (xy)z and f2(x, y) = x(yz); see Remark 2.3. If f is a lazy operation then
f1, f2 ∈ JA∪ ↓ f , hence A satisfies the identities (xy)z ≈ t1 and x(yz) ≈ t2 for some
choice of the terms t1, t2 ∈

{
x, y, z, x2, y2, z2, xy, yx, yz, zy, xz, zx

}
. This gives us 144

possibilities; we will prove that only 20 of these are possible. Examining these cases,
we will find that essentially binary lazy groupoids belong to 13 varieties, each being
defined by two identities.

Lemma 3.2. If the binary operation f(x, y) = xy satisfies the identity (xy)z ≈ t1 for
some t1 ∈ {x, y, z, zy, zx, yx}, or it satisfies x(yz) ≈ t2 for some t2 ∈ {z, y, x, yx, zx, zy},
then f is essentially at most unary.

Proof. The identity (xy)z ≈ t1(x, y, z) implies

t1(xy, z, u) ≈ ((xy)z)u ≈ t1(x, y, z) · u.
If t1 = x, then we obtain xy ≈ xu, which shows that xy does not depend on y. If t1 =
zy, then we get uz ≈ (zy)u, which yields uz ≈ uy after applying (zy)u ≈ t1(z, y, u),
hence f does not depend on its second variable.

Let us now consider the case t1 = yx. Then we have

z(xy) ≈ t1(xy, z, u) ≈ ((xy)z)u ≈ t1(x, y, z) · u ≈ (yx)u ≈ t1(y, x, u) ≈ xy,
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which immediately implies (vw)(xy) ≈ xy.On the other hand, (vw)(xy) ≈ t1(v, w, xy) ≈
wv. Thus xy ≈ wv, i.e., f is a constant operation.

Similar arguments work for the remaining three cases; we summarize them in Ta-
ble 1 of Appendix A. The identities x(yz) ≈ t2 are the duals of the above ones. �

Now we are left with 36 pairs (t1, t2); these possibilities are summarized in Table 2.
We will prove in the next two lemmas that the entries marked by ‘−’ contradict the
assumption that f is essentially binary, while the other cases give rise to 7 varieties
L1, . . . , L7 of lazy groupoids together with their duals (note that L7 is selfdual).

Lemma 3.3. Let A be an essentially binary groupoid. If A is lazy, then it belongs
to one of the 13 varieties L1, . . . , L7, L

d
1, . . . , L

d
6, which are defined by the following

identities:

L1 : (xy)z ≈ x2, x(yz) ≈ x2;

L2 : (xy)z ≈ x2, x(yz) ≈ xy;

L3 : (xy)z ≈ xy, x(yz) ≈ x2;

L4 : (xy)z ≈ xz, x(yz) ≈ x2;

L5 : (xy)z ≈ xy, x(yz) ≈ xy;

L6 : (xy)z ≈ xz, x(yz) ≈ xy;

L7 : (xy)z ≈ xz, x(yz) ≈ xz.

Proof. We can derive the following three identities from (xy)z ≈ t1 and x(yz) ≈ t2:

t1(x, y, zu) ≈ (xy)(zu) ≈ t2(xy, z, u);(3.1a)

t1(x, yz, u) ≈ (x(yz))u ≈ t2(x, y, z) · u;(3.1b)

x · t1(y, z, u) ≈ x((yz)u) ≈ t2(x, yz, u).(3.1c)

In all the 16 cases marked by ‘−’ in Table 2, at least one of the above three identities
contradicts the essentiality of the operation f . We work out the details only for
t1 ≈ y2, t2 ≈ xy (here we will need the identity (3.1c)); the other cases are similar or
even simpler (see Table 3):

xz2 ≈ x · t1(y, z, u) ≈ x((yz)u)

≈ t2(x, yz, u) ≈ x(yz) ≈ xy.

Now it only remains to verify the entries marked by L1 ∩Ld1 in Table 2. These can
be handled with the help of the identities (3.1); again, we provide details only for one
case, namely for t1 ≈ y2, t2 ≈ x2, and refer to Table 3 for the remaining cases. Note
that the variety L1 ∩ Ld1 is axiomatized by the identities (xy)z ≈ x(yz) ≈ x2 ≈ z2.
This means that a groupoid A belongs to L1 ∩Ld1 if and only if A is a semigroup and
there is a constant c ∈ A such that xyz ≈ x2 ≈ c. It is clear that such semigroups
satisfy (xy)z ≈ y2 and x(yz) ≈ x2. Conversely, assume now that (xy)z ≈ y2 and
x(yz) ≈ x2 hold in a groupoid A. Let us write out (3.1b):

(yz)2 ≈ t1(x, yz, u) ≈ (x(yz))u ≈ t2(x, y, z) · u ≈ x2u.

We can conclude that (yz)2 depends neither on y nor on z, hence there is a constant
c ∈ A such that (yz)2 ≈ c. Now let us use (3.1a):

z2 ≈ t1(y, z, vu) ≈ (yz)(vu) ≈ t2(yz, v, u) ≈ (yz)2.

This implies that z2 is constant c, hence A satisfies (xy)z ≈ x(yz) ≈ x2 ≈ c; therefore,
A ∈ L1 ∩ Ld1.

The entry marked by L1∩Ld1(!) in Table 2 is special in the sense that the identities
(xy)z ≈ z2, x(yz) ≈ x2 do not guarantee laziness (see the example in Remark 2.3).
Here (3.1a) yields (zu)2 ≈ (xy)2, i.e., (xy)2 is constant. Since the only constant
in JA∪ ↓ f is the diagonal operation f(x) = x2, laziness implies that x2 must be
constant. Then we have (xy)z ≈ x(yz) ≈ x2 ≈ z2, hence A ∈ L1 ∩ Ld1. �
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In order to complete the description of lazy groupoids, we still need to verify that
every groupoid in the varieties L1, . . . , L7, L

d
1, . . . , L

d
6 defined in Lemma 3.3 is indeed

lazy. In the following, whenever we use one of the two defining identities for any one

of our varieties, we write “
1.
≈ ” or “

2.
≈ ” to indicate whether we have used the first or

the second identity (as listed in Lemma 3.3).

Lemma 3.4. If a groupoid A belongs to one of the 13 varieties L1, . . . , L7, L
d
1, . . . , L

d
6,

then A is lazy.

Proof. Assume that A is a groupoid in L4 (the proof for the other varieties is very
similar; see Table 4). We prove by term induction that every term of A is equivalent to
x or xy (allowing that x and y are the same variable). Let t be a term that contains at
least two multiplications (i.e., at least three, not necessarily distinct variables). Then
t = s1 · s2, where the terms s1 and s2 are shorter than t, hence, by the induction hy-
pothesis, they are equivalent to a variable or to a product of two variables. Therefore,
we have the following three possibilities with some (not necessarily distinct) variables
x, y, z, u:

s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xz;

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ x2;

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x(zu)

2.
≈ x2.

Thus, every term over L4 is indeed equivalent to a variable or a product of two
variables, showing that every member of L4 is a lazy groupoid. �

Theorem 3.5. A groupoid A is lazy if and only if it belongs to one of the 15 varieties

L1, . . . , L7, L
d
1, . . . , L

d
6, Ũ , Ũ

d.

Proof. For essentially binary groupoids the “only if” part is covered by Lemma 3.3,
while the “if” part follows from Lemma 3.4 and its dual. For essentially unary groupoids
we can use Lemma 3.1. We do not need to list U and Ud, since U ⊆ Li for every i
(cf. Figure 1). �

4. Varieties of lazy groupoids

It is easy to verify that the proper subvarieties of U , Ũ and their duals are the
varieties LZ (left zero semigroups), RZ (right zero semigroups), Z (zero semigroups)
and T (trivial semigroups), as shown in Figure 1:

LZ : x ≈ xy; RZ : x ≈ yx; Z : xy ≈ zu; T : x ≈ y.
Having determined all varieties of essentially at most unary lazy groupoids, let

us now deal with subvarieties of L1, . . . , L7. We get such subvarieties by adding
some extra identities to the defining two identities of Li (i = 1, . . . , 7). Let V be
the intersection of Li and the variety defined by the identity p ≈ q (we assume
p 6= q). Laziness of Li implies that p and q are both equivalent to a product of two
(not necessarily distinct) variables over V . If one of p and q involves two different
variables, say p = xy, but q does not involve both x and y, then p ≈ q implies that

f is essentially at most unary, hence V is a subvariety of U , Ud, Ũ or Ũd. If x and y
both occur in q, then we get xy ≈ yx (commutativity). The remaining cases, when at
most one variable occurs on both sides, are the following: x2 ≈ y2 (the main diagonal
of the multiplication table is constant), x2 ≈ y (satisfied only by trivial groupoids),
x2 ≈ x (idempotence), x ≈ y (satisfied only by trivial groupoids). Thus, in order to
determine all non-unary subvarieties of Li, we need to compute the intersection of Li
by one or more of the following three varieties:

I : x2 ≈ x; D : x2 ≈ y2; C : xy ≈ yx.

Lemma 4.1. If a groupoid A belongs to one of the 21 varieties Li∩V (i = 1, . . . , 7, V =
I,D,C), then A is essentially at most unary, with the exception of the 3 varieties
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Figure 1. The semilattice of lazy groupoid varieties

L1 ∩D, L1 ∩C and L7 ∩ I = RB (here, and in the sequel, RB denotes the variety of
rectangular bands).

Proof. We consider only L3; the other cases can be seen in Table 5. Recall that L3 is

defined by (xy)z ≈ xy and x(yz) ≈ x2. As before, we will use
1.
≈ and

2.
≈ when we use one

of these two identities, and we write
I
≈,

D
≈ and

C
≈ to indicate that we use the defining

identity of I, D and C, respectively. In the variety L3 ∩ I we have xy
I
≈ (xx)y

1.
≈ xx,

showing that xy does not depend on y. In L3∩D we have xy
1.
≈ (xy)(zu)

2.
≈ (xy)2

D
≈ x2,

which means again that xy does not depend on y. Finally, in L3 ∩ C we can deduce

xy
1.
≈ (xy)z

C
≈ z(xy)

2.
≈ z2, thus xy depends neither on x nor on y. �

Theorem 4.2. There are 24 varieties of lazy groupoids, and they form the meet
semilattice shown in Figure 1 (semigroup varieties are indicated by filled circles).

Proof. By Theorem 3.5 every lazy groupoid belongs to L1, . . . , L7, U, Ũ or to the duals

of these varieties. We have already determined the subvarieties of U and Ũ , and
Lemma 4.1 describes all subvarieties of L2, . . . , L7 (and their duals). Lemma 4.1 also
implies that for L1 and its dual we need to consider L1 ∩D, L1 ∩ C, Ld1 ∩D, Ld1 ∩ C
and any intersections of these. It is clear that L1∩C is selfdual, i.e., L1∩C = Ld1 ∩C.
The variety L1 ∩D is defined by (xy)z ≈ x(yz) ≈ x2 ≈ z2, hence it it also selfdual:
L1 ∩ D = Ld1 ∩ D. Therefore, the only variety that could be possibly missing from
Figure 1 is L1 ∩ D ∩ C. However, this coincides with L1 ∩ C, as L1 ∩ C ⊆ L1 ∩ D.
Indeed, we can derive x2 ≈ y2 from commutativity and the two defining identities of
L1:

x2
1.
≈ (xz)y

C
≈ y(xz)

2.
≈ y2.

To prove that the 24 varieties in Figure 1 are all distinct, we give the operation
tables of their two-generated free algebras in Appendix B (we include only one member
of each pair of dual varieties, and we omit T ). It remains to prove the containments
indicated in Figure 1. All of these are straightforward to verify, with the exception of
L1 ∩ C ⊆ L1 ∩D, which we have already proved. �
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5. Characterizing lazy groupoids up to isomorphism

We will give a concrete description of groupoids in the varieties L1, . . . , L7 in this
section (we do not write out the details for the dual varieties Ld1, . . . , L

d
6, and we also

ignore the trivial unary cases Ũ and Ũd).
Let us start with the variety L7, which is the semigroup variety defined by xyz ≈ xz.

If A ∈ L7, then the set E of the idempotent elements in A forms a rectangular
band. We will prove below in Theorem 5.1 that A is an inflation of the rectangular
band E = (E; ·). This means that each idempotent e ∈ E has a “neighborhood”
Ne containing e such that {Ne : e ∈ E} is a partition of A (in particular, the only
idempotent in Ne is e), and for each a ∈ Ne, b ∈ Nf we have ab = ef . In other words,
A can be constructed from the rectangular band E by “inflating” each element e ∈ E
to a set Ne. Together with the well-known characterization of rectangular bands as
direct products of a left zero semigroup and a right zero semigroup, this provides an
explicit description of the members of L7. This result appeared in [1] (and perhaps it
has been known even earlier), but we include the proof for completeness.

Theorem 5.1. A groupoid A belongs to the variety L7 if and only if there is a subset
E ⊆ A and a partition {Ne : e ∈ E}, such that E = (E; ·) is a rectangular band, and

(5.1) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a2 = e and ab = ef.

Proof. Suppose first that A ∈ L7, let E =
{
e ∈ A : e2 = e

}
and letNe =

{
a ∈ A : a2 = e

}
.

Clearly, the sets Ne (e ∈ E) are pairwise disjoint and nonempty (since e ∈ Ne); more-

over, for all a ∈ A we have (a2)2 = (aa)(aa)
1.
= a(aa)

2.
= a2, hence e := a2 is idempotent

and a ∈ Ne. This shows that {Ne : e ∈ E} is indeed a partition of A. The set E is

closed under multiplication, as (ef)2 = (ef)(ef)
1.
= e(ef)

2.
= ef for all e, f ∈ E. There-

fore (E; ·) is a subsemigroup, and it satisfies the identities xyz ≈ xz and x2 ≈ x, hence
it is a rectangular band. It only remains to prove ab = ef for all a ∈ Ne, b ∈ Nf :

ab
1.
= (aa)b

2.
= (aa)(bb) = a2b2 = ef.

Now assume that E ⊆ A such that E = (E; ·) is a rectangular band, and {Ne : e ∈ E}
is a partition of A such that (5.1) holds. In order to verify that A satisfies the identity
(xy)z ≈ xz, let us consider arbitrary elements a, b, c ∈ A. Then a ∈ Ne, b ∈ Nf
and c ∈ Ng for some e, f, g ∈ E. From the second equality of (5.1) it follows that
ab = ef and ac = eg. Since E is closed under multiplication, h := ef belongs to E,
and h2 = h, as E is a band. The first equality of (5.1) implies that h ∈ Nh, and then
we have hc = hg by the second equality of (5.1). Putting everything together, we
obtain (ab)c = ac:

(ab)c = (ef)c = hc = hg = (ef)g
RB
= eg = ac,

where in the equality marked by RB we used the assumption that E is a rectangular
band. We have proved that A satisfies the identity (xy)z ≈ xz, and the identity
x(yz) ≈ xz can be verified in a similar way, proving that A ∈ L7. �

For the varieties L1, . . . , L6, we will give similar characterizations in the following
six theorems. Groupoids belonging to L6 were described in [3] as unions of constant
semigroups, which is essentially the same as Theorem 5.9 below, but our proof is dif-
ferent. Semigroups satisfying xyz ≈ xy were investigated and characterized in [2]; our
Theorem 5.8 gives a different (and perhaps simpler) description. The characteriza-
tions will be given in terms of a partition {Ne : e ∈ E} similarly to Theorem 5.1, but
we will also need to specify a subset Se ⊆ Ne for all e ∈ E. Let us fix the notation for
later reference:

Notation 5.2. Let E ⊆ A, and let {Ne : e ∈ E} be a partition of A; moreover, for
every e ∈ E, let Se ⊆ Ne such that e ∈ Se.

Remark 5.3. Most of the time (with the exception of L5), the setup will be the same
as in Theorem 5.1: E will be the set of idempotents, Ne =

{
a ∈ A : a2 = e

}
and Se
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will be the set of factorizable elements in Ne, i.e., Se = Ne ∩ {ab : a, b ∈ A}. To see
that {Ne : e ∈ E} is indeed a partition of A, it suffices to note that (xx) (xx) ≈ xx
holds in L1, . . . , L6 (by the same argument as in the second sentence of the proof of
Theorem 5.1). This implies that the square of any element is idempotent, therefore
the sets Ne cover A.

Theorem 5.4. A groupoid A belongs to the variety L1 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.2) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a2 = e and

ab = e, if a ∈ Se, b ∈ Sf ;

ab = e, if a ∈ Se, b ∈ Nf \ Sf ;

ab = e, if a ∈ Ne \ Se, b ∈ Sf ;

ab ∈ Se, if a ∈ Ne \ Se, b ∈ Nf \ Sf .

Proof. First assume that A ∈ L1 and recall that L1 is defined by (xy)z ≈ x2 and
x(yz) ≈ x2. Let us consider the partition described in Remark 5.3; then the first
equality of (5.2) is automatically satisfied. For the other four statements, let a ∈ Ne
and b ∈ Nf . We have (ab)2 = (ab)(ab)

1.
= a2 = e, thus ab ∈ Ne. Therefore ab ∈ Se, as

ab is obviously factorizable, and this verifies the last statement of (5.2). If b ∈ Sf , i.e.,

b = b1b2 for some b1, b2 ∈ A, then ab = a(b1b2)
2.
= a2 = e. Similarly, if a = a1a2 ∈ Se,

then ab = (a1a2)b
1.
= a21

1.
= (a1a2)2 = a2 = e. This proves that (5.2) is satisfied.

Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such
that (5.2) holds. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng. From
(5.2) we see that ab ∈ Se and bc ∈ Sf , and then, again from (5.2), we obtain

(ab)c = e = a2, a(bc) = e = a2.

This shows that A satisfies (xy)z ≈ x(yz) ≈ x2, hence A ∈ L1. �

Theorem 5.4 allows us to construct the multiplication table of any groupoid in L1

as follows. Fix an arbitrary nonempty set A, and choose a partition {Ne : e ∈ E} of
A as in Notation 5.2. Then define a multiplication on A such that (5.2) is satisfied (if
a ∈ Ne \ Se and b ∈ Nf \ Sf , then we can choose ab to be any element of Se). This
gives a groupoid in L1, and every member of L1 can be obtained this way. A part of
such an operation table can be seen in Appendix C. Only two blocks of the partition
are displayed; the elements of Se are denoted by e = s0, s1, . . . and the elements
of Ne \ Se are denoted by a1, a2, . . . (and similarly for Sf and Nf \ Sf ). However,
this is only for notational convenience: these sets can have arbitrary cardinalities (not
necessarily countable). Appendix C contains similar tables for the varieties L2, . . . , L6,
illustrating the following five theorems.

Theorem 5.5. A groupoid A belongs to the variety L2 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.3) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a2 = e and

ab = af = e, if a ∈ Se, b ∈ Sf ;

ab = af = e, if a ∈ Se, b ∈ Nf \ Sf ;

ab = af ∈ Se, if a ∈ Ne \ Se, b ∈ Sf ;

ab = af ∈ Se, if a ∈ Ne \ Se, b ∈ Nf \ Sf .

Proof. First assume that A ∈ L2 and recall that L2 is defined by (xy)z ≈ x2 and
x(yz) ≈ xy. Let us consider the partition described in Remark 5.3. Let a ∈ Ne and

b ∈ Nf . We have (ab)2 = (ab)(ab)
1.
= a2 = e, hence ab ∈ Se. Moreover, ab

2.
= a(bb) =

af , and if a = a1a2 ∈ Se, then ab = (a1a2)b
1.
= a21

1.
= (a1a2)2 = a2 = e. This proves

that (5.3) is satisfied.
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Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such
that (5.3) holds. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng. From
(5.3) we see that ab ∈ Se and bc ∈ Sf , and then, again from (5.3), we obtain

(ab)c = e = a2, a(bc) = af = ab.

This shows that A satisfies (xy)z ≈ x2 and x(yz) ≈ xy, hence A ∈ L2. �

Theorem 5.6. A groupoid A belongs to the variety L3 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.4) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a2 = e and

ab = e, if a ∈ Se, b ∈ Sf ;

ab = e, if a ∈ Se, b ∈ Nf \ Sf ;

ab = e, if a ∈ Ne \ Se, b ∈ Sf ;

ab ∈ E, if a ∈ Ne \ Se, b ∈ Nf \ Sf .

Proof. First assume that A ∈ L3 and recall that L3 is defined by (xy)z ≈ xy and
x(yz) ≈ x2. Let us consider the partition described in Remark 5.3. Let a ∈ Ne and

b ∈ Nf ; then (ab)(ab)
1.
= ab, which means that every product is idempotent (this

already proves the last statement of (5.4)). In particular, if a = a1a2 ∈ Se, then
a2 = a. However, the construction of the partition implies that a2 = e, thus we can
conclude that a = e. (Note that this means that Se = {e}.) Now we can write ab as

ab = (a1a2)b
1.
= a1a2 = a = e. If b = b1b2 ∈ Sf , then ab = a(b1b2)

2.
= a2 = e, hence

(5.4) holds.
Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such

that (5.4) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng.
From (5.4) we see that ab =: e′ and bc =: f ′ belong to E, and the construction of the
partition implies that e′ ∈ Se′ and f ′ ∈ Sf ′ (cf. Notation 5.2). Now we can calculate
using (5.4) as follows:

(ab)c = e′c = e′ = ab, a(bc) = af ′ = e = a2.

This proves that A satisfies (xy)z ≈ xy and x(yz) ≈ x2, hence A ∈ L3. �

In the first half of the proof we observed that if the partition is chosen as in
Remark 5.3, then each Se is a singleton. However, if we choose an arbitrary partition as
in Notation 5.2 and we define the multiplication according to (5.4), then the resulting
groupoid will be in L3. This is not a contradiction: given such an operation table
(like the one in Appendix C), we can redefine the set Se so that Se = {e} (i.e., we
“move” all elements of Se to Ne \Se except for the element e) for each e ∈ E, without
changing the multiplication table. Then the groupoid will still satisfy (5.4) for these
new sets.

Theorem 5.7. A groupoid A belongs to the variety L4 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.5) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have a2 = e and

ab = eb = e, if a ∈ Se, b ∈ Sf ;

ab = eb ∈ Se, if a ∈ Se, b ∈ Nf \ Sf ;

ab = eb = e, if a ∈ Ne \ Se, b ∈ Sf ;

ab = eb ∈ Se, if a ∈ Ne \ Se, b ∈ Nf \ Sf .

Proof. First assume that A ∈ L4 and recall that L4 is defined by (xy)z ≈ xz and
x(yz) ≈ x2. Let us consider the partition described in Remark 5.3. If a ∈ Ne and

b ∈ Nf , then (ab)
2

= (ab)(ab)
1.
= a(ab)

2.
= a2 = e, which means that ab ∈ Se. We also

have ab
1.
= (aa)b = eb; furthermore, if b = b1b2 ∈ Sf , then eb = e(b1b2)

2.
= e2 = e. This

proves that (5.5) holds.
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Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such
that (5.5) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng.
From (5.5) we see that ab ∈ Se and bc ∈ Sf . Therefore, using (5.5) again, we obtain

(ab)c = ec = ac, a(bc) = e = a2.

This shows that A satisfies (xy)z ≈ xz and x(yz) ≈ x2, hence A ∈ L4. �

Theorem 5.8. A groupoid A belongs to the variety L5 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.6) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have

ab = af = a, if a ∈ Se, b ∈ Sf ;

ab = af = a, if a ∈ Se, b ∈ Nf \ Sf ;

ab = af ∈ Se, if a ∈ Ne \ Se, b ∈ Sf ;

ab = af ∈ Se, if a ∈ Ne \ Se, b ∈ Nf \ Sf .

Proof. First assume that A ∈ L5 and recall that L5 is defined by (xy)z ≈ xy and
x(yz) ≈ xy. This time our partition will be different from that of Remark 5.3. We
introduce an equivalence relation on A: let us write a ∼ b if the right multiplications
by a and b coincide, i.e., if ca = cb for all c ∈ A (in other words, the columns of a

and b in the multiplication table are the same). Since ca
2.
= c(aa) for every c ∈ A,

we have a ∼ a2. As noted in Remark 5.3, a2 is idempotent: (aa)(aa)
1.
= aa. Thus

every equivalence class with respect to ∼ contains at least one idempotent element.
Therefore, we can choose a complete set of representatives E consisting of idempotent
elements. Let Ne denote the equivalence class of e ∈ E, and let Se be the set of
factorizable elements in Ne, as before.

If a ∈ Ne and b ∈ Nf , then ab = af , as b ∼ f . Moreover, a ∼ e implies that for

every c ∈ A, we have ce = ca
2.
= c(af), hence e ∼ af , which means that af ∈ Se. If

a = a1a2 ∈ Se, then ab = af = (a1a2)f
1.
= a1a2 = a. This proves that (5.6) holds.

Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such
that (5.6) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng.
From (5.6) we see that ab ∈ Se and bc ∈ Sf . Therefore, using (5.6) again, we obtain

(ab)c = ab, a(bc) = af = ab.

This shows that A satisfies (xy)z ≈ x(yz) ≈ xy, hence A ∈ L5. �

Theorem 5.9. A groupoid A belongs to the variety L6 if and only if there is a partition
{Ne : e ∈ E} as in Notation 5.2, such that

(5.7) for all e, f ∈ E and a ∈ Ne, b ∈ Nf , we have ab = ef ∈ Se.

Proof. First assume that A ∈ L6 and recall that L6 is defined by (xy)z ≈ xz and
x(yz) ≈ xy. We use again the partition described in Remark 5.3. If a ∈ Ne and

b ∈ Nf , then (ab)2 = (ab)(ab)
1.
= a(ab)

2.
= a2 = e, therefore ab ∈ Se. On the other

hand, we can express ab as ab
1.
= (aa)b

2.
= (aa)(bb) = ef , which proves that (5.7) holds.

Conversely, suppose that {Ne : e ∈ E} is a partition of A as in Notation 5.2, such
that (5.7) is satisfied. Let us compute (ab)c and a(bc) for a ∈ Ne, b ∈ Nf , c ∈ Ng.
From (5.7) we see that ab ∈ Se and bc ∈ Sf . Therefore, using (5.7) again, we obtain

(ab)c = eg = ac, a(bc) = ef = ab.

This shows that A satisfies (xy)z ≈ xz and x(yz) ≈ xy, hence A ∈ L6. �
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Appendix A. Detailed case analyses for the proofs of some lemmas

Table 1. Summary of the proof of Lemma 3.2

t1

x xy ≈ t1(xy, z, u) ≈ t1(x, y, z)u ≈ xu xu does not depend on u

y z ≈ t1(xy, z, u) ≈ t1(x, y, z)u ≈ yu yu does not depend on y, u

z u ≈ t1(xy, z, u) ≈ t1(x, y, z)u ≈ zu zu does not depend on z

zy uz ≈ t1(xy, z, u) ≈ t1(x, y, z)u

≈ (zy)u ≈ t1(z, y, u) ≈ uy uy does not depend on y

zx u(xy) ≈ t1(xy, z, u) ≈ t1(x, y, z)u

≈ (zx)u ≈ t1(z, x, u) ≈ uz uz does not depend on z

yx wv ≈ t1(v, w, xy) ≈ (vw)(xy)

≈ t1(xy, vw, u) ≈ t1(x, y, vw)u

≈ (yx)u ≈ t1(y, x, u) ≈ xy xy does not depend on x, y

Table 2. The 36 cases of Lemma 3.3

t2

x2 y2 z2 xy yz xz

x2 L1 L1 ∩ Ld1 L1 ∩ Ld1 L2 − −

y2 L1 ∩ Ld1 L1 ∩ Ld1 L1 ∩ Ld1 − − −

t1 z2 L1 ∩ Ld1(!) L1 ∩ Ld1 Ld1 − Ld3 Ld4

xy L3 − − L5 − −

yz − − Ld2 − Ld5 Ld6

xz L4 − − L6 − L7 = Ld7
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Table 3. Summary of the proof of Lemma 3.3

t1 t2

x2 yz (a) zu ≈ t2(xy, z, u) ≈ t1(x, y, zu) ≈ x2

y2 yz (a) zu ≈ t2(xy, z, u) ≈ t1(x, y, zu) ≈ y2

xy y2 (a) xy ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ z2

xy z2 (a) xy ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ u2

xy yz (a) xy ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ zu

yz x2 (b) zu ≈ t1(y, z, u) ≈ (yz)u ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ x2u

yz y2 (b) zu ≈ t1(y, z, u) ≈ (yz)u ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ y2u

yz xy (b) zu ≈ t1(y, z, u) ≈ (yz)u ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ (xy)u

xz y2 (b) xu ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ y2u

xz z2 (b) xu ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ z2u

xz yz (b) xu ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ (yz)u

y2 xy (c) xy ≈ t2(x, y, z) ≈ x(yz) ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ xz2

z2 xy (c) xy ≈ t2(x, y, z) ≈ x(yz) ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ xu2

x2 xz (c) xu ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ xy2

y2 xz (c) xu ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ xz2

xy xz (c) xu ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ x(yz)

x2 y2 (a) x2 ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ z2

x2 z2 (a) x2 ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ u2

y2 y2 (a) y2 ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ z2

y2 z2 (a) y2 ≈ t1(x, y, zu) ≈ t2(xy, z, u) ≈ u2

y2 x2 (a) z2 ≈ t1(y, z, vu) ≈ t2(yz, v, u) ≈ (yz)2

(b) ≈ t1(x, yz, u) ≈ t2(x, y, z)u ≈ x2u

z2 y2 (a) y2 ≈ t2(xu, y, z) ≈ t1(x, u, yz) ≈ (yz)2

(c) ≈ t2(x, yz, u) ≈ xt1(y, z, u) ≈ xu2
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Table 4. Summary of the proof of Lemma 3.4

L1 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ x2

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x2

L2 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ x2

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x2

L3 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xy

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ xy

L4 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ x2

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x(zu)

2.
≈ x2

L5 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xy

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ xy

L6 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ xy

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x(zu)

2.
≈ xz

L7 : s1 ≈ xy, s2 ≈ z =⇒ s1s2 ≈ (xy)z
1.
≈ xz

s1 ≈ x, s2 ≈ yz =⇒ s1s2 ≈ x(yz)
2.
≈ xz

s1 ≈ xy, s2 ≈ zu =⇒ s1s2 ≈ (xy)(zu)
1.
≈ x(zu)

2.
≈ xu
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Table 5. Summary of the proof of Lemma 4.1

L1 ∩ I xy
I
≈ (xx)y

1.
≈ x2 xy does not depend on y

L2 ∩ I xy
I
≈ (xx)y

1.
≈ x2 xy does not depend on y

L2 ∩D xy
2.
≈ x(yy)

D
≈ x(xx) xy does not depend on y

L2 ∩ C xy
2.
≈ x(yz)

C
≈ (yz)x

1.
≈ y2 xy does not depend on x

L3 ∩ I xy
I
≈ (xx)y

1.
≈ x2 xy does not depend on y

L3 ∩D xy
1.
≈ (xy)(zu)

2.
≈ (xy)2

D
≈ x2 xy does not depend on y

L3 ∩ C xy
1.
≈ (xy)z

C
≈ z(xy)

2.
≈ z2 xy does not depend on y

L4 ∩ I xy
I
≈ x(yy)

2.
≈ x2 xy does not depend on y

L4 ∩D xy
1.
≈ (xx)y

D
≈ (yy)y xy does not depend on x

L4 ∩ C xy
1.
≈ (xz)y

C
≈ y(xz)

2.
≈ y2 xy does not depend on x

L5 ∩ I xy
I
≈ (xx)y

1.
≈ x2 xy does not depend on y

L5 ∩D xy
2.
≈ x(yy)

D
≈ x(xx) xy does not depend on y

L5 ∩ C xy
1.
≈ (xy)z

C
≈ z(xy)

2.
≈ zx xy does not depend on y

L6 ∩ I xy
I
≈ (xy)(xy)

1.
≈ x(xy)

2.
≈ x2 xy does not depend on y

L6 ∩D xy
2.
≈ x(yy)

D
≈ x(xx) xy does not depend on y

L6 ∩ C xy
2.
≈ x(yz)

C
≈ (zy)x

1.
≈ zx xy does not depend on y

L7 ∩D xy
2.
≈ x(yy)

D
≈ x(xx) xy does not depend on y

L7 ∩ C xy
1.
≈ (xz)y

C
≈ y(xz)

2.
≈ yz xy does not depend on x
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Appendix B. Two-generated free algebras in lazy groupoid varieties

L1 x y x2 y2 xy yx

x x2 xy x2 x2 x2 x2

y yx y2 y2 y2 y2 y2

x2 x2 x2 x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2

xy x2 x2 x2 x2 x2 x2

yx y2 y2 y2 y2 y2 y2

L2 x y x2 y2 xy yx

x x2 xy x2 xy x2 xy

y yx y2 yx y2 yx y2

x2 x2 x2 x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2

xy x2 x2 x2 x2 x2 x2

yx y2 y2 y2 y2 y2 y2

L1 ∩D x y x2 xy yx

x x2 xy x2 x2 x2

y yx x2 x2 x2 x2

x2 x2 x2 x2 x2 x2

xy x2 x2 x2 x2 x2

yx x2 x2 x2 x2 x2

L3 x y x2 y2 xy yx

x x2 xy x2 x2 x2 x2

y yx y2 y2 y2 y2 y2

x2 x2 x2 x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2

xy xy xy xy xy xy xy

yx yx yx yx yx yx yx

L1 ∩ C x y x2 xy

x x2 xy x2 x2

y xy x2 x2 x2

x2 x2 x2 x2 x2

xy x2 x2 x2 x2

L4 x y x2 y2 xy yx

x x2 xy x2 x2 x2 x2

y yx y2 y2 y2 y2 y2

x2 x2 xy x2 x2 x2 x2

y2 yx y2 y2 y2 y2 y2

xy x2 xy x2 x2 x2 x2

yx yx y2 y2 y2 y2 y2
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L5 x y x2 y2 xy yx

x x2 xy x2 xy x2 xy

y yx y2 yx y2 yx y2

x2 x2 x2 x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2

xy xy xy xy xy xy xy

yx yx yx yx yx yx yx

U x y x2 y2

x x2 x2 x2 x2

y y2 y2 y2 y2

x2 x2 x2 x2 x2

y2 y2 y2 y2 y2

L6 x y x2 y2 xy yx

x x2 xy x2 xy x2 xy

y yx y2 yx y2 yx y2

x2 x2 xy x2 xy x2 xy

y2 yx y2 yx y2 yx y2

xy x2 xy x2 xy x2 xy

yx yx y2 yx y2 yx y2

Ũ x y x2 y2

x x2 x2 x2 x2

y y2 y2 y2 y2

x2 x x x x

y2 y y y y

L7 x y x2 y2 xy yx

x x2 xy x2 xy xy x2

y yx y2 yx y2 y2 yx

x2 x2 xy x2 xy xy x2

y2 yx y2 yx y2 y2 yx

xy x2 xy x2 xy xy x2

yx yx y2 yx y2 y2 yx

Z x y xy

x xy xy xy

y xy xy xy

xy xy xy xy

RB x y xy yx

x x xy xy x

y yx y y yx

xy x xy xy x

yx yx y y yx

LZ x y

x x x

y y y
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Appendix C. Operation tables of lazy groupoids

L1 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e e e e . . . e e . . . e e e . . . e e . . . . . .

s1 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

s2 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se e e e . . . e ∈ Se . . . e e e . . . ∈ Se ∈ Se . . . . . .

a2 /∈ Se e e e . . . ∈ Se e . . . e e e . . . ∈ Se ∈ Se . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f f f f . . . f f . . . f f f . . . f f . . . . . .

t1 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

t2 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf f f f . . . ∈ Sf ∈ Sf . . . f f f . . . f ∈ Sf . . . . . .

b2 /∈ Sf f f f . . . ∈ Sf ∈ Sf . . . f f f . . . ∈ Sf f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...

L2 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e e e e . . . e e . . . e e e . . . e e . . . . . .

s1 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

s2 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se e e e . . . e e . . . si si si . . . si si . . . . . .

a2 /∈ Se e e e . . . e e . . . sj sj sj . . . sj sj . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f f f f . . . f f . . . f f f . . . f f . . . . . .

t1 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

t2 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf tk tk tk . . . tk tk . . . f f f . . . f f . . . . . .

b2 /∈ Sf tl tl tl . . . tl tl . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
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L3 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e e e e . . . e e . . . e e e . . . e e . . . . . .

s1 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

s2 ∈ Se e e e . . . e e . . . e e e . . . e e . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se e e e . . . e ∈ E . . . e e e . . . ∈ E ∈ E . . . . . .

a2 /∈ Se e e e . . . ∈ E e . . . e e e . . . ∈ E ∈ E . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f f f f . . . f f . . . f f f . . . f f . . . . . .

t1 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

t2 ∈ Sf f f f . . . f f . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf f f f . . . ∈ E ∈ E . . . f f f . . . f ∈ E . . . . . .

b2 /∈ Sf f f f . . . ∈ E ∈ E . . . f f f . . . ∈ E f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...

L4 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e e e e . . . e e . . . e e e . . . si sj . . . . . .

s1 ∈ Se e e e . . . e e . . . e e e . . . si sj . . . . . .

s2 ∈ Se e e e . . . e e . . . e e e . . . si sj . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se e e e . . . e e . . . e e e . . . si sj . . . . . .

a2 /∈ Se e e e . . . e e . . . e e e . . . si sj . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f f f f . . . tk tl . . . f f f . . . f f . . . . . .

t1 ∈ Sf f f f . . . tk tl . . . f f f . . . f f . . . . . .

t2 ∈ Sf f f f . . . tk tl . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf f f f . . . tk tl . . . f f f . . . f f . . . . . .

b2 /∈ Sf f f f . . . tk tl . . . f f f . . . f f . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
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L5 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e e e e . . . e e . . . e e e . . . e e . . . . . .

s1 ∈ Se s1 s1 s1 . . . s1 s1 . . . s1 s1 s1 . . . s1 s1 . . . . . .

s2 ∈ Se s2 s2 s2 . . . s2 s2 . . . s2 s2 s2 . . . s2 s2 . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se si1 si1 si1 . . . si1 si1 . . . sj1 sj1 sj1 . . . sj1 sj1 . . . . . .

a2 /∈ Se si2 si2 si2 . . . si2 si2 . . . sj2 sj2 sj2 . . . sj2 sj2 . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f f f f . . . f f . . . f f f . . . f f . . . . . .

t1 ∈ Sf t1 t1 t1 . . . t1 t1 . . . t1 t1 t1 . . . t1 t1 . . . . . .

t2 ∈ Sf t2 t2 t2 . . . t2 t2 . . . t2 t2 t2 . . . t2 t2 . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf tk1 tk1 tk1 . . . tk1 tk1 . . . tl1 tl1 tl1 . . . tl1 tl1 . . . . . .

b2 /∈ Sf tk2 tk2 tk2 . . . tk2 tk2 . . . tl2 tl2 tl2 . . . tl2 tl2 . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...

L6 e s1 s2 . . . a1 a2 . . . f t1 t2 . . . b1 b2 . . . . . .

s0 = e si si si . . . si si . . . sj sj sj . . . sj sj . . . . . .

s1 ∈ Se si si si . . . si si . . . sj sj sj . . . sj sj . . . . . .

s2 ∈ Se si si si . . . si si . . . sj sj sj . . . sj sj . . . . . .

...
...

...
...

...
...

...
...

...
...

...

a1 /∈ Se si si si . . . si si . . . sj sj sj . . . sj sj . . . . . .

a2 /∈ Se si si si . . . si si . . . sj sj sj . . . sj sj . . . . . .

...
...

...
...

...
...

...
...

...
...

...

t0 = f tk tk tk . . . tk tk . . . tl tl tl . . . tl tl . . . . . .

t1 ∈ Sf tk tk tk . . . tk tk . . . tl tl tl . . . tl tl . . . . . .

t2 ∈ Sf tk tk tk . . . tk tk . . . tl tl tl . . . tl tl . . . . . .

...
...

...
...

...
...

...
...

...
...

...

b1 /∈ Sf tk tk tk . . . tk tk . . . tl tl tl . . . tl tl . . . . . .

b2 /∈ Sf tk tk tk . . . tk tk . . . tl tl tl . . . tl tl . . . . . .

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
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