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COMPUTING VERSION SPACES IN THE QUALITATIVE

APPROACH TO MULTICRITERIA DECISION AID

MIGUEL COUCEIRO, MIKLÓS MARÓTI, TAMÁS WALDHAUSER, AND LÁSZLÓ ZÁDORI

Abstract. We consider a lattice-based model in multiattribute decision making,

where preferences are represented by global utility functions that evaluate alterna-
tives in a lattice structure (which can account for situations of indifference as well

as of incomparability). Essentially, this evaluation is obtained by first encoding

each of the attributes (nominal, qualitative, numeric, etc.) of each alternative into
a distributive lattice, and then aggregating such values by lattice functions. We

formulate version spaces within this model (global preferences consistent with em-

pirical data) as solutions of an interpolation problem and present their complete
descriptions accordingly. Moreover, we consider the computational complexity of

this interpolation problem, and show that up to 3 attributes it is solvable in poly-

nomial time, whereas it is NP complete over more than 3 attributes. Our results
are then illustrated with a concrete example, namely, a recommender system for

employees based on their psychological records throughout a year.

1. Motivation

We consider a problem rooted in supervised learning and stated as an interpolation
problem for functions f : X → L, where X is a set of objects (or alternatives) and L
is a set of labels: Given a finite S ⊆ X×L, decide whether there exists an f : X→ L
interpolating S, i.e., such that f(a) = b for every (a, b) ∈ S. Our motivation is
found in the field of decision making, more specifically, in the qualtitative approach
to preference modeling and learning (prediction and elicitation).

As the starting point, we take the decomposable model to represent preferences over
a set X = X1×· · ·×Xn of alternatives (e.g., houses to buy) described by n attributes
xi ∈ Xi (e.g., price, size, location, color). In this setting, preference relations � are
represented by mappings U : X → L valued in a scale L, and called “overall utility
functions”, using the following rule:

x � y if and only if U(x) ≤ U(y).

This representation of preference relations is usually refined by taking into account
“local preferences” �i on each Xi, modeled by mappings ϕi : Xi → L called “local
utility functions”, which are then merged through an aggregation function A : Ln → L
into an overall utility function U :

(1) U(x) = A
(
ϕ1(x1), . . . , ϕn(xn)

)
.

Loosely speaking, A merges the local preferences in order to obtain a global prefer-
ence on the set of alternatives. In the qualitative setting, the aggregation function
of choice is the Sugeno integral [25, 26] that can be regarded as an idempotent lattice
polynomial function [6, 19], and the resulting global utility function (1) is then called
a pseudo-polynomial function [10] or a Sugeno utility function [9] in the case when
A is a Sugeno integral and the local utility functions are order-preserving. This ob-
servation brings the concept of Sugeno integral to domains more general than scales
(linearly ordered sets) such as distributive lattices and Boolean algebras. Apart from
the theoretic interest, such generalization is both natural and useful as it allows incom-
parability amongst alternatives, a situation that is most common in real-life situations.
Preferences modelled by (1) were axiomatized by different approaches in [1, 4, 17].
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The interest of considering the interpolation problem in this model-based setting
becomes apparent when dealing with supervised learning of preference relations in
the qualitative setting, and which leads naturally to the following extension of the
interpolation problem: Given a finite S ⊆ X×L, find all pseudo-polynomial functions
U : X → L that interpolate S. In other words, given a data set S consisting of pairs
(a, b) of alternatives together with their evaluations, we would like to determine all
models (1) that are consistent with S; in the terminology of machine learning (see,
e.g., [3, 20]) the set of all such models is called the version space.

A complete solution of the interpolation problem thus provides an explicit descrip-
tion of version spaces in the multicriteria setting. Solutions to particular instances
have been presented in the literature. In particular, the problem of covering a set of
data by a set of Sugeno integrals was considered in the linearly ordered case [22, 23]
where conditions that guarantee the existence of a Sugeno integral interpolating a set
of data were provided. Essentially, the set of interpolating Sugeno integrals (if they
exist) was characterized as being upper and lower bounded by particular Sugeno in-
tegrals (easy to build from data). These results were then generalized in two different
directions. In [21] an approach by “splines” was proposed, which enables elicitation
of families of generalized Sugeno integrals from pieces of data where local and global
evaluations may be imprecisely known, whereas in [5, 11] lattice theoretic approaches
were proposed not only to determine existence but also to provide explicit descriptions
of all possible lattice polynomials interpolating a given data set S.

In the current paper we solve the above mentioned pseudo-polynomial interpolation
problem and thus describe version spaces for models (1). An important special case is
the case of quasi-polynomial functions [7, 8], where X1 = · · · = Xn = X is an arbitrary
set (not necessarily ordered) and ϕ1 = · · · = ϕn = ϕ : X → L. Such a framework
is pertaining to decision under uncertainty and it is used to model situations where
we need to take into account different states of a given world. For instance, X could
stand for evaluations of well-being of individuals, such as

X = {excellent, physically down, mentally down, depressed},

in different periods, e.g., in n = 4 seasons so that each individual is represented by
a tuple (x1, x2, x3, x4) whose components stand for her/his state in winter, spring,
summer and autumn, respectively. Here, the goal could be a general evaluation of
individuals providing a recommendation on the action to take, e.g.,

L = {continue job, continue job but look for alternatives, quit job}.

The paper is organized as follows. In Section 2 we recall basic notions and terminol-
ogy in lattice theory, and present results and constructions pertaining to interpolation
by lattice polynomial functions. Extensions of the interpolation problem by pseudo-
and quasi-polynomial functions are then proposed and solved in Section 3. For the
sake of simplicity we present the solution in the setting of decision under uncertainty
(interpolation by quasi-polynomials), but our method can be applied also in the mul-
ticriteria setting (interpolation by pseudo-polynomials). These results are then illus-
trated in Section 4 by a concrete example. In Section 5 we prove that for n ≥ 4 it is
an NP-complete problem to decide if the interpolation problem has a solution, while
for n ≤ 3 it can be decided in polynomial time. We conclude the paper in Section 6,
where we indicate ongoing work and suggest other directions of future research.

Before proceeding, we would like to stress the fact that, despite motivated by a
problem rooted in preference learning (see [13] for general background and a thorough
treatment of the topic), our setting differs from the standard setting in machine learn-
ing. This is mainly due to the fact that we aim to describing utility-based preference
models that are consistent with existing data (version spaces) rather than aiming to
learning utility-based models by optimization (minimizing loss measures and coeffi-
cients) such as in, e.g., the probabilistic approach of [2] or the approach based on the
Choquet integral of [27], and that naturally accounts for errors and inconsistencies in
the learning data. Another difference is that, in the latter, data is supposed to be
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given in the form of feature vectors (thus assuming that local utilities over attributes
are known a priori), an assumption that removes the additional difficulty that we face,
namely, that of of describing local utility functions that enable models based on the
Sugeno integral that are consistent with existing data. It is also worth noting that
we do not assume any structure on attributes and that we allow incomparabilities in
evaluation spaces, which thus subsume preferences that are not necessarily rankings.

2. Preliminaries

Throughout this paper let L be a distributive lattice. Recall that a polynomial
function over L is a mapping p : Ln → L that can be expressed as a combination
of the lattice operations ∧ and ∨, projections and constants. In the case when L is
bounded, i.e., with a least and a greatest element, polynomial functions p : Ln → L
can be represented in disjunctive normal form (DNF for short) by

(2) p(y) =
∨

I⊆[n]

(
cI ∧

∧
i∈I

yi
)
, where y= (y1, . . . , yn) ∈ Ln.

Here, and throughout the paper, we denote the set {1, 2, . . . , n} by [n]. One can assume
without loss of generality that the coefficients cI ∈ L are monotone in the sense that
cI ≤ cJ whenever I ⊆ J . Under this monotonicity assumption the coefficients of the
DNF of the polynomial function p are uniquely determined.

As mentioned in Section 1, a natural model for supervised preference learning is the
following interpolation problem, where a multivariable partial function on a lattice is
to be interpolated by lattice polynomial functions.

Polynomial Interpolation Problem. Let L be a distributive lattice. Given an
arbitrary finite set D ⊆ Ln and g : D → L, find all polynomial functions p : Ln → L
such that p|D = g.

Unlike in the case of interpolation by real polynomial functions, solutions do not
necessarily exist, and it is a nontrivial problem to determine the necessary and suf-
ficient conditions for the existence of an interpolating lattice polynomial function.
Goodstein’s theorem [15] provides a solution in the special case when the domain of
g is the hypercube D = {0, 1}n, where 0 and 1 are the least and greatest elements
of the bounded distributive lattice L: a function g : {0, 1}n → L can be interpolated
by a polynomial function p : Ln → L if and only if g is monotone, and in this case p
is unique. This result was generalized in [11] by allowing L to be an arbitrary (pos-
sibly unbounded) distributive lattice and by considering functions g : D → L, where
D = {a1, b1} × · · · × {an, bn} with ai, bi ∈ L and ai < bi, for each i ∈ [n].

To describe the general solution of the Polynomial Interpolation Problem, which
was given in [5], we need to recall that by the Birkhoff-Priestley representation theorem
[12] we can embed any distributive lattice L into a Boolean algebra B, which can be
assumed to be a subalgebra of the power set P (Ω) of a set Ω. For the sake of canonicity,
we assume that L generates B, so that B is uniquely determined up to isomorphism.
The complement of an element a ∈ B is denoted by a′. (See Figure 1 for an example.)

Given a function g : D → L, we define the following two elements in B for each
I ⊆ [n]:

c−I :=
∨
a∈D

(
g(a) ∧

∧
i/∈I

a′i
)

and c+I :=
∧
a∈D

(
g(a) ∨

∨
i∈I

a′i
)
.

Observe that I ⊆ J implies c−I ≤ c−J and c+I ≤ c+J . Let p− and p+ be the polynomial
functions over B given by these two systems of coefficients:

p−(y) :=
∨

I⊆[n]

(
c−I ∧

∧
i∈I

yi
)

and p+(y) :=
∨

I⊆[n]

(
c+I ∧

∧
i∈I

yi
)
.

As it turns out [5], p− and p+ are the least and greatest polynomial functions over B
whose restriction to D coincides with g (whenever such a polynomial function exists).
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(a) L5 (b) B(L5)

Figure 1. A distributive lattice and its Boolean algebra

This yields the following explicit description of all possible interpolating polynomial
functions over the Boolean algebra B.

Theorem 1 ([5]). Let L be a distributive lattice, and let B be the Boolean algebra
generated by L. Let g : D → L be a function defined on a finite set D ⊆ Ln, and
let p : Bn → B be a polynomial function over B given by (2). Then the following
conditions are equivalent:

(i) p interpolates g, i.e., p|D = g;
(ii) c−I ≤ cI ≤ c

+
I for all I ⊆ [n];

(iii) p− ≤ p ≤ p+.

From Theorem 1 it follows that a necessary and sufficient condition for the existence
of a polynomial function p : Bn → B such that p|D = g is c−I ≤ c

+
I , for every I ⊆ [n].

Moreover, if for every I ⊆ [n], there is cI ∈ L such that c−I ≤ cI ≤ c+I , then and only
then there is a polynomial function p : Ln → L such that p|D = g. For the special type
of interpolation problem considered in [11], the condition for the existence of a solution
was given by simple lattice inequalities, without referring to the Boolean algebra
generated by the lattice. In the case when L is a finite chain such a condition was given
in [23], where, rather than polynomial functions, the interpolating functions where
assumed to be Sugeno integrals, i.e., idempotent polynomial functions (see [18, 19]).
One can also obtain the solution of the Polynomial Interpolation Problem over L in
this case from Theorem 1 by describing explicitly the Boolean algebra generated by a
finite chain. This yields the following result, which basically reformulates Theorem 3
in [23] in the language of lattice theory [5].

Theorem 2 ([23]). Let L be a finite chain, and let g : D → L be a function defined on
a subset D ⊆ Ln. Then there is a polynomial function p : Ln → L such that p|D = g
if and only if

(3) ∀a,b ∈ D : g(a) < g(b) =⇒ ∃i ∈ [n] : ai ≤ g(a) < g(b) ≤ bi.

In contrast to the above mentioned special cases, in general it is not possible to
avoid the use of the Boolean algebra generated by L, as it is illustrated by the following
example.

Example 3 ([5]). Let L5 be the five-element lattice shown in Figure 1a, and let
B(L5) be the Boolean algebra generated by L5 (see Figure 1b). Let D = {a,b},
where a = (1, c), b = (c, a) and consider g : D → L5 defined by

(4) g(a) = 1 and g(b) = a.

As coefficients c−I and c+I we obtain

c−∅ = 0, c−{1} = c′, c−{2} = 0, c−{1,2} = 1,

c+∅ = a, c+{1} = b′, c+{2} = 1, c+{1,2} = 1.
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We see that c−I ≤ c
+
I holds for each I ⊆ [2], hence this interpolation problem has a

solution over B(L5) (in fact, it has 32 solutions), by Theorem 1. On the other hand,
no element of L5 lies between c−{1} and c+{1}, hence there is no solution over L5.

3. Generalized lattice interpolation

As mentioned in the introduction, the motivation for considering the interpolation
problem is rooted in the qualitative approach to preference modeling, where preference
relations � over a set X1 × · · · × Xn of alternatives described by n attributes are
represented by overall utility functions U : X1 × · · · ×Xn → L valued in an ordered
set L, by the rule:

x � y if and only if U(x) ≤ U(y).

Preferences on the attributesXi are in turn modeled by local utility functions ϕi : Xi →
L, which are then aggregated through a lattice polynomial p : Ln → L thus giving rise
to refined models

(5) U(x) = p
(
ϕ1(x1), . . . , ϕn(xn)

)
,

which we referred to as pseudo-polynomial functions.
The interest of considering the interpolation problem in this setting becomes appar-

ent when dealing with preference relations that are partially defined. This situation
of incomplete information pertains to preference learning, where the set of interpo-
lating pseudo-polynomial functions constitutes its version space. This motivates the
following extension of the interpolation problem (stated as Problem 5.1 in [11]):

Pseudo-polynomial Interpolation Problem. Let X1, . . . , Xn be finite sets and L
a finite distributive lattice. Given C ⊆ X1×· · ·×Xn and a partial function f : C → L,
find all pseudo-polynomial functions U : X1 × · · · ×Xn → L such that U |C = f .

As mentioned in Section 1, uncertainty can be modeled by special kinds of pseudo-
polynomials, where X1 = · · · = Xn = X and ϕ1 = · · · = ϕn = ϕ. The resulting global
utilty functions U : Xn → L are so-called quasi-polynomial functions:

(6) U(x) = p
(
ϕ(x1), . . . , ϕ(xn)

)
.

The corresponding interpolation problem can be formulated as follows:

Quasi-polynomial Interpolation Problem. Let X be a finite set and L a finite
distributive lattice. Given C ⊆ Xn and a partial function f : C → L, find all quai-
polynomial functions U : Xn → L such that U |C = f .

We present the solution of the Pseudo-polynomial Interpolation Problem in two
steps. First, in Subsection 3.1 we show how to find the appropriate polynomials p
provided that the local utility functions ϕ1, . . . , ϕn are given. Then, in Subsection 3.2
we give an algorithm to construct all possible local utility functions that could appear
in an interpolation. To simplify the formalism, in Subsection 3.2 we consider the
special case of quasi-polynomials, but our method can be easily adapted to the more
general problem of pseudo-polynomial interpolation, see Remark 8.

3.1. Interpolation with known local utility functions. Assume that the local
utility functions ϕi : Xi → L are given; our goal is to find all polynomial functions p
over L such that the pseuo-polynomial function U given by (5) interpolates f . Let us
consider an arbitrary polynomial function p over B in its disjunctive normal form (2).
The corresponding pseudo-polynomial function U = p (ϕ1, . . . , ϕn) interpolates f if
and only if p (ϕ1 (a1) , . . . , ϕn (an)) = f (a1, . . . , an) for all a ∈ C, i.e., if p interpolates
the function g : D → L defined on the set

D = {(ϕ1 (a1) , . . . , ϕn (an)) : a ∈ C}

by

g (ϕ1 (a1) , . . . , ϕn (an)) = f (a1, . . . , an) .
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Using the construction of Section 2 for this interpolation problem, we can define
coefficients c−I,ϕ1,...,ϕn

and c+I,ϕ1,...,ϕn
for every I ⊆ [n] as follows:

c−I,ϕ1,...,ϕn
:=
∨
a∈C

(
f(a) ∧

∧
i/∈I

ϕi(ai)
′) and c+I,ϕ1,...,ϕn

:=
∧
a∈C

(
f(a) ∨

∨
i∈I

ϕi(ai)
′).

Denoting the corresponding polynomial functions by p−ϕ1,...,ϕn
and p+

ϕ1,...,ϕn
, Theo-

rem 1 yields the following solution for the Pseudo-polynomial Interpolation Problem
with known local utility functions.

Theorem 4. Let X1, . . . , Xn be finite sets, let L be a finite distributive lattice, and
let f : C → L be a function defined on a set C ⊆ X1 × · · · × Xn. For any maps
ϕi : Xi → L (i ∈ [n]) and any polynomial function p : Bn → B over B given by (2),
the following conditions are equivalent:

(i) U = p (ϕ1, . . . , ϕn) interpolates f , i.e., U |C = f ;
(ii) c−I,ϕ1,...,ϕn

≤ cI ≤ c+I,ϕ1,...,ϕn
for all I ⊆ [n];

(iii) p−ϕ1,...,ϕn
≤ p ≤ p+

ϕ1,...,ϕn
.

Remark 5. Note that if there exist tuples a,b ∈ C such that f (a) 6= f (b) but
(ϕ1 (a1) , . . . , ϕn (an)) = (ϕ1 (b1) , . . . , ϕn (bn)), then it is clearly impossible to find an
interpolating pseudo-polynomial function (or any kind of function at all). We invite
the reader to verify that this situation cannot occur if condition (ii) of Theorem 4 is
satisfied.

3.2. Interpolation with unknown local utility functions. Now let us consider
interpolation by quasi-polynomial functions

U (x) = p (ϕ (x1) , . . . , ϕ (xn)) ,

where the local utility function ϕ : X → L is not known. Our aim is to find all possible
maps ϕ for which an interpolating polynomial exists. Specializing the results of the
previous subsection to the case ϕ1 = · · · = ϕn = ϕ, we see that the necessery and
sufficient condition for the existence of a solution over B is that c−I,ϕ ≤ c+I,ϕ for all

I ⊆ [n], where

c−I,ϕ :=
∨
a∈C

(
f(a) ∧

∧
i/∈I

ϕ(ai)
′) and c+I,ϕ :=

∧
a∈C

(
f(a) ∨

∨
i∈I

ϕ(ai)
′).

Equivalently, we must have

(7) ∀a,b ∈ C ∀I ⊆ [n] : f(a) ∧
∧
i/∈I

ϕ(ai)
′ ≤ f(b) ∨

∨
i∈I

ϕ(bi)
′.

Thus, we have a system of inequalities for the unknown values ϕ (a) (a ∈ X). To
find all solutions of this system of inequalities, we make use of the fact that B can
be embedded into the power set of a set Ω. We will encode a map ϕ : X → B by a
system of sets Sω ⊆ X (ω ∈ Ω), where Sω = {a ∈ X : ω ∈ ϕ (a)}. It is straightforward
to verify that the inequalities (7) translate to the following condition for the sets Sω:

(8) ∀ω ∈ f (a) \ f (b) ∀I ⊆ [n] : {bi : i ∈ I} ⊆ Sω =⇒ {ai : i /∈ I} ∩ Sω 6= ∅.
(Here f (a) \ f (b) is the difference of the sets f (a) , f (b) ⊆ Ω.)

Observe that for given ω ∈ Ω and a,b ∈ C, it is sufficient to consider the set
I = {i ∈ [n] : bi ∈ Sω} in (8) instead of all subsets of [n], since this gives the strongest
condition. Hence we may construct Sω by starting with the empty set, and adding
an element of {ai : i /∈ I} if necessary, for all a,b ∈ C with ω ∈ f (a) \ f (b) and
I = {i ∈ [n] : bi ∈ Sω}. However, note that we must not add too many elements to
Sω, since if {bi : i ∈ [n]} ⊆ Sω, then (8) yields the contradiction ∅ ∩ Sω 6= ∅.

At any stage of this process, let us collect all the sets {ai : i /∈ I} of which we must
add an element to Sω:

(9) E :=
{
{ai : i /∈ I} : a,b ∈ C, ω ∈ f (a) \ f (b) ,

I = {i ∈ [n] : bi ∈ Sω} , {ai : i /∈ I} ∩ Sω = ∅
}
.
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Algorithm 1 Constructing all possible sets Sω

1: Sω := ∅
2: compute E by (9)
3: repeat
4: add a covering set of H = (X, E) to Sω

5: recompute E by (9)
6: until E = ∅ or ∅ ∈ E
7: if E = ∅ then
8: return Sω

9: else
10: return fail
11: end if

This way we obtain a hypergraph H = (X, E), and condition (8) requires that a vertex
cover (i.e., a set of vertices intersecting every hyperedge) of H be included in Sω. This
yields Algorithm 1 for constructing Sω.

The algorithm terminates when either E = ∅, which means that (8) is satisfied,
hence we do not need to add any more elements to Sω, or ∅ ∈ E , which means that
the above mentioned contradiction ∅ ∩ Sω 6= ∅ occurs, and it cannot be resolved by
adding more elements to Sω. In order to make sure that we find all possible solutions,
we must try every covering set of H in line 4 of the algorithm in every iteration. If
we would like to find just one solution (if there is one at all), then it is sufficient to
add a minimal covering set of H, but still we must try every minimal covering set in
every iteration, leading to an exponential running time.

Remark 6. The example of Section 4 shows that this cannot be avoided, since it is
possible that certain covering sets may lead to a contradiction, while other covering
sets give a solution. Also, in Section 5 we prove that even deciding the existence
of an interpolating quasi-polynomial function is an NP-complete problem, hence an
effective algorithm cannot be expected unless P = NP.

To determine the whole version space, i.e., the set of all interpolating quasi-polynomial
functions, one needs to compute all possible systems of sets Sω (ω ∈ Ω), and then
one can define the corresponding local utility functions ϕ : X → B by ϕ (a) =
{ω ∈ Ω: a ∈ Sω}. After computing all such maps ϕ, one can select those for which
ϕ (a) ∈ L holds for all a ∈ X. Then using the construction of Subsection 3.1 one
can determine the corresponding polynomial functions p for each ϕ. Recall that the
coefficients c−I,ϕ, c

+
I,ϕ belong to B, but we need only the elements of L that lie between

c−I,ϕ and c+I,ϕ.

Example 7. Note that the current setting is strictly more general than that of the pre-
vious section. To illustrate this, letX = {0, a, 1} = L and C = {(0, 1), (1, 0), (a, a), (1, 1)}.
(The ordering on L is 0 < a < 1, i.e., L is a three-element chain. Then B can be
chosen as {0, a, a′, 1} with 0 < a, a′ < 1.) Consider f : C → L given by

f(a, a) = 0,

f(0, 1) = f(1, 0) = a,

f(1, 1) = 1.

Using Theorem 1, we can verify that there is no polynomial function that would inter-
polate f on C (even if considered over the Boolean lattice B extending L). However,
taking ϕ : X → L given by ϕ(0) = ϕ(a) = 0 and ϕ(1) = 1, we get

c−∅,ϕ = c+∅,ϕ = 0,

c−{1},ϕ = c+{1},ϕ = c−{2},ϕ = c+{2},ϕ = a,

c−{1,2},ϕ = c+{1,2},ϕ = 1.



8 M. COUCEIRO, M. MARÓTI, T. WALDHAUSER, AND L. ZÁDORI

Hence, p = p−ϕ = p+
ϕ = (a ∧ x1) ∨ (a ∧ x2) ∨ (1 ∧ x1 ∧ x2), and it is not difficult to

verify that U = p ◦ ϕ indeed interpolates f .

Remark 8. Let U : X1 × · · · ×Xn → L be a pseudo-polynomial function of the form
(5). Assume (without loss of generality) that the sets X1, . . . , Xn are pairwise disjoint,
and letX = X1∪· · ·∪Xn and ϕ = ϕ1∪· · ·∪ϕn. Consider the quasi-polynomial function

Ũ : Xn → L defined by Ũ(x) = p
(
ϕ(x1), . . . , ϕ(xn)

)
. Observe that X1×· · ·×Xn ⊆ Xn

and the restriction of Ũ to X1 × · · · × Xn coincides with U . Thus, every pseudo-
polynomial function can be viewed as a restriction of a quasi-polynomial function.
Conversely, if p

(
ϕ(x1), . . . , ϕ(xn)

)
is a quasi-polynomial function over X, then its

restriction to X1 × · · · × Xn is a pseudo-polynomial function corresponding to the
local utility functions ϕi = ϕ|Xi

(i = 1, . . . , n). This observation allows us to use
Algorithm 1 almost verbatim to solve the Pseudo-polynomial Interpolation Problem.

4. A case study

We illustrate the construction of the version space outlined in the previous section
on the example mentioned in Section 1. Our setup is the following:

• L = {0, a, 1}, where 0 means “quit job”, a means “continue job but look
for alternatives” and 1 means “continue job”. We take the natural ordering
0 < a < 1 on L.
• X = {E, P, M, D}, where E means “excellent”, P means “physically down”, M

means “mentally down” and D means “depressed”. We do not need an order
structure on X, however, it seems natural to consider E and D as the best and
worst cases, and P and M lie between them: D < P, M < E.
• C = {(P, E, D, P) , (E, D, P, P) , (D, E, M, M) , (P, M, E, D) , (M, M, E, P)}, and f : C →
L is given by

f (P, E, D, P) = 0, f (P, M, E, D) = 1,

f (E, D, P, P) = a, f (M, M, E, P) = 1,

f (D, E, M, M) = a.

The lattice L can be embedded into the power set of a two-element set Ω = {ω1, ω2},
hence we have B = P (Ω), and we regard the elements of L as subsets of Ω:

0 = ∅, a = {ω1} , 1 = {ω1, ω2} .

Note that B = {0, a, a′, 1}, where a′ = {ω2}. One can interpret ω1 as “continue job”
and ω2 as “do not look for alternatives”. Then a′ would mean “quit job but do not
look for alternatives”, which is naturally excluded from the set of possible options.

Let us compute (some of) the possible sets Sω1 that satisfy (8). Starting with Sω1 =
∅ we have E =

{
{E, P, M, D} , {E, M, D} , {E, P, D} , {E, P, M}

}
by (9). The hypergraph

H = (X, E) has 4 minimal covering sets, namely {E} , {P, M} , {P, D} , {M, D}. Any subset
of X containing one of these sets is a covering set; there are altogether 12 covering
sets, and we should examine each one of them in order to find all solutions. This is
rather tedious, hence we give the details only for the minimal covering sets.

Setting Sω1
= {E}, we obtain E =

{
{M, D}

}
, hence we must add either M or D to Sω1

.
In the former case we get E = ∅, which yields the solution Sω1

= {E, M}. In the latter
case we have Sω1

= {E, D} and E =
{
{P, M}

}
, hence one of P and M must be added

to Sω1 . The case Sω1 = {E, P, D} gives E = {∅}, and the corresponding hypergraph
has no covering sets. The case Sω1 = {E, M, D} gives E = ∅, and this means that there
are no edges that need to be covered, i.e., Sω1

= {E, M, D} satisfies (8). The rest of
the computation is shown on Figure 2. Note that if we had started with Sω1

= {P, D}
instead of Sω1

= {E} at the beginning, then we would have gotten no solutions. This
illustrates that one must search the whole tree of possibilities in order to guarantee
that a solution will be found if there is one.

Figure 3 shows the computations for Sω2
, again only working with minimal covering

sets. Taking into account non-minimal covering sets as well, one obtains all possible
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Figure 2. Computing Sω1

Figure 3. Computing Sω2

sets Sω1
and Sω2

:

Sω1 : {E, M} , {P, M} , {M, D} , {E, P, M} , {E, M, D} ;

Sω2
: {E} , {M} , {P, M} , {M, D} , {E, P, M} , {P, M, D} .

There are 30 possibilties for the systems of sets Sω (ω ∈ Ω), hence there are 30 maps
ϕ : X → B for which an interpolating polynomial exists over B. However, if there is
an element u ∈ Sω2

\ Sω1
, then ϕ (u) = a′ /∈ L. Therefore, it sufficies to consider the

cases where Sω2
⊆ Sω1

, giving 13 local utility functions ϕ : X → L.
If we consider the partial ordering D < P, M < E on X and we look only for order-

preserving maps ϕ, then we have only 3 possibilities. We give the corresponding
polynomial functions p−ϕ and p+

ϕ only for these cases (for easier readability we omit
the ∧ signs and write meets simply as juxtapositions):

• Sω1 = {E, P, M} , Sω2 = {E, P, M}: In this case we have

ϕ (E) = 1, ϕ (P) = 1, ϕ (M) = 1, ϕ (D) = 0;

p−ϕ = y1y2y3 ∨ ay1y3y4 ∨ ay2y3y4, p
+
ϕ = ay3 ∨ y1y2y3.

• Sω1
= {E, M} , Sω2

= {E}: In this case we have

ϕ (E) = 1, ϕ (P) = 0, ϕ (M) = a, ϕ (D) = 0;

p−ϕ = ay1 ∨ a′y3 ∨ y1y3 ∨ y2y3, p
+
ϕ = ay1 ∨ y3 ∨ y4 ∨ y1y2.
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Here p−ϕ involves a′ as a coefficient, hence it is not a polynomial over L. The

least polynomial p over L satisfying p−ϕ ≤ p is obtained by replacing a′ by 1:

p = ay1 ∨ 1y3 ∨ y1y3 ∨ y2y3 = ay1 ∨ y3.

Probably this is the simplest polynomial over L that lies between p−ϕ and p+
ϕ ;

the corresponding quasi-polynomial U (x) = aϕ (x1)∨ϕ (x3) depends only on
x1 and x3, which shows that it suffices to evaluate the person’s well-being in
winter and summer in order to choose the action to take.
• Sω1

= {E, P, M} , Sω2
= {E}: In this case we have

ϕ (E) = 1, ϕ (P) = a, ϕ (M) = a, ϕ (D) = 0;

p−ϕ = a′y3 ∨ y1y2y3 ∨ y1y3y4 ∨ y2y3y4, p
+
ϕ = y3 ∨ a′y4 ∨ a′y1y2.

Again a′ appears in the polynomials; we need to replce it by 1 in p−ϕ and

by 0 in p+
ϕ to all find polynomials p over L such that p−ϕ ≤ p ≤ p+

ϕ . After
simplification, we get the polynomial y3 in both cases. This means that for this
local utility function the interpolating quasi-polynomial is unique: U (x) =
ϕ (x3); revealing the fact that x3 (i.e., the person’s well-being in summer)
alone can determine the recommended action to take.

5. Complexity of quasi-polynomial interpolation

In Section 3 we gave an algorithm that constructs all quasi-polynomial functions
interpolating a given partial function f : C → L (C ⊆ Xn). We noticed that even
if one looks for only one interpolating quasi-polynomial, the algorithm still involves
finding minimal covering sets in hypergraphs, which is an NP-complete problem [14].
In this section we prove that this difficulty is not avoidable, as already for n = 4, it is
an NP-complete problem to decide whether an interpolating quasi-polynomial exists.
However, as we shall see, for n ≤ 3 this problem can be solved in polynomial time.
For background on complexity theory we refer the reader to [14].

First let us observe that it is sufficient to consider the case where L is the two-
element lattice. Indeed, if L is any finite distributive lattice, then, as before, we embed
L into a power set P (Ω) of a finite set Ω, and consider the elements ω ∈ Ω separately,
as we did in (8). In this way we can translate the Quasi-polynomial Interpolation
Problem to |Ω| many problems with two-element lattices P ({ω}). Therefore, in the
sequel we will always assume that L = {0, 1}.

We will examine the complexity of our interpolation problem with the help of
certain constraint satisfaction problems that are related to upsets in the Boolean
lattice Ln = {0, 1}n. We say that a subset α ⊆ Ln is an upset (order filter) if a1 ∈ α
and a1 ≤ a2 (in the componentwise ordering) imply a2 ∈ α for all a1,a2 ∈ Ln. We
will denote the complement of α by β, i.e., β = Ln \ α. Observe that β is a downset
(order ideal): b1 ∈ β and b1 ≥ b2 imply b2 ∈ β for all b1,b2 ∈ Ln. For every upset
α ⊆ Ln we define a problem P (α) as follows.

Problem P(α). Given a finite set V of variables and sets of n-tuples A,B ⊆ V n, find
an assignment ψ : V → L such that ψ (a) ∈ α for all a ∈ A and ψ (b) ∈ β = Ln \ α
for all b ∈ B.

Note that P (α) is a Boolean constraint satisfaction problem, hence, by Schaefer’s
dichotomy theorem for Boolean CSP, it is either in P or NP-complete [24].

Lemma 9. Let L = {0, 1} be the two-element lattice, let X be a finite set and f : C →
L (C ⊆ Xn). There exists a quasi-polynomial function interpolating f if and only if
P (α) has a solution for some upset α ⊆ Ln with V = X and

A = {a ∈ C : f (a) = 1} , B = {b ∈ C : f (b) = 0} .

Proof. As we have seen in Section 3, an interpolating quasi-polynomial exists if and
only if there is a map ϕ : X → L satisfying (7). If f (a) = 0 or f (b) = 1, then
the inequality of (7) clearly holds for all I ⊆ [n]. For f (a) = 1 and f (b) = 0,
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the inequality holds for all I ⊆ [n] if and only if there is an index i ∈ [n] such that
ϕ (ai) = 1 and ϕ (bi) = 0, i.e., ϕ (a) � ϕ (b) in the componentwise ordering of n-tuples
over L = {0, 1}. Thus, (7) is equivalent to the following condition:

(10) ∀a,b ∈ C : (f (a) = 1 and f (b) = 0) =⇒ ϕ (a) � ϕ (b) .

(Note that the implication in (10) can be reformulated as ϕ (a) ≤ ϕ (b) =⇒ f (a) ≤
f (b). This gives an alternative way of proving that (10) is equivalent to the existence
of a polynomial p such that f (c) = p (ϕ (c)) for all c ∈ C, since lattice polynomial
functions coincide with nondecreasing functions over the two-element lattice.)

Assume that ϕ satisfies (10), and let α be the least upset containing ϕ (a) for all
a ∈ A:

α := {y ∈ Ln : y ≥ ϕ (a) for some a ∈ A} .
Obviously, we have ϕ (a) ∈ α for all a ∈ A, and (10) implies that ϕ (b) /∈ α for all
b ∈ B. Thus, ϕ is a solution of the problem P (α) with X being the set of variables.

Conversely, if α ⊆ Ln is an arbitrary upset and ϕ is a solution of P (α), then it is
immediate that ϕ satisfies (10). �

According to Lemma 9, we can split the Quasi-polynomial Interpolation Problem
into finitely many subproblems P (α) with α running through the set of upsets of
Ln. If each of these subproblems can be solved in polynomial time, then the whole
problem is in P. As the next theorem shows, this is the case for n ≤ 3.

Theorem 10. If n ≤ 3, then the problem of deciding the existence of an interpolating
quasi-polynomial function belongs to the complexity class P.

Proof. Clearly, it suffices to prove the theorem for n = 3. By Lemma 9, we only need
to show that P (α) is in P for every upset α ⊆ L3. Up to permutations of variables,
we have the 8 cases listed below. For each upset α we give a polymorphism h of the
constraint language {α, β} that shows that P (α) belongs to P by Schaefer’s dichotomy
theorem. (For better readability we write elements of L3 as words.)

α = {111} h = x ∧ y
α = {101, 111} h = x ∧ y
α = {101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {100, 101, 110, 111} h = x ∧ y
α = {011, 101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {011, 100, 101, 110, 111} h = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
α = {010, 011, 100, 101, 110, 111} h = x ∨ y
α = {001, 010, 011, 100, 101, 110, 111} h = x ∨ y �

For n ≥ 4 one can find upsets α ⊆ Ln such that P (α) is NP-complete. This
does not yield immediately NP-completeness of the interpolation problem, since there
might be “easy” solutions corresponding to some other upsets. Nevertheless, in the
next theorem we prove that the Quasi-polynomial Interpolation Problem is indeed
NP-complete for n ≥ 4.

Theorem 11. If n ≥ 4, then the problem of deciding the existence of an interpolating
quasi-polynomial function is NP-complete.

Proof. Clearly, it suffices to prove the theorem for n = 4. Let α ⊆ {0, 1}4 be the upset
consisting of tuples of Hamming weight at least 3, that is, α := {0111, 1011, 1101, 1110, 1111}.
In this case the constraint language {α, β} admits only projections as polymorphisms,
thus P (α) is NP-complete, by Schaefer’s dichotomy theorem.

For every instance of P (α) we construct an instance of the quasi-polynomial inter-
polation problem with L = {0, 1} and n = 4 such that the solutions ψ of the former
are in a one-to-one correspondence with the local utility functions ϕ that solve the
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latter. So assume that V and A,B ⊆ V 4 are given, as in P (α). Let X = V ∪̇ {0, 1},
C = A ∪B ∪̇ {0, 1}4 (where ∪̇ denotes disjoint union) and f : C → L4 such that

∀a ∈ A ∪ α : f (a) = 1 and ∀b ∈ B ∪ β : f (b) = 0.

(Note that 0 and 1 belong to both X and L, hence they play the role of “variables” as
well as the role of “values”.) We claim that a map ϕ : X → L satisfies (10), which, as
we have seen in Lemma 9, is equivalent to (7), if and only if ϕ (0) = 0 and ϕ (1) = 1,
and the restriction ψ := ϕ|V of ϕ to V is a solution of P (α).

First suppose that ϕ satisfies (10). This immediately implies that ϕ (a) � ϕ (b)
for all a ∈ α and b ∈ β, and it easy to see that this holds if and only if ϕ (0) = 0
and ϕ (1) = 1. Now applying (10) with a ∈ A, b ∈ β, we get ϕ (a) � ϕ (b) = b;
in particular, ϕ (a) 6= b. Since this holds for all b ∈ β, we have that ϕ (a) /∈ β, i.e.,
ϕ (a) ∈ α. A similar argument shows that ϕ (b) ∈ β for all b ∈ B, and this proves
that ψ = ϕ|V is indeed a solution to P (α).

Next assume that ψ is a solution of P (α), and let ϕ : X → L coincide with ψ on V ,
and let ϕ (0) = 0, ϕ (1) = 1. Then we have ϕ (a) ∈ α for all a ∈ A ∪ α (if a ∈ A then
by the costraints of P (α), if a ∈ α then by the fact that ϕ (a) = a), and similarly,
ϕ (b) ∈ β for all b ∈ B ∪ β. Therefore, if f (a) = 1 and f (b) = 0, then ϕ (a) ∈ α and
ϕ (b) ∈ β, and this implies that ϕ (a) � ϕ (b), hence (10) holds.

This proves that the Quasi-polynomial Interpolation Problem for n = 4 and L =
{0, 1} can be reduced in polynomial time to P (α), showing that the former is also
NP-complete. �

Summarizing Theorems 10 and 11, we obtain the following dichotomy result.

Corollary 12. If n ≤ 3 then the problem of deciding the existence of an interpolating
quasi-polynomial function is in P, whereas for n ≥ 4 it is NP-complete.

6. Concluding remarks and future work

In this paper we considered the problem of interpolating empirical data given as
couples consisting of a tuple specified by several attributes, together with its evaluation
in a distributive lattice. The interpolating objects are lattice-valued functions, called
quasi- and pseudo-polynomial functions, that can be factorized into a composition
of a lattice polynomial function with possibly different local utility functions that
evaluate each attribute in a distributive lattice. We presented necessary and sufficient
conditions for the existence of quasi- and pseudo-polynomial functions interpolating
a given finite set of examples. In doing so, we actually presented explicit descriptions
of such solutions when they exist. Looking into complexity issues in computing them,
we established a dichotomy result stating that, up to 3 attributes, the existence of an
interpolationg quasi-polynomial function can be decided in polynomial time, whereas
this problem for sets of examples over more than 3 attributes becomes NP-complete.
The analogous complexity question for pseudo-polynomial functions remains open.

Now our framework was motivated by problems typically arising in the qualitative
approach to multicriteria decision making. The basic aggregation functions consid-
ered, namely, lattice polynomial functions (that include Sugeno integrals), have neat
representations, e.g., by disjunctive normal forms, and played a key role in the con-
structions provided. Other noteworthy aggregation functions in decision making, such
as Lovász extensions (that include Choquet integrals), also share similar representa-
tion features. The natural step is to make use them when considering analogous
interpolation problems for these aggregation models.

Furthermore, simplified notions of Sugeno and Choquet integrals (parametrized
versions arising from the notions of k-maxitivity and k-additivity; see [16] for a general
reference) have been proposed in the literature and could provide alternatives to avoid
intractable complexity classes when dealing with interpolation problems.

These constitute few topics of our current interest, and that will be tackled in
forthcoming research work.
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