
This paper appeared in Order 36 (2019), 23–41.

MINOR POSETS OF FUNCTIONS AS QUOTIENTS OF

PARTITION LATTICES

ERKKO LEHTONEN AND TAMÁS WALDHAUSER

Abstract. We study the structure of the partially ordered set of minors of an

arbitrary function of several variables. We give an abstract characterization of
such “minor posets” in terms of colorings of partition lattices, and we also present

infinite families of examples as well as some constructions that can be used to build

new minor posets.

1. Introduction

We investigate the partially ordered set of functions that can be obtained from
an arbitrary n-variable function f : An → B via identifications of variables. Such
functions are called minors of f , and they are naturally partially ordered, since some
minors of f can be also minors of each other; we shall use the symbol ↓f to denote this
poset of minors of the function f . In fact, the minor relation is a partial order on the
set FAB of all functions of several variables from A to B, if we regard functions differing
only in inessential variables and/or in the order of their variables as equivalent. Our
goal is to characterize the principal ideals ↓f of this poset up to isomorphism (see
Figure 2). We give the precise definitions in Section 2; here we present only an
illustrative example.

Example 1. Let us consider the function f (x1, x2, x3, x4) = x1x3 + x2 + x4 over the
2-element field. Identifying the first two variables, we obtain the minor g (x, y, z) =
f (x, x, y, z) = xy + x + z. If we identify the first and the fourth variable, then we
get f (x, y, z, x) = xz + y + x, which is the same as g (x, z, y), hence we consider this
minor to be the same as (or equivalent to) g. On the other hand, identifying the first
and third variables of f , we obtain a new minor f (x, y, x, z) = x+ y+ z, and one can
verify that there are no other 3-variable minors of f . Identification of the second and
fourth variables yields the minor h (x, y, z) = f (x, y, z, y) = xz, which has formally 3
variables, but depends only on 2 of them. Note that g (x, y, x) = xy is equivalent to
h, hence h is a minor of g. Examining all possible variable identifications, we see that
f has altogether 6 minors up to equivalence, which form the poset shown in Figure 1.

Looking only at the Hasse diagram of Figure 1 (ignoring the labels), it is not
at all clear, whether there is a function whose minors give this poset, and this is
exactly the problem that we consider in this paper. After recalling the necessary
definitions and introducing some formalism for minors in Section 2, we present a
characterization of such “minor posets” by means of admissible colorings of partition
lattices in Section 3. Then, in Section 4 we use this characterization to give some
infinite families of examples of minor posets, and we also present some operations that
allow us to construct new minor posets from known ones. However, it still remains
an open problem to find a finite bounded poset that is not the poset of minors of any
function, if there is such a poset at all.

Let us briefly discuss the relevance of minors of functions to universal algebra and
multiple-valued logic. Many important properties of an algebraic structure A = (A;F )
depend only on the clone of term functions of A, not on the set F of basic operations
(which is a generating set for this clone). This makes the theory of clones an essential
part of universal algebra. Clones of Boolean functions (i.e., functions on the set {0, 1})
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Figure 1. A minor poset.

are obviously relevant for logic [9], and clones of functions on larger sets are central
objects of study in multiple-valued logic. Clone theory is essentially the study of
compositions of functions of several variables. The simplest kinds of compositions are
the ones where we compose a function f with projections. It is easy to see that these
are the same as the minors of f (see Example 1 and Subsection 2.3). We will see in this
paper that even such very simple compositions raise highly nontrivial problems, and
we believe that the investigation of these problems contributes to our understanding
of clones.

This article is an extended version of the conference paper [7] presented at the 47th
IEEE International Symposium on Multiple-Valued Logic, where the main results and
sketches of some of the proofs were given.

2. Preliminaries

2.1. Posets. For a bounded poset P , let ⊥P and >P denote its least and greatest
elements; we drop the subscript when there is no danger of ambiguity. The dual of a
poset P is the poset P d obtained by reversing the ordering of P (drawing the Hasse
diagram of P upside down). The interval [a, b] in P is the set {x ∈ P : a ≤ x ≤ b}.
The principal ideal generated by a ∈ P is the interval ↓a := [⊥P , a], and the principal
filter generated by a is the interval [a,>P ].

We denote the n-element chain by n, the n-element antichain by n, and Mn denotes
the bounded poset (in fact, lattice) of size n + 2 with no comparabilities among its
elements except for the top and bottom elements. The ordinal sum (linear sum) of
posets P and Q is the poset P ⊕Q obtained by putting Q “on top of” P . With this
notation we have n = 1⊕ · · · ⊕ 1︸ ︷︷ ︸

n

and Mn = 1⊕ n⊕ 1.

By a coloring of a poset we mean a surjective map c : P → C, where C is an arbi-
trary nonempty set, whose elements are referred to as colors. Given such a coloring, we
can introduce a relation λ on C by uλv ⇐⇒ ∃a, b ∈ P : a ≤ b and c (a) = u, c (b) = v.
If λ is a partial order (which is not always the case), we obtain the “poset of colors”
(C;λ), and in this case we will use the symbol ≤ instead of λ. Note that (C;≤) can
be naturally identified with the poset of equivalence classes with respect to the kernel
of the map c, hence we shall denote this quotient poset by P/ ker c. Let us emphasize
that even if P is a lattice (which will always be the case in this paper), the quotient
poset P/ ker c is not necessarily a lattice (i.e., ker c is not always a congruence).

2.2. Set partitions. For any nonempty set V , let ΠV denote the set of all partitions
of V ; if V = [n] := {1, . . . , n} then we simply write Πn. Each partition α ∈ ΠV

corresponds naturally to an equivalence relation ρα ⊆ V × V . For notational conve-
nience, we will sometimes use the same symbol for a partition and the corresponding
equivalence relation, when there is no risk of ambiguity. For example, we denote the
block of α ∈ ΠV containing v ∈ V by v/α instead of the more usual notation v/ρα.
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Similarly, we use the symbol kerh not only for the kernel of a map h : V → A, but
also for the corresponding partition in ΠV .

For α, β ∈ ΠV , we say that α is a refinement of β and β is a coarsening of α
(denoted by α ≤ β) if every block of α is a subset of some block of β (equivalently,
ρα ⊆ ρβ). The poset (ΠV ;≤) is a lattice, where α ∧ β is the partition corresponding
to ρα∩ρβ and α∨β is the partition corresponding to the transitive closure of ρα∪ρβ .
The top element of ΠV is > = {V } and the bottom element is ⊥ = {{v} : v ∈ V }. If
α < β and there is no partition ξ with α < ξ < β then β is an upper cover of α (α
is a lower cover of β), and we shall denote this by α ≺ β. Note that in this case β
is obtained from α by merging two blocks; in particular, ϑ ≺ > holds if and only if ϑ
has exactly two blocks.

Ore proved in [8] that every automorphism of ΠV is induced by a permutation of V .
It follows immediately that every isomorphism between partition lattices is induced
by a bijection between the underlying sets. More precisely, let V and W be nonempty
sets, and let π : V → W be a bijection. For any partition α = {V1, . . . , Vk} ∈ ΠV ,
let π̃ (α) = {π (V1) , . . . , π (Vk)} ∈ ΠW . Obviously, π̃ : ΠV → ΠW is an isomorphism.
With this notation we can recast Ore’s theorem in the following form.

Theorem 2 (Ore [8]). For arbitrary sets V and W , every isomorphism between ΠV

and ΠW is of the form π̃ for some bijection π : V →W .

Although ΠV is not a modular lattice if |V | > 3, the following special case of the
isomorphism theorem for perspective intervals in modular lattices does hold (the easy
proof is left to the reader).

Fact 3. Let α, γ, ϑ ∈ ΠV with α ≤ ϑ ≺ > and α ≺ γ � ϑ. If one of the blocks of α
is also a block of ϑ, then the following two maps are mutually inverse isomorphisms
between the intervals [α, ϑ] and [γ,>]:

[α, ϑ]→ [γ,>] , ξ 7→ ξ ∨ γ;

[γ,>]→ [α, ϑ] , ξ 7→ ξ ∧ ϑ.

Remark 4. The intervals [α, ϑ] and [γ,>] in Fact 3 are both isomorphic to the
partition lattice on |α| − 1 = |γ| elements, hence from Theorem 2 we see that up to
permutations of blocks of α, the only isomorphism from [α, ϑ] to [γ,>] is ξ 7→ ξ ∨ γ.

2.3. Functions and their minors. A function of several variables is a map of the
form f : An → B, where A and B are arbitrary nonempty sets, and n is a natural
number, called the arity of f . To avoid degenerate cases, the sets A and B will be
assumed to have at least two elements. The set of all such functions (of arbitrary
arities) is denoted by FAB . We say that the i-th variable of f is essential (or that f
depends on its i-th variable) if there exist tuples a,a′ ∈ An differing only in their i-th
coordinate such that f (a) 6= f (a′).

For f, g ∈ FAB , we say that g is a minor of f (notation: g ≤m f), if there is a map
σ : [n] → [m] such that g (x1, . . . , xm) = f

(
xσ(1), . . . , xσ(n)

)
, where n and m denote

the arities of f and g, respectively. It is easy to see that g ≤m f holds if and only if g
can be obtained from f by identification of variables, permutation of variables and/or
introduction or deletion of inessential variables. The minor relation is a quasiorder
on FAB , and the corresponding equivalence of functions is defined and denoted by
f ≡ g ⇐⇒ f ≤m g and g ≤m f . Two functions are equivalent if and only if they
can be obtained from each other by permutation of variables and/or introduction or
deletion of inessential variables, whereas to form a proper minor g <m f (meaning
g ≤m f but g 6≡ f), one must identify at least two essential variables. Considering
functions only up to equivalence, as we shall do in this paper, one obtains the poset
(FAB/≡;≤m), which is our main object of study. The structure of this poset is quite
complicated; for instance, it was shown by Couceiro and Pouzet [5] that it contains a
copy of the poset of finite subsets of a countable set (hence a copy of every finite poset)
even in the simplest case A = B = {0, 1} (i.e., in the case of Boolean functions). In
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Figure 2. A principal ideal in FAB .

fact, (FAB/≡;≤m) is universal for the class of countable posets with finite principal
ideals, whenever |B| ≥ min(3, |A|) (see Lehtonen, Szendrei [6]).

Here we deal with principal ideals of (FAB/≡;≤m). The principal ideal ↓f gener-
ated by a function f consists of the minors of f (up to equivalence), hence we call it the
poset of minors of f , and we also say that P is a minor poset if there exists a function
f : An → B for some sets A,B and for some natural number n, such that P ∼= ↓f .
Clearly ↓f is a finite poset with largest element f/≡. Although FAB/≡ has no least
element (but it has several minimal elements), every function f has a least minor,
namely the unary function f (x, . . . , x); see Figure 2. Therefore, every minor poset
is a finite bounded poset. We shall denote the class of all minor posets by M, and
our main goal is to characterize members ofM by means of a necessary and sufficient
condition that does not refer to the existence of a suitable function f . In Corollary 18
we establish such a “function-free” characterization; unfortunately, this involves quite
an intricate property that is not easy to verify for a concrete poset. Therefore, in
spite of this characterization, it is still not clear whether all finite bounded posets are
minor posets or not. In Section 4 we present some infinite families of minor posets,
and we prove that M is closed under certain poset constructions.

In order to present the promised characterization, we need to introduce some more
abstract formalism for tuples, functions and minors (following Willard [10]). An n-ary
function from A to B can be viewed as a map f : AV → B, where V is an arbitrary n-
element set (whose elements are considered to be the variables of f), and the elements
of AV are maps of the form a : V → A (evaluations of variables). Note that in the
special case V = [n], the elements of AV can be naturally identified with n-tuples,
and in this case we get back the usual notion of a function of several variables. We
will formulate our results in this usual setting, but in the proofs we will also need the
more abstract view of functions allowing arbitrary finite sets as the set of variables.

For a ∈ AW and σ : V → W , we can define the composition a ◦ σ ∈ AV by
(a ◦ σ) (v) = a (σ (v)). Minors of f are functions g : AW → B that can be given in
the form g (a) = f (a ◦ σ) for some map σ : V → W . If α ∈ ΠV is a partition, then
let natα denote the natural surjection natα : V → α, v 7→ v/α. The map natα induces
a minor fα : Aα → B, which is given by fα (a) = f (a ◦ natα) for all a ∈ Aα. Observe
that fα is obtained from f by identifying variables belonging to the same block of α.
Conversely, for every map σ : V → W , the minor g (a) = f (a ◦ σ) is equivalent to fα
with α = kerσ. This shows that it suffices to work with minors of the form fα, and
we shall record this fact here for reference.

Fact 5. If f : AV → B and g : AW → B are arbitrary functions, then

g ≤m f ⇐⇒ ∃α ∈ ΠV : g ≡ fα.
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3. Admissible colorings

According to Fact 5, every minor of an n-variable function f is equivalent to a
function fα for some α ∈ Πn. This means that we can encode all information about
minors of f into a “coloring” c of the partition lattice Πn, where the color of a partition
α is c (α) = fα/≡. Actually, the only relevant property of this coloring is that two
minors receive the same color if and only if they are equivalent. Clearly, we have
β ≥ α =⇒ fβ ≤m fα. The following easy observation formulates a kind of converse
of this statement, showing that we can recover the poset ↓f as the quotient of Πn by
the kernel of the aforementioned coloring c.

Proposition 6. For every function f : An → B and for all α, β ∈ Πn, the function
fβ is a minor of fα if and only if there exists a partition γ ≥ α such that fγ ≡ fβ.

Proof. The “if” part of the statement is obvious. For the “only if” part, assume that
fβ ≤m fα. By Fact 5, this means that there exists a partition δ ∈ Πα such that
fβ ≡ (fα)δ. Let γ ∈ Πn be the partition obtained by merging the blocks of α that
belong to the same block of δ. (More precisely, two elements u, v ∈ [n] are ργ-related
if and only if the α-blocks u/α and v/α are ρδ-related.) Clearly, γ ≥ α and (fα)δ ≡ fγ ,
hence fβ ≡ fγ . �

Corollary 7. For every function f : An → B, the poset of minors of f is dually
isomorphic to Πn/ ker c for the natural coloring c : Πn → ↓f, α 7→ fα/≡.

Example 8. Let us consider the function f (x1, x2, x3, x4) = x1x3 +x2 +x4 of Exam-
ple 1 once more. We have computed there that f12/3/4 ≡ f14/2/3 ≡ g >m h ≡ f1/24/3
and f13/2/4 is incomparable to g and h. (Here we use a simplified, but hopefully clear
notation for partitions.) Calculating fα for all the 15 partitions of [4] = {1, 2, 3, 4},
we get a coloring of Π4 with 6 colors, as shown in Figure 6. The partial order induced
on the 6 colors is the dual of the poset of Figure 1.

Corollary 7 shows that we can obtain each minor poset as a “poset of colors”,
where the order on the colors is induced by a suitable coloring of a partition lattice.
Therefore, our main goal is to characterize those colorings that can arise from a
function. We define an abstract property of colorings of partition lattices, called
admissibility (see Definition 11), and in Corollary 18 we prove that admissibility is
indeed a necessary and sufficient condition for the existence of a function f such that
the given coloring is induced by f (as in Corollary 7).

Definition 9. Let c : Πn → C be a coloring, and let α, β ∈ Πn. We write α ∼ β
if the intervals [α,>] and [β,>] are isomorphic as colored posets, i.e., there is an
isomorphism ϕ from [α,>] to [β,>] such that c (ξ) = c (ϕ (ξ)) for all ξ ∈ [α,>].

Proposition 10. Let c : Πn → C be a coloring, and let α, ϑ ∈ Πn such that α ≤ ϑ ≺
>. Then the following two conditions are equivalent.

(i) For every γ ∈ Πn with α ≺ γ � ϑ, the map

ϕγ : [α, ϑ]→ [γ,>] , ξ 7→ ξ ∨ γ
is a color-preserving isomorphism (cf. Fact 3 and see also Figure 3).

(ii) One of the blocks of α is also a block of ϑ and

(1) ∀ξ ∈ [α,>] : c (ξ) = c (ξ ∧ ϑ) .

Proof. Observe that if α = ϑ, then the equivalence of (i) and (ii) is obvious: both are
equivalent to c (α) = c (>) (in this case the partition γ in (i) must be >). Therefore,
we may assume that α < ϑ, as depicted in Figure 3. Then α has at least three blocks,
and there exist partitions γ 6= > with α ≺ γ � ϑ (just merge any two blocks of α that
are not merged in ϑ).

Assume first that (i) holds. If k = |α| and the two blocks of ϑ are unions of s
and k − s blocks of α, respectively, then [α, ϑ] ∼= Πs × Πk−s and [γ,>] ∼= Πk−1.
By condition (i), these two lattices are isomorphic: Πs × Πk−s ∼= Πk−1. Partition
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Figure 3. The intervals [α, ϑ] and [γ,>] are isomorphic as colored posets.

lattices are simple (see Ore [8, Theorem 8] and Beran, Ježek [1, Theorem 1]), hence
directly indecomposable; therefore, we must have s = 1 or s = k− 1. Thus one of the
blocks of α is indeed a block of ϑ, i.e., α and ϑ are of the form α = {V1, . . . , Vk} and
ϑ = {V1, V2 ∪ · · · ∪ Vk}. To prove (1), let us fix an arbitrary partition ξ ∈ [α,>]. If
ξ ≤ ϑ, then ξ ∧ ϑ = ξ, hence (1) holds trivially. If ξ � ϑ, then V1 is merged with at
least one other block of α in ξ; we can suppose without loss of generality that V1 ∪ V2
is contained in a block of ξ. Letting γ = {V1 ∪ V2, V3, . . . , Vk}, we see that ξ ∈ [γ,>]
and α ≺ γ � ϑ, thus c

(
ϕ−1γ (ξ)

)
= c (ξ) by (i). Recall from Fact 3 that ϕ−1γ (ξ) = ξ∧ϑ,

hence c (ξ ∧ ϑ) = c
(
ϕ−1γ (ξ)

)
= c (ξ), which completes the proof of (ii).

Now assume that (ii) holds. If α ≺ γ � ϑ and ξ ∈ [α, ϑ], then replacing ξ by ξ ∨ γ
in (1) we obtain

c (ξ ∨ γ) = c ((ξ ∨ γ) ∧ ϑ) = c (ξ) ,

which proves that ϕγ preserves colors. (Here we used Fact 3 in the form (ξ ∨ γ)∧ϑ =
ξ.) �

Definition 11. Let c : Πn → C be a coloring, and let α, β ∈ Πn. We write α  1 β
if α ≺ β and there is a partition ϑ ∈ Πn with α ≤ ϑ ≺ > and β � ϑ such that the
equivalent conditions of Proposition 10 are satisfied (in particular, condition (ii) holds
with γ = β).
Let  be the reflexive-transitive closure of  1, i.e., α  β if and only if there exist
α0, . . . , αk ∈ Πn for some k ≥ 0 such that α = α0  1 α1  1 · · ·  1 αk = β (this
includes the case α = β when k = 0).
We say that the coloring c is admissible, if for all α, β ∈ Πn, we have

(2) c (α) = c (β) =⇒ ∃α′, β′ ∈ Πn : α α′ ∼ β′  β.

Remark 12. Note that if α ∼ β or α  β, then c (α) = c (β). Thus the reverse
implication of (2) always holds.

Proposition 13. Let f : An → B be an arbitrary function, and let c (α) = fα/≡ for
all α ∈ Πn. Then c is an admissible coloring of Πn.

Proof. Let α = {V1, . . . , Vk} ∈ Πn be an arbitrary partition of size k ≥ 2, and assume
that V1 is an inessential variable of fα. Let ϑ = {V1, V2 ∪ · · · ∪ Vk} and suppose that
α ≺ γ � ϑ. Clearly, γ is obtained from α by merging V1 with another block Vj . This
means that we get fγ from fα by identifying the inessential variable V1 with another
variable, hence we have fα ≡ fγ , that is c (α) = c (γ). Similarly, for any ξ ∈ [α, ϑ],
denoting by ϕ (ξ) = ξ ∨ γ the partition obtained from ξ by merging V1 (which must
be a block of ξ) with the block containing Vj , we have c (ξ) = c (ϕ (ξ)), therefore
condition (i) of Proposition 10 is satisfied. Thus we can conclude that α  1 γ for
every γ ∈ Πn such that α ≺ γ � ϑ.

We have proved that if fα has an inessential variable, then there exists an upper
cover γ of α such that α 1 γ. Proceeding this way (always identifying an inessential
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variable with another variable as long as there is an inessential variable), we finally
arrive at a partition α′ such that α α′ and all variables of fα′ are essential.

Now we are ready to prove that c is an admissible coloring. Assume that c (α) =
c (β), i.e., fα ≡ fβ , and use the above procedure to find partitions α′ and β′ such
that α  α′ and β  β′ with fα′ and fβ′ depending on all their variables. Since
fα′ ≡ fα ≡ fβ ≡ fβ′ , the functions fα′ and fβ′ are equivalent, and this implies that
they can be obtained from each other by permuting (renaming) the variables, since
both functions have only essential variables. This permutation of variables induces
naturally a color-preserving isomorphism between the intervals [α′,>] and [β′,>],
showing that α′ ∼ β′. Thus we have α  α′ ∼ β′  β, and this proves that (2) is
satisfied. �

Remark 14. If f depends on all of its variables, then c (⊥) = f/≡ appears only at
⊥ in the coloring of Proposition 13. Therefore, one may always assume without loss
of generality that ⊥ is the unique element of Πn with color c (⊥). On the other hand,
one cannot assume the same about the color of >: a function can have several minors
that are equivalent to f> = f (x, . . . , x) (see also Remark 22).

Next we would like to prove the following converse of Proposition 13: for any
admissible coloring c : Πn → C, there is a function f : An → B such that two partitions
of [n] have the same color if and only if the corresponding minors of f are equivalent.
To construct this function, let A be any set with at least n elements, let B = C, and
define f : An → B by f (a) := c (ker a) for all a ∈ An. Here ker a denotes the (partition
corresponding to the) kernel of the map a : [n]→ A, i 7→ ai. All partitions of [n] with
at most |A| blocks arise in the form ker a, therefore our assumption |A| ≥ n guarantees
that in fact every element of Πn will occur. We will show in Theorem 17 that the
above function has the desired property, thus we can conclude that every poset that
appears as the poset of minors of a function can be represented by a function f having
the special property that f (a) is determined by the kernel of a.

Let f be the function defined above, and let us consider an arbitrary minor fα.
From the definition of a minor we have that fα (a) = f (a ◦ natα) = c (ker (a ◦ natα))
for all a ∈ Aα. Observe that the partition ker (a ◦ natα) is a coarsening of α (merging
two blocks of α if and only if a assigns the same value to them). Moreover, the
assumption |A| ≥ n ensures that we obtain every coarsening of α (every element of
the interval [α,>]) this way. This observation will be of key importance in the next
two lemmas, which prepare the ground for the proof of Theorem 17, our main result
in this section.

Lemma 15. Let c : Πn → C be an arbitrary coloring, and let the function f : An → C
be defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at least n
elements. For arbitrary partitions α, β ∈ Πn, the minors fα and fβ can be obtained
from each other by a permutation of variables if and only if α ∼ β.

Proof. First let us assume that fα and fβ can be obtained from each other by a
permutation of variables. This means that α and β have the same number of blocks,
and there is a bijection π : β → α such that fα (a) = fβ (a ◦ π) for all a ∈ Aα. By the
definition of a minor, we can rewrite this equality as f (a ◦ natα) = f (a ◦ π ◦ natβ),
which in turn can be formulated as c (ker (a ◦ natα)) = c (ker (a ◦ π ◦ natβ)). The
partition ker (a ◦ natα) is a coarsening of α, and ker (a ◦ π ◦ natβ) is a coarsening of
β, which can be obtained from β by merging two blocks if and only if the images of
these two blocks under π are merged in ker (a ◦ natα). Since all coarsenings of α and
β appear here, we obtain a color-preserving isomorphism

(3) π̃ : [α,>]→ [β,>] , ker (a ◦ natα) 7→ ker (a ◦ π ◦ natβ) ,

showing that α ∼ β.
Next assume that α ∼ β, i.e., that there is a color-preserving isomorphism ϕ : [α,>]→

[β,>]. Since [α,>] ∼= Πα and [β,>] ∼= Πβ , Theorem 2 implies that ϕ is induced by a
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bijection π : β → α. From the above considerations it follows that ϕ is exactly the iso-
morphism π̃ defined by (3), and, since ϕ is a color-preserving isomorphism, this means
that c (ker (a ◦ natα)) = c (ker (a ◦ π ◦ natβ)) for all a ∈ Aα. By the definition of f ,
we conclude fα (a) = fβ (a ◦ π), hence fα can be obtained from fβ by a permutation
of variables. �

Lemma 16. Let c : Πn → C be an arbitrary coloring, and let the function f : An → C
be defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at least n
elements. For arbitrary partitions α, β ∈ Πn, the minor fβ can be obtained from fα
by identifying an inessential variable with another variable if and only if α 1 β.

Proof. To prove the “only if” part of the lemma, let α = {V1, . . . , Vk} ∈ Πn and
let us assume (without loss of generality) that the first variable of fα is inessential
and that fβ is obtained from fα by identifying the first two variables. Then we have
β = {V1 ∪ V2, V3, . . . , Vk}, and let us put ϑ = {V1, V2 ∪ · · · ∪ Vk}. Clearly, α ≤ ϑ ≺ >
and α ≺ β � ϑ, so we only need to verify (1). Let ξ = {W1, . . . ,W`} ∈ [α,>]
be an arbitrary partition, and let W1 be the block of ξ that contains V1. If W1 =
V1 then ξ ≤ ϑ, hence ξ = ξ ∧ ϑ, and then (1) holds trivially. If W1 ⊂ V1, then
ξ∧ϑ = {V1,W1 \ V1,W2, . . . ,W`} and V1 is an inessential variable in fξ∧ϑ. Therefore,
if a0, . . . , a` ∈ A are pairwise different (such elements exist, as |A| ≥ n), then we have

c (ξ ∧ ϑ) = fξ∧ϑ (a0, a1, a2, . . . , a`) = fξ∧ϑ (a1, a1, a2, . . . , a`) = c (ξ) ,

thus (1) holds. This proves that α 1 β, as claimed.
For the “if” part, assume that α  1 β. We may suppose (without loss of gener-

ality) that α = {V1, . . . , Vk}, β = {V1 ∪ V2, V3, . . . , Vk} and the partition ϑ justifying
α  1 β according to Definition 11 is ϑ = {V1, V2 ∪ · · · ∪ Vk}. Let a ∈ Aα and
let ξ = ker (a ◦ natα). Then we have fα (a1, . . . , ak) = c (ξ) and fβ (a2, . . . , ak) =
fα(a2, a2, . . . , ak) = c(ker((a2, a2, . . . , ak) ◦ natα)). Since

ker((a2, a2, . . . , ak) ◦ natα) = (ker((a1, a2, . . . , ak) ◦ natα) ∧ ϑ) ∨ β = (ξ ∧ ϑ) ∨ β,

we see that fβ (a2, . . . , ak) = c ((ξ ∧ ϑ) ∨ β).
From α 1 β it follows that c (ξ) = c (ξ ∧ ϑ) (using condition (ii) of Proposition 10)

and c (ξ ∧ ϑ) = c ((ξ ∧ ϑ) ∨ β) (using condition (i) of Proposition 10 with ξ∧ϑ in place
of ξ and β in place of γ). We can conclude that

fα (a1, a2, . . . , ak) = c (ξ) = c ((ξ ∧ ϑ) ∨ β) = fβ (a2, . . . , ak)

for all a1, a2, . . . , ak ∈ A. This means that the first variable of fα is inessential, and
fβ is obtained by identifying this inessential variable with the second variable. �

With the help of the previous two lemmas we can now prove that every admissible
coloring of Πn can be realized by minors of an n-variable function.

Theorem 17. Let c : Πn → C be an admissible coloring, and let the function f : An →
C be defined by f (a) = c (ker a) for all a ∈ An, where A is a finite set with at least n
elements. Then for every α, β ∈ Πn, we have fα ≡ fβ if and only if c (α) = c (β).

Proof. Suppose first that fα ≡ fβ . Let α = {V1, . . . , Vk} ∈ Πn and assume that
V1, . . . , V` are inessential variables and V`+1, . . . , Vk are essential variables in fα. If
α′ = {V1 ∪ · · · ∪ V` ∪ V`+1, V`+2, . . . , Vk}, then fα′ depends on all of its variables, and
fα′ can be obtained from fα by repeatedly identifying an inessential variable with an
essential one. Similarly, let fβ′ be the “essential minor” of fβ . Clearly, fα ≡ fβ implies
that fα′ and fβ′ can be obtained from each other by a permutation of variables. Now
Lemma 15 and Lemma 16 yield α α′ ∼ β′  β, and then c (α) = c (β) follows (see
Remark 12).

Conversely, if c (α) = c (β), then, by the admissibility of the coloring c, there exist
α′, β′ ∈ Πn such that α α′ ∼ β′  β. Lemma 16 shows that fα ≡ fα′ and fβ ≡ fβ′ ,
and Lemma 15 shows that fα′ ≡ fβ′ . Therefore, we can conclude that fα and fβ are
equivalent. �
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Proposition 13 and Theorem 17 together yield the following characterization of
minor posets.

Corollary 18. A poset P belongs to M (i.e., isomorphic to the poset of all minors
of some function f) if and only if there is an admissible coloring c : Πn → C for some
natural number n and for some nonempty set C such that P d ∼= Πn/ ker c.

4. Constructions and examples

In this section we give some (families) of examples of minor posets, and we also
present some constructions which allow us to build new minor posets from known
ones. We denote the poset of integer partitions of n by Pn (see Birkhoff [2] for the
definition of this poset).

Theorem 19. The following are minor posets for all natural numbers m and n:

(i) the dual of the partition lattice Πn;
(ii) the dual of the poset Pn of integer partitions of n;
(iii) the n-element chain n;
(iv) the lattice m⊕Mn;
(v) the n-dimensional cube (Boolean lattice) 2n.

Proof. In each case we give an admissible coloring of a partition lattice such that the
corresponding quotient is dually isomorphic to the desired poset. Except for (v), we
leave it to the reader to verify that these colorings are indeed admissible and that
they yield the desired quotient.

(i) If c : Πn → Πn is the identity map, then clearly Πn/ ker c is dually isomorphic
to Πd

n.
(ii) For α = {V1, . . . , Vk} ∈ Πn, let c (α) be the integer partition n = |V1|+· · ·+|Vk|

given by the sizes of the blocks of α. Then c : Πn → Pn is an admissible
coloring and Πn/ ker c is isomorphic to Pn.

(iii) For the coloring c : Πn → [n] , α 7→ |α|, the quotient Πn/ ker c is (the dual of)
an n-element chain.

(iv) Choose a natural number k such that k ≥ m+ 3 and
(
k
2

)
≥ n. Let c1, . . . , cn

and d1, . . . , dm be pairwise distinct colors, all distinct from white and black,
and let us color Πk as follows. The bottom element of Πk is white. The atoms
receive colors c1, . . . , cn in an arbitrary way so that all these n colors are used.
For i = 1, . . . ,m, the partitions with exactly k − i− 1 blocks receive color di.
All remaining partitions, i.e., the ones with at most k−m−2 blocks are black
(see Figure 7 with m = 1, n = 3, k = 4). Then Πk/ ker c is isomorphic to
Mn ⊕m, hence dually isomorphic to m⊕Mn.

(v) Let c be the coloring that assigns to every partition α = {V1, . . . , Vk} ∈ Πn+1

the set of minimal elements of the blocks of α (under the natural ordering
1 < · · · < n + 1), that is, c (α) := {minV1, . . . ,minVk}. Since |c (α)| =
|α|, only partitions on the same level of Πn+1 can receive the same color.
Therefore, in order to prove that c is admissible, it suffices to show that [α,>]
and [β,>] are isomorphic as colored posets whenever c (α) = c (β). Let us
consider the natural isomorphisms ϕ : [α,>] → Πα and ψ : [β,>] → Πβ . If
c (α) = c (β), then for each block V of α, there exists a unique block π (V ) of
β such that minV = minπ (V ), and this defines a bijection π : α → β. Now
the composition ψ−1 ◦ π̃ ◦ ϕ is a color-preserving isomorphism from [α,>] to
[β,>].

To determine the quotient poset, observe that the image of c consists of
those subsets of [n + 1] that contain the element 1, and we have α > β =⇒
c (α) ⊂ c (β). Moreover, if 1 ∈M ⊂ N ⊆ [n+ 1], then one can find partitions
α, β ∈ Πn+1 with α > β and c (α) = M, c (β) = N . This implies that
Πn+1/ ker c is isomorphic to the lattice of subsets of [n + 1] containing 1,
which is (dually) isomorphic to 2n. Figure 8 illustrates the coloring and the
corresponding quotient for n = 3. �
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Remark 20. For the first three items of Theorem 19, it is easy to find functions that
realize the given posets. If f is an injective n-variable function, then no two minors
of f are equivalent, hence the poset of minors of f is isomorphic to the dual of the
partition lattice Πn. For the second item, let us consider the function f(x1, . . . , xn) =
x1 + · · ·+ xn over the real numbers. If α ∈ Πn has blocks of sizes m1, . . . ,mk (hence
m1 + · · · + mk = n), then fα is equivalent to the function m1x1 + · · · + mkxk. This
shows that the poset of minors of f is isomorphic to the dual of the lattice of integer
partitions of n. Finally, let us consider the function f(x1, . . . , xn) = x1 ∨ · · · ∨ xn,
where ∨ is a semilattice operation. If α ∈ Πn has k blocks, then fα is equivalent to
the function x1 ∨ · · · ∨ xk. This implies that the poset of minors of f is an n-element
chain.

Proposition 21. The class M is closed under taking principal ideals: if P ∈M and
a ∈ P , then the principal ideal [⊥P , a] is also a member of M.

Proof. If f is a function such that ↓f is isomorphic to P , and a ∈ P , then f has a
minor fα corresponding to a, and ↓fα is isomorphic to the principal ideal [⊥P , a]. �

Remark 22. A natural idea to prove an analogous statement for principal filters
would be the following. Take an admissible coloring c of Πn such that Πn/ ker c ∼= P d,
and let α correspond to a under this isomorphism. Change all colors outside of ↓α to
the color of α; then the resulting quotient poset of Πn will be dually isomorphic to
the principal filter [a,>P ] of P . However, unfortunately, this modified coloring will
not be admissible in general (a counterexample is provided in Online Resources 1 and
2). Nevertheless, it might be still true thatM is closed under taking principal filters,
but a different argument would be needed to prove this.

In the following theorem we prove that one can always add a new top element to
a minor poset. Recalling that the ordinal sum of posets is denoted by ⊕, the poset
obtained by adding a new top element to P can be written as P ⊕ 1.

Theorem 23. If P ∈M, then P ⊕ 1 ∈M.

Proof. By Corollary 18, there is an admissible coloring c : Πn−1 → C for some natural
number n and for some nonempty set C such that Πn−1/ ker c ∼= P d. For any ξ ∈
Πn, let us simply write ξ − n for the partition that is obtained from ξ by deleting
the element n. More precisely, if ξ = {V1, . . . , Vk}, and, say, n ∈ Vk, then let ξ −
n = {V1, . . . , Vk \ {n}} ∈ Πn−1, discarding the block Vk \ {n} if it is empty. Define
c∗ : Πn → C by c∗ (ξ) = c (ξ − n). Later we will modify this coloring to obtain the
poset P ⊕ 1, but first let us check that c∗ is admissible. We shall need the following
two observations.

1. If α ∈ Πn and {n} /∈ α (i.e., n does not form a singleton block in α), then the
intervals [α,>] ⊆ Πn and [α− n,>] ⊆ Πn−1 are isomorphic as colored posets
under the map ξ 7→ ξ − n.

2. For every α ∈ Πn there exists α′ ∈ Πn such that α  α′ and {n} /∈ α′.
If {n} /∈ α, then we may choose α′ = α. Otherwise α is of the form
α = {V1, . . . , Vk, {n}}. In this case let α′ = {V1, . . . , Vk ∪ {n}} and ϑ =
{{1, . . . , n− 1} , {n}}. Then condition (ii) of Proposition 10 is satisfied, since
ξ − n = (ξ ∧ ϑ) − n holds for all ξ ∈ [α,>] (in fact, for all ξ ∈ Πn), and
therefore

c∗ (ξ) = c (ξ − n) = c ((ξ ∧ ϑ)− n) = c∗ (ξ ∧ ϑ) .

This shows that α 1 α
′.

Now we are ready to verify the admissibility of c∗. Assume that α, β ∈ Πn and
c∗ (α) = c∗ (β). By our second observation above, there exist α′, β′ ∈ Πn such that
α  α′, β  β′ and {n} /∈ α′, β′. From Remark 12 we see that c∗ (α′) = c∗ (α) =
c∗ (β) = c∗ (β′), and this implies c (α′ − n) = c (β′ − n). Since c is an admissible
coloring of Πn−1, there exist γ, δ ∈ Πn−1 with α′−n γ ∼ δ  β′−n. The partition
α′ − n is obtained from α′ by removing n from the block that contains n, and γ is a
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Figure 4. The poset P1 ∗ P2.

coarsening of α′ − n. Let us add the element n to the block of γ that contains the
block of α′ from which n was removed. This way we get a partition γ′ ∈ Πn with the
properties γ′ ≥ α′ and γ′ − n = γ. According to our first observation, the colored
intervals [α′,>] ⊆ Πn and [α′ − n,>] ⊆ Πn−1 are isomorphic, thus α′−n γ implies
α′  γ′, and then α  γ′ follows, as α  α′. In a similar way we can construct
a partition δ′ ∈ Πn such that δ′ − n = δ and β  δ′. Using our first observation
again, and taking into account that γ ∼ δ, we find the isomorphisms [γ′,>] ∼= [γ,>] ∼=
[δ,>] ∼= [δ′,>] (all of the underlying isomorphisms are color preserving). This means
that α γ′ ∼ δ′  β, hence (2) holds, and therefore c∗ is indeed admissible.

The quotient poset Πn/ ker c∗ is isomorphic to P d. To see this, note that c∗ uses the
same colors as c; moreover, for any two colors c1, c2 ∈ C the following two conditions
are equivalent:

(a) ∃ξ1, ξ2 ∈ Πd
n : ξ1 ≤ ξ2 and c∗ (ξ1) = c1, c∗ (ξ2) = c2;

(b) ∃η1, η2 ∈ Πd
n−1 : η1 ≤ η2 and c (η1) = c1, c (η2) = c2.

Indeed, for (a) =⇒ (b) set ηi = ξi − n, and for (b) =⇒ (a) set ξi = ηi ∪ {{n}}.
Now let us introduce a new color ∗ /∈ C and modify the coloring c∗ by chang-

ing the color of ⊥ to ∗ (the colors of the other elements remain the same). Clearly,
this new coloring is also admissible, and the corresponding quotient of Πn is isomor-
phic to 1 ⊕ P d (note that the “old” color c∗ (⊥) does still appear, for instance as
c∗ ({{1}, {2}, . . . , {n− 1, n}}). Therefore, P ⊕ 1 (the dual of 1 ⊕ P d) belongs to M
by Corollary 18. �

Remark 24. It is a natural question whether P ∈ M implies 1⊕ P ∈ M. A simple
proof could be obtained by changing the color of > to a new color ∗ at the end of the
previous proof. Unfortunately, this new coloring is not necessarily admissible. (As an
example, let us consider the coloring c of Π2 that colors the bottom element white
and the top element black. The corresponding coloring c∗ assigns the color black to
{{1, 2}, {3}} and to {{1, 2, 3}}, and it assigns the color white to the remaining three
elements of Π3. Now if we change the color of the top element from black to a new
color ∗, then the resulting coloring is no longer admissible.) Thus it remains an open
problem whether adding a new bottom element to a minor poset yields a minor poset
or not.

Next we describe a construction of “gluing” two posets together, and we show that
M is closed under this construction. For finite bounded posets P1 and P2, let P1 ∗P2

denote the poset obtained from the disjoint union (parallel sum) of P1 and P2 by
identifying the top elements as well as the bottom elements (see Figure 4). Formally,
we have

P1 ∗ P2 = (P1 \ {⊥P1 ,>P1}) ·∪ (P2 \ {⊥P2 ,>P2}) ·∪ {⊥P1∗P2 ,>P1∗P2} ,
where the ordering on Pi \ {⊥Pi

,>Pi
} is inherited from Pi and there are no compara-

bilities between P1 \{⊥P1 ,>P1} and P2 \{⊥P2 ,>P2}; furthermore, ⊥P1∗P2 and >P1∗P2

are the least and greatest elements of P1 ∗ P2.

Theorem 25. If P1, P2 ∈M, then P1 ∗ P2 ∈M.
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Proof. Suppose that P1, P2 ∈ M, and let ci : ΠWi → Ci be admissible colorings such
that ΠWi/ ker ci ∼= P di for i = 1, 2. We assume that the sets W1 and W2 are disjoint,
and also that c1 (⊥1) = c2 (⊥2) = ♠, c1 (>1) = c2 (>2) = ♥ but apart from these
two colors, there is no common color used in c1 and c2. (Here ⊥i and >i denote
the bottom and top elements of ΠWi

.) By Remark 14, we may also suppose that
the color ♠ appears only at the bottom in c1 as well as in c2. We shall construct
an admissible coloring c : ΠW → C with W = W1 ∪W2 and C = C1 ∪ C2 such that

ΠW / ker c ∼= (P1 ∗ P2)
d
.

For i = 1, 2, let ωi ∈ ΠW be the partition of W whose only non-singleton block is
Wi, and let ιi : ΠWi

→ ΠW be the natural embedding that maps ΠWi
isomorphically

onto [⊥, ωi]. We define the desired coloring c by

c (ξ) =

{
ci
(
ι−1i (ξ)

)
, if ξ ∈ [⊥, ωi] for some i ∈ {1, 2};

♥, if ξ /∈ [⊥, ω1] ∪ [⊥, ω2].

Note that c is well defined, as the intervals [⊥, ω1] and [⊥, ω2] intersect only at the

bottom, and c1 (⊥1) = c2 (⊥2). It is clear that ΠW / ker c ∼= (P1 ∗ P2)
d
; we only need

to verify that c is admissible.
Let α, β ∈ ΠW such that c (α) = c (β). If c (α) = c (β) = ♥ then (2) is clear, since

c−1 (♥) is an upset in ΠW . If this is not the case, then either both α and β lie in
[⊥, ω1] or both are in [⊥, ω2], as there is no common color in C1 and C2 except for ♥
and ♠. In the following we will assume that i = 1; the other case is essentially the
same. Thus c1

(
ι−11 (α)

)
= c1

(
ι−11 (β)

)
, and then we have

(4) ι−11 (α) α′ ∼ β′  ι−11 (β)

for some α′, β′ ∈ ΠW1 , by the admissibility of c1. Now we need to “pull back” (4)
from ΠW1

to ΠW , and for this it suffices to prove that γ ∼ δ =⇒ ι1 (γ) ∼ ι1 (δ) and
γ  1 δ =⇒ ι1 (γ)  1 ι1 (δ) for all γ, δ ∈ ΠW1

. The intuitive reason behind both
implications is the same: the interval [ι1 (γ) ,>] ⊆ ΠW differs from [γ,>1] ⊆ ΠW1

only
in some monochromatic part around the top (all colors are ♥ there), and similarly for
δ. We shall check the details formally below.

First assume that γ ∼ δ, i.e., there exists a color-preserving isomorphism ϕ : [γ,>1]→
[δ,>1]. Since Π|γ| ∼= [γ,>1] ∼= [δ,>1] ∼= Π|δ|, we must have |γ| = |δ|; moreover, by
Ore’s theorem (Theorem 2), ϕ = π̃ for some bijection π : γ → δ. Let us extend π to a
bijection τ : ι1 (γ)→ ι1 (δ) as follows:

τ (U) =

{
π (U) , if U ∈ γ (i.e., U ⊆W1);

U, otherwise (i.e., if U = {w} for some w ∈W2).

We claim that τ̃ is a color-preserving isomorphism between the intervals [ι1 (γ) ,>]
and [ι1 (δ) ,>]. Indeed, if ι1 (γ) ≤ ξ ≤ ω1, then τ̃ (ξ) = ι1 (π̃ (η)), where η = ι−11 (ξ),
and thus c (τ̃ (ξ)) = c1 (π̃ (η)) = c1 (η) = c (ξ), by the definition of c, and by the
color-preserving property of π̃. Now let ξ ∈ [ι1 (γ) ,>] but ξ � ω1. Then τ̃ (ξ) � ω1,
hence c (τ̃ (ξ)) = ♥ = c (ξ). Therefore, τ̃ indeed preserves colors, and this proves that
ι1 (γ) ∼ ι1 (δ).

Next assume that γ  1 δ, i.e., there exists ϑ ∈ ΠW1
such that γ ≤ ϑ ≺ >1,

γ ≺ δ � ϑ, and c1 (η) = c1 (η ∧ ϑ) for all η ∈ [γ,>1]. Suppose (without loss of
generality) that γ = {V1, . . . , Vk}, ϑ = {V1, V2 ∪ · · · ∪ Vk} = {V1,W1 \ V1}, and let
Θ = {V1,W \ V1}. Clearly, we have ι1 (γ) ≤ Θ ≺ > and ι1 (γ) ≺ ι1 (δ) � Θ. We
need to verify that c (ξ ∧Θ) = c (ξ) for every ξ ∈ [ι1 (γ) ,>]. If ι1 (γ) ≤ ξ ≤ ω1, then
c (ξ ∧Θ) = c (ξ ∧ ω1 ∧Θ) = c (ξ ∧ ι1 (ϑ)), since ι1 (ϑ) = ω1 ∧ Θ. Setting η = ι−11 (ξ),
we can conclude

c (ξ ∧Θ) = c (ι1 (η) ∧ ι1 (ϑ)) = c (ι1 (η ∧ ϑ)) = c1 (η ∧ ϑ) = c1 (η) = c (ξ) .

If ξ ∈ [ι1 (γ) ,>] but ξ � ω1, then ξ ∧Θ � ω1, hence c (ξ ∧Θ) = ♥ = c (ξ). Therefore,
ι1 (γ) 1 ι1 (δ), as claimed. �
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1 2 3 4 M2 5 N5 = 4 ∗ 3

M2 ⊕ 1 1⊕M2 M3 6 5 ∗ 3 N5 ⊕ 1 1⊕N5

M2 ⊕ 2 1⊕M2 ⊕ 1 2⊕M2 4 ∗ 4 2× 3 1⊕ 2⊕ 2⊕ 1 4 ∗ 3 ∗ 3

M3 ⊕ 1 1⊕M3 (M2 ⊕ 1) ∗ 3 (1⊕M2) ∗ 3 M4

Figure 5. Bounded posets on up to six points.

Starting from the examples of Theorem 19, one can build many minor posets using
the constructions of Theorems 23 and 25. For example, the poset of Figure 1 can be
constructed as 3 ∗ (M2 ⊕ 1). In our last theorem we prove that all bounded posets on
up to 6 elements are minor posets.

Theorem 26. All bounded posets with at most 6 elements are minor posets.

Proof. We have enumerated the bounded posets on up to six points in Figure 5.
The list is exhaustive; the reader may compare the list with the numbers given by
Brinkmann and McKay [3]. As can be seen from Figure 5, the posets with at most
6 elements can be built using the constructions of Theorems 19, 23 and 25, with the
exception of the following: 2 × 3, 1 ⊕ 2 ⊕ 2 ⊕ 1 and 1 ⊕ N5. Therefore, in order
to prove the result, we must provide, for each one of these three exceptional posets,
an admissible coloring c of a partition lattice Πn such that the quotient Πn/ ker c is
dually isomorphic to the desired poset.

For 2×3, we color Π4 as follows (see Figure 9). The bottom element of Π4 is white.
The partitions 1/23/4 and 14/2/3 are yellow; the other partitions with three blocks
are green. The partition 14/23 is blue; the other partitions with two blocks are red.
The top element is black. Then Π4/ ker c is (dually) isomorphic to 2× 3.

For 1⊕ 2⊕ 2⊕ 1, we color Π4 as follows (see Figure 10):

1/2/3/4 7→ white,

1/23/4, 14/2/3, 1/24/3 7→ yellow,

13/2/4, 12/3/4, 1/2/34 7→ green,

14/23, 13/24, 12/34 7→ blue,

1/234, 134/2, 124/3, 123/4 7→ red,

1234 7→ black.
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Then Π4/ ker c is (dually) isomorphic to 1⊕ 2⊕ 2⊕ 1.
For 1 ⊕N5, we color Π5 according to the number and sizes of blocks and the size

of the block containing 5 as follows:

•/•/•/•/5 7→ white,

••/•/•/5 7→ yellow,

•/•/•/•5 7→ green,

•••/•/5 7→ blue,

•/•/••5, •/••/•5, •/•••5, •••/•5 7→ red,

••/••/5, ••••/5, ••/••5, ••••5 7→ black.

Figure 11 shows a schematic diagram of Π5 with this coloring. Each edge of the
diagram has a label indicating the number of upper covers of a partition belonging to
a given group. For example, if α is a partition of type •/•/••5, then α has 2 upper
covers of type •/•••5 and 1 upper cover of type ••/••5. This information is sufficient
to verify that the coloring is admissible, and it is clear that Π5/ ker c is isomorphic to
N5 ⊕ 1, hence dually isomorphic to 1⊕N5. �

5. Conclusion

We presented an abstract characterization of minor posets in terms of admissible
colorings of partition lattices, and we provided many examples of minor posets. These
results suggest some natural questions worth further investigations:

• Can we add a new bottom element to a minor poset, i.e., is it true that P ∈M
implies 1⊕ P ∈M? In particular, is 2⊕N5 a minor poset?

• Is the set of minor posets closed under direct products? In particular, is 3×3
a minor poset?

• For a given natural number n, what is the smallest k such that every minor
poset of size n can be realized by a coloring of Πk?

• Is it decidable whether a given finite bounded poset is a minor poset?
• After all, is every finite bounded poset a minor poset?
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Figure 6. The coloring of Π4 that corresponds to Figure 1.

Figure 7. A coloring of Π4 with quotient M3 ⊕ 1.

Figure 8. A coloring of Π4 with quotient 23.
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Figure 9. A coloring of Π4 with quotient 2× 3.

Figure 10. A coloring of Π4 with quotient 1⊕ 2⊕ 2⊕ 1.

•/•/•/•5

•/•/•/•/5

••/•/•/5

•/••/•5 •/•/••5 •••/•/5 ••/••/5
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Figure 11. A coloring of Π5 with quotient N5 ⊕ 1.
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