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REFLECTIONS ON AND OF MINOR-CLOSED CLASSES OF

MULTISORTED OPERATIONS

ERKKO LEHTONEN, REINHARD PÖSCHEL, AND TAMÁS WALDHAUSER

Abstract. The minor relation of functions is generalized to multisorted func-

tions. Pippenger’s Galois theory for minor-closed sets of functions is extended to
multisorted functions and multisorted relation pairs. Reflections of minor-closed

sets are again minor-closed, and the effect of reflections on the invariant relation

pairs of minor-closed sets of multisorted functions is described.

1. Introduction

A function f : An → B is called a minor of a function g : Am → B, if f can
be obtained from g by permuting arguments, introducing fictitious arguments, and
identifying arguments. Formation of minors is a way of building new functions from
given ones; in fact, they are substitution instances of functions in which variables
are substituted for variables. As such, they arise naturally in universal algebra as
particular term operations of an algebra. The minor relation is a quasiorder on the
set of all functions of several arguments from A to B, and it induces a partial order
(the so-called “minor poset”) on the equivalence classes.

Minors of functions have been investigated by several authors from different points
of view. In the current paper, our aim is to extend this line of research to the setting
of multisorted functions, which are briefly recalled in Section 2. We define minors
and make a few initial observations on the structure of the minor poset of multisorted
functions in Section 3, focusing on the minimal and maximal elements, ascending
chains, and principal filters and ideals. The generalization is rather straightforward
in itself, but, as we will see, there are some interesting phenomena that do not arise
in the one-sorted case.

Minor-closed sets of functions, or “minions”, as recently coined by
Opršal, were characterized by Pippenger [6] in terms of a Galois connection induced
by the so-called preservation relation between functions and relation pairs. In Sec-
tion 4, we extend Pippenger’s Galois theory in a natural way to multisorted functions
and multisorted relation pairs. A few technical complications arise due to the fact
that some of the components of a multisorted universe may be empty, but these are
treated quite efficiently by our formalism. Nullary relations are nevertheless needed,
in contrast to the classical case.

Motivated by considerations of the complexity of constraint satisfaction problems,
Barto, Opršal and Pinsker [1] introduced an algebraic construction called reflection.
Given sets A and B, an operation f : An → A, and maps h : B → A and h′ : A→ B,
they defined the (h, h′)-reflection of f as the operation f(h,h′) : Bn → B given by the
rule

f(h,h′)(b1, . . . , bn) = h′(f(h(b1), . . . , h(bn))),

for all b1, . . . , bn ∈ B. As proposed by the current authors [4], the notion of reflection
extends to multisorted functions with little modifications in the definition. Observ-
ing first that reflections of minor-closed sets of functions are again minor-closed, we
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describe in the final section, Section 5, how the invariant relation pairs of multisorted
operations are affected by reflections.

2. Multisorted operations

We will start with recalling the definitions of basic concepts in the theory of mul-
tisorted sets and multisorted operations. We will mainly follow the notation and
terminology used in the book by Wechler [9].

Definition 2.1. We denote by N the set of nonnegative integers and by N+ the set
of positive integers. For n ∈ N, let [n] := {1, . . . , n}. Note that [0] = ∅.

Definition 2.2. We write tuples (a1, a2, . . . , an) interchangeably as words a1a2 . . . an.
The set of all words over a set S is denoted by W (S). The empty word is denoted
by ε. The length of a word w ∈W (S) is the number of letters in w and it is denoted
by |w|. Thus, |w1w2 . . . wn| = n for w1, w2, . . . , wn ∈ S. For s ∈ S, the number of
occurrences of s in w is denoted by |w|s.

Since a word w = w1 . . . wn is formally a map w : [n]→ S, it makes sense to speak
of the image of w, namely, the set Imw = {w1, . . . , wn} of values, or entries of w. For
u,w ∈W (S), we write u ⊆ w if Imu ⊆ Imw.

Definition 2.3. Let S be a set of elements called sorts. An S-indexed family of
sets is called an S-sorted set. The usual set-theoretical relations and operations are
carried over to S-sorted sets by componentwise definitions. Thus, given S-sorted sets
A = (As)s∈S and B = (Bs)s∈S , we say that A is an (S-sorted) subset of B and we
write A ⊆ B if As ⊆ Bs for all s ∈ S. The union and intersection of S-sorted sets A
and B are A ∪ B := (As ∪ Bs)s∈S and A ∩ B := (As ∩ Bs)s∈S . More generally, the
union

⋃
C and the intersection

⋂
C of an arbitrary family C of S-sorted sets are given

by (
⋃
C)s :=

⋃
{As | A ∈ C} and (

⋂
C)s :=

⋂
{As | A ∈ C}, for each s ∈ S. For any

subset S′ ⊆ S, we denote by A|S′ the S-sorted subset of A given by

(A|S′)s :=

{
As, if s ∈ S′,
∅, if s /∈ S′.

When we make statements such as “let A be an S-sorted set”, it is understood that
the member of the family A indexed by s ∈ S is denoted by As.

Definition 2.4. Let A be an S-sorted set. If As 6= ∅, then we say that sort s is
essential in A; otherwise sort s is inessential in A. Let SA := {s ∈ S | As 6= ∅} be the
set of essential sorts in A. It follows immediately from the definitions that A|SA

= A
and SA|S′ = SA ∩ S′ for any S′ ⊆ S.

Definition 2.5. Let A and B be S-sorted sets. An S-sorted mapping f from A to
B, denoted by f : A → B, is a family (fs)s∈S of maps fs : As → Bs. If x ∈ As and
there is no risk of confusion about the sort s, we may write f(x) instead of fs(x).

Definition 2.6. For an S-sorted set A = (As)s∈S and a word w = w1w2 . . . wn
∈W (S), let Aw := Aw1 ×Aw2 × · · · ×Awn . Note that Aε = {∅}.

Definition 2.7. A pair (w, s) ∈ W (S) × S is called a declaration over S. Let A be
an S-sorted set. A declaration (w, s) with w = w1 . . . wn is reasonable in A if As = ∅
implies Awi

= ∅ for some i, or, equivalently, if Aw 6= ∅ implies As 6= ∅. Note that the
declaration (ε, s) is reasonable in A if and only if As 6= ∅.

An S-sorted operation on A is any function f : Aw → As for some declaration (w, s)
that is reasonable in A. The word w is called the arity of f and the element s is called
the (output) sort of f . The elements of S occurring in the word w are called the input
sorts of f . We denote the declaration, arity, sort, and the set of input sorts of f by
dec(f), ar(f), sort(f), and inp(f), respectively. If |w| = n, then we also say that f
has numerical arity n, or that f is n-ary.

Note that if w = w1 . . . wn and Awi = ∅ for some i ∈ [n], then Aw = ∅ and
f : Aw → As is the empty function ∅ → As. Even though, in pure set-theoretical
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terms, any empty function is equal to the empty set, we will nevertheless distinguish
between empty functions of different declarations.

Definition 2.8. We denote the set of all S-sorted operations of declaration (w, s) on

A by F (w,s)
A . Let FA be the set of all S-sorted operations on A, i.e.,

FA :=
⋃
{F (w,s)

A | (w, s) ∈W (S)× S}.

Remark 2.9. The special case when |S| = 1 corresponds to the usual, one-sorted
operations on a set A. In this case, the declaration of a function is completely specified
by the numerical arity, and we may simply speak of n-ary operations on A.

Another important special case are the functions of several arguments from A1 to
A2, where A1 and A2 are possibly different sets, i.e., functions f : An1 → A2 for some
n ∈ N. These can be seen as S-sorted operations on A = (As)s∈S , with S = {1, 2},
such that the only input sort is 1 and the output sort is 2.

Definition 2.10. Let f : Aw → As be an n-ary operation, and let i ∈ [n]. The i-th
argument is essential in f , if there exist tuples a,b ∈ Aw such that aj = bj for all
j ∈ [n] \ {i} and f(a) 6= f(b). An argument that is not essential is inessential or
fictitious. Let

Ess f := {i ∈ [n] | the i-th argument is essential in f},
and ess f := |Ess f |. The quantity ess f is called the essential arity of f .

3. Minors of multisorted operations

New functions can be built from a given function f : An → B of several arguments
by manipulation of its arguments: permutation of arguments, identification of argu-
ments, introduction of inessential arguments. The functions that can be formed in
this way are called minors of f . We shall extend the notion of minor to multisorted
operations. Multisorted operations differ markedly from one-sorted operations in that
arguments cannot be identified arbitrarily; it is only possible to identify arguments of
the same sort.

Definition 3.1. Recall that a tuple a = (a1, . . . , an) ∈ Aw, with w = w1 . . . wn, is a
mapping a : [n]→ A satisfying a(i) = ai ∈ Awi

for all i ∈ [n]. As such, it makes perfect
sense to compose tuples with other maps. In particular, for any map λ : [m]→ [n], the
composite a ◦λ is a map [m]→ A, i.e., an m-tuple given by a ◦λ = (aλ(1), . . . , aλ(m)),
and it is an element of Au, where u = wλ(1) . . . wλ(m). We will write briefly aλ for
a ◦ λ.

Definition 3.2. Let f : Aw → As and g : Au → As be S-sorted operations on A, with
w = w1 . . . wn, u = u1 . . . um. We say that f is a minor of g, or that g is a major of
f , and we write f ≤ g, if there exists a map λ : [m] → [n] such that ui = wλ(i) for
all i ∈ [m] and f(a) = g(aλ) (i.e., f(a1, . . . , an) = g(aλ(1), . . . , aλ(m))) for all a ∈ Aw.
(Note that the existence of such a map λ implies u ⊆ w.)

Given an S-sorted operation g : Au → As with |u| = m, a word w = w1 . . . wn ∈
W (S) such that u ⊆ w and a map λ : [m] → [n] satisfying ui = wλ(i) for all i ∈ [m],
define the function gwλ : Aw → As of declaration (w, s) on A by the rule gwλ (a) = g(aλ),
for all a = (a1, . . . , an) ∈ Aw. The function gwλ is a minor of g. Conversely, every
minor of g is of the form gwλ for some suitable w and λ.

Remark 3.3. In the case of usual, one-sorted operations, Definition 3.2 becomes
somewhat simpler, since the condition ui = wλ(i) for all i ∈ [m] is automatically
satisfied by every map λ : [m] → [n]. Thus f : An → A is a minor of g : Am → A if
there exists a map λ : [m]→ [n] such that f(a) = g(aλ) for all a ∈ An.

The minor relation ≤ is a quasiorder on FA. As for all quasiorders, it induces an
equivalence relation ≡ on FA by the rule f ≡ g if and only if f ≤ g and g ≤ f .
Moreover, ≤ induces a partial order on the quotient FA/≡ by the rule f/≡ ≤ g/≡
if and only if f ≤ g. We will refer to (FA/≡,≤) as the minor poset of multisorted
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operations on A. Its elements are equivalence classes of operations, but, for the sake of
notational simplicity, we will denote an equivalence class by any of its representatives.

Remark 3.4. Informally speaking, f is a minor of g if f can be obtained from g by
permutation of arguments, introduction of inessential arguments, and identification
of arguments of the same sort. Note that formation of minors allows of introducing
fictitious arguments of any sort, even of a sort that is not among the input sorts of
a given function. On the other hand, it is never possible to get rid of all arguments
of any input sort. (In the case of one-sorted operations, we can permute and identify
arguments and introduce fictitious arguments, but it is never possible to get a nullary
function from a non-nullary one.)

The equivalence of functions could be described as follows. A reduced form of a
function f : Aw → As is a function obtained from f by deleting as many inessen-
tial arguments as possible while retaining at least one argument of each input sort.
Two functions are equivalent if and only if their reduced forms are the same up to
permutation of arguments.

It is part of the folklore of the theory of minors of one-sorted operations that f ≤ g
implies ess f ≤ ess g. It is easy to see that this holds as well for multisorted operations.

Remark 3.5. The minors of a nullary operation f : Aε → As, f(∅) = c ∈ As are all
constant operations taking value c of any declaration (w, s) with w ∈ W (S). On the
other hand, no non-nullary operation has a nullary minor.

We shall establish a few basic facts about the structure of the minor poset of
multisorted operations on A. In particular, we are going to describe the minimal and
maximal elements, as well as the finite principal filters and ideals. Let us start with
the minimal elements.

Lemma 3.6. Let f : Aw → As. If Imw 6= S, then there exists g ∈ FA such that
g < f .

Proof. Let t ∈ S \ Imw, and define g : Awt → As by the rule

g(x1, . . . , xn, xn+1) := f(x1, . . . , xn)

for all (x1, . . . , xn, xn+1) ∈ Awt. Then clearly g < f . �

Proposition 3.7. Let A be an S-sorted set.

(i) If S is infinite, then the minor poset (FA/≡,≤) has no minimal elements.
(ii) If S is finite, then the minimal elements of (FA/≡,≤) are precisely the op-

erations that are “unary at each sort”, i.e., operations f : Aw → As where
|w|s = 1 for every s ∈ S. Moreover, every operation is bounded below by a
unique minimal element.

Proof. (i) Follows immediately from Lemma 3.6.
(ii) Assume first that f : Aw → As is minimal, |w| = n. Lemma 3.6 implies that

Imw = S. Let u ∈W (S) be a word such that |u|s = 1 for every s ∈ S, |u| = m. Then
there exists a (unique) map λ : [n]→ [m] with wi = uλ(i) for all i ∈ [n]. By definition
fuλ ≤ f . Since f is minimal, we must have fuλ ≡ f , so f/≡ = fuλ /≡.

For the converse, let f : Aw → As with |w| = n and |w|s = 1 for every s ∈ S.
Suppose g : Au → A, |u| = m, satisfies g ≤ f . By the definition of minor, there exists
λ : [n] → [m] such that wi = uλ(i) for all i ∈ [n] and g(a) = f(aλ) for all a ∈ Au.
Then there exists a (unique) map σ : [m]→ [n] with ui = wσ(i) for all i ∈ [m], and it
holds that σλ = id[n]. Consequently, g(aσ) = f(aσλ) = f(a) for all a ∈ Aw, that is,
f ≤ g. Thus f ≡ g, so f is minimal.

Concerning the last claim, it is easy to see that for any operation f : Aw → As,
we obtain a minor of f that is unary at each sort by introducing fictitious arguments
of every sort, if necessary, and then identifying all arguments of the same sort. This
minor is unique, up to permutation of arguments. �
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Remark 3.8. In the case of one-sorted functions, the minimal elements of the minor
poset are precisely the unary functions.

Now we turn our attention to maximal elements. With the exception of a few
“pathological cases” (described in Lemma 3.10 below), almost every function has
proper majors and is hence non-maximal.

Lemma 3.9. Let A be an S-sorted set, let f : Aw → As for some w ∈ W (S), s ∈ S,
and assume that |Aw| > 1 and |As| > 1. Then there exists g ∈ FA such that f < g.

Proof. Since |Aw| > 1, there exists an i such that |Awi | > 1. Without loss of generality,
assume that i = n. Choose a point a ∈ Aw and an element c ∈ As such that f(a) 6= c.
Define g : Awwn

→ As as

g(x1, . . . , xn, xn+1) =

{
f(x1, . . . , xn), if xn = xn+1,

c, if xn 6= xn+1.

We clearly have f ≤ g, because we can obtain f from g by identifying the last two
arguments. In order to prove that g � f , we will show that ess f < ess g. Assume that
the i-th argument is essential in f , and let the tuples (b1, . . . , bi−1, bi, bi+1, . . . , bn) and
(b1, . . . , bi−1, b

′
i, bi+1, . . . , bn) witness this fact. If i 6= n, then

g(b1, . . . , bi, . . . , bn, bn) = f(b1, . . . , bi, . . . , bn)

6= f(b1, . . . , b
′
i, . . . , bn) = g(b1, . . . , b

′
i, . . . , bn, bn),

so the i-th argument is essential in g. Since |Awn
| > 1, there exists an element

a′n ∈ Awn distinct from an. By the choice of a, we also have

g(a1, . . . , an−1, an, an) = f(a) 6= c =

{
g(a1, . . . , an−1, a

′
n, an)

g(a1, . . . , an−1, an, a
′
n),

which shows that the n-th and (n+ 1)-st arguments are essential in g as well. Conse-
quently, ess f < ess g, and we conclude that g is a proper major of f . �

It still remains to deal with the cases when |Aw| ≤ 1 or |As| ≤ 1. Note that As = ∅
implies Aw = ∅, so we have the three exceptional cases described in the following
lemma.

Lemma 3.10. Let A be an S-sorted set, and let f : Aw → As and g : Au → As for
some w, u ∈W (S), s ∈ S.

(i) If |As| = 1, then f ≤ g if and only if u ⊆ w.
(ii) If |Aw| = 1, then there exists c ∈ As such that f(a) = c for all a ∈ Aw;

moreover f ≤ g if and only if u ⊆ w and g(a) = c for all a ∈ Au.
(iii) If Aw = ∅, then f ≤ g if and only if u ⊆ w.

Proof. Let n = |w|, m = |u|. Assume first that |As| = 1, and let c be the unique
element of As. Then every function h : Av → As, v ∈ W (S), satisfies h(a) = c for
all a ∈ Av. If f ≤ g, then u ⊆ w by the definition of minor. Conversely, if u ⊆ w,
then there exists a map λ : [m] → [n] with ui = wλ(i) for all i ∈ [m], and we have
f(a) = c = g(aλ) for all a ∈ Aw, that is, f ≤ g.

Assume then that |Aw| = 1. Then |Awi
| = 1 for every i ∈ [n], and it clearly holds

that |Av| = 1 for every v ∈ W (S) such that v ⊆ w (this holds even for v = ε). Then
there exists c ∈ As such that f(a) = c for every (in fact, the unique) element a of
Aw. If f ≤ g, then u ⊆ w and there exists a map λ : [m]→ [n] with ui = wλ(i) for all
i ∈ [m] such that g(aλ) = f(a) = c for all a ∈ Aw. Since |Au| = |Aw| = 1, it holds
that {aλ | a ∈ Aw} = Au; hence g takes value c at every point in Au. Conversely,
assume that u ⊆ w and g(a) = c for all a ∈ Au. Then there exists a map λ : [m]→ [n]
with ui = wλ(i) for all i ∈ [m], and we have f(a) = c = g(aλ) for all a ∈ Aw, that is,
f ≤ g.

Finally, assume that Aw = ∅. If f ≤ g, then u ⊆ w by the definition of minor.
Conversely, if u ⊆ w, then there exists a map λ : [m] → [n] with ui = wλ(i) for all
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i ∈ [m], and the condition that f(a) = g(aλ) for all a ∈ Aw is vacuously true; hence
f ≤ g. �

Proposition 3.11. Let A be an S-sorted set. The maximal elements of the minor
poset (FA/≡,≤) are precisely the nullary operations and the operations of the form
f : At → As, where s, t ∈ S and As = At = ∅.

Proof. Follows immediately from Lemmas 3.10 and 3.9. (Note that there exists no
nullary operation Aε → As if As is empty.) �

Remark 3.12. In the case of one-sorted operations, the maximal elements of the
minor poset are the nullary operations if A 6= ∅. Every non-nullary operation on a
set with at least one element has proper majors, and the construction of Lemma 3.9
provides one whenever |A| > 1. However, if A is empty, then there is no nullary
operation on A, and for each n ≥ 1 there is just one n-ary operation on A, namely the
empty operation. The latter are all equivalent to each other, hence the minor poset
has only one element, which is maximal and minimal at the same time.

The previous results can be applied to characterize the finite principal filters of the
minor poset.

Definition 3.13. Let ↑f be the principal filter generated by f/≡ in (FA/≡,≤), that
is, ↑f := {g/≡ | f ≤ g}.

Proposition 3.14. Let A be an S-sorted set. Let f : Aw → As for some w =
w1 . . . wn ∈W (S), s ∈ S.

(i) The principal filter ↑f contains an infinite chain if and only if |As| > 1 and
|Awi | > 1 for some i ∈ [n].

(ii) If As = ∅, then ↑f ∼= (G,⊇), where G := P(Imw) \ P(Imw ∩ SA).
(iii) If |As| = 1, then ↑f ∼= (P(Imw),⊇).
(iv) If As 6= ∅ and |Awi

| ≤ 1 for all i ∈ [n], then ↑f ∼= (G ∪H,≤), where G is as
in (ii) and H := P(Imw ∩ SA)×As, and the partial order relation is defined
as follows: X ≤ Y if and only if
• X,Y ∈ G and X ⊇ Y , or
• X,Y ∈ H with X = (B, b), Y = (C, c) and B ⊇ C and b = c, or
• X ∈ G, Y ∈ H with Y = (C, c) and X ⊇ C.

Proof. For statement (i), assume first that |As| > 1 and |Awi | > 1 for some i ∈ [n].
If Aw = ∅, then we need to first remove some letters from w to obtain a word u such
that wi ∈ Imu, u ⊆ w and Au 6= ∅, and we let g : Au → As be any function; then
f < g by Lemma 3.10(iii). (If Aw 6= ∅, such preprocessing is not necessary.) Repeated
application of Lemma 3.9 then yields an infinite ascending chain above f .

The converse implication is established in the remaining statements of the current
proposition, which can be proved with straightforward verification using Lemma 3.10.

�

Example 3.15. In order to illustrate the posets appearing in Proposition 3.14, let
S = {1, 2, 3, 4, 5}, A1 = A2 = ∅, A3 = {0, 1, 2}, A4 = {0, 1, 2, 3}, A5 = {0}, and
let f , g, h be S-sorted operations on A with dec(f) = (1234, 5), dec(g) = (1234, 1),
dech = (1234, 3). These are all empty operations, since A1234 = A1×A2×A3×A4 = ∅.
However, the principal filters ↑f , ↑g and ↑h are quite distinct; they are shown in
Figure 1, which is a Hasse diagram with some shorthand notation for easier readability.
The diagram comprises several copies of a diamond (the big disks) connected by
thick lines. Each thick line between a pair of diamonds represents four edges, each
connecting a vertex of one diamond to its corresponding vertex in the other diamond.

In fact, Figure 1 gives three Hasse diagrams at once: each one of the posets ↑f , ↑g
and ↑h is represented by the part of the diagram inside the polygonal frame labeled
as such. The vertices bear labels indicating a representative of each equivalence class,
and they can be interpreted as follows. Let s be the output sort of the function (f , g
or h) being considered. A label of the form w ∈W (S) designates the empty function
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↑f
↑g

↑h

134 234

12

(34, 0) (34, 2)

123 124

1413 23 24

(3, 0) (4, 0)(4, 1)(3, 1) (3, 2) (4, 2)

(ε, 2)(ε, 0)(ε, 1)

1 2

1234

(34, 1)

Figure 1. Principal filters generated by the functions f , g, h of Example 3.15.

of declaration (w, s). A label of the form (w, a) ∈W (S)×As designates the constant
function of declaration (w, s) taking value a everywhere. For example, the vertex
labeled 14 represents (the equivalence class of) the empty function of declaration
(14, 5) in the diagram of ↑f , the empty function of declaration (14, 1) in ↑g, and the
empty function of declaration (14, 3) in ↑h.

Proposition 3.14 describes, fully and accurately, all finite principal filters of the
minor poset. In contrast, description of the finite principal ideals seems quite a chal-
lenging task, even for one-sorted functions. A function-free characterization of finite
principal ideals in terms of quotients of partition lattices was obtained by Lehtonen
and Waldhauser [5], but the condition is rather intricate, and we do not even know
whether there exists any finite bounded poset that does not satisfy the condition.
This remains a topic of further investigation. (Note that a slightly different terminol-
ogy is used in [5]: “minor poset” refers there to principal ideals of the minor poset
(FA/≡,≤).)

4. Galois theory of minor-closed classes of functions and relation
pairs

We say that a class F ⊆ FA of S-sorted operations on A is minor-closed if all
minors of members of F are members of F . Denote by 〈F 〉mc the minor-closure of
F , i.e., the smallest minor-closed class containing F . The minor-closed classes are
exactly the downsets (order ideals) of the quasiordered set (FA;≤). LetM be the set
of all minor-closed subsets of FA, and order it by inclusion.

Proposition 4.1. For any family C of minor-closed subsets of FA, the union
⋃
C and

the intersection
⋂
C are minor-closed. Consequently, the set M of all minor-closed

subsets constitutes a complete sublattice of the power set lattice (P(FA),⊆). The least
and greatest elements of M are ∅ and FA, respectively.

Proof. Let C be a family of minor-closed subsets of FA. Let g ∈
⋃
C and f ≤ g. Then

g ∈ C for some C ∈ C. Since C is minor-closed, we have f ∈ C, so f ∈
⋃
C. We

conclude that
⋃
C is minor-closed. The proof that

⋂
C is minor-closed is similar.

The statement about the least and greatest elements is obvious, because both ∅
and FA are minor-closed. �
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Pippenger’s [6] Galois theory of minor-closed classes of functions and invariant
relation pairs (constraints) can be translated to the setting of multisorted functions.
We will develop the theory under the assumption that all components of the underlying
S-sorted set A are finite (possibly empty). The set S of sorts may be finite or infinite.

Definition 4.2. Let A := (As)s∈S be an S-sorted set. For m ∈ N, an m-ary S-sorted
relation on A is a family (Rs)s∈S of m-ary relations Rs ⊆ Ams . An m-ary S-sorted
relation pair on A is a pair (R,R′), where R and R′ are m-ary S-sorted relations on A.
The relations R and R′ are called the antecedent and the consequent of the relation
pair, respectively.

We say that a relation pair (R,R′) has finite support if the set SR = {s ∈ S |
Rs 6= ∅} is finite. (The set SR′ may nevertheless be infinite.) In this paper, we will
only consider relation pairs with finite support. This does not impose a significant
restriction, because for any S-sorted relation pair (R,R′), it holds that

mPol(R,R′) = mPol{(R|S′ , R′) | S′ ⊆ S, S′ finite}.

We denote byQ(m)
A the set of all m-ary S-sorted relation pairs on A with finite support,

and we denote by QA the set of all S-sorted relation pairs on A with finite support.
An n-tuple (a1,a2, . . . ,an) of m-tuples can be viewed as an m × n matrix with

columns a1, a2, . . . , an. The i-th row of this matrix is (a1(i),a2(i), . . . ,an(i)). With
this viewpoint in mind, we will often think of tuples belonging to a relation as columns,
and we refer to their components as rows.

Note that B0 = {∅} for any set B, either empty or nonempty. Hence, there exist
exactly two nullary relations on any set B, namely, ∅ and {∅}. In contrast, for any
n ≥ 1, the only n-ary relation on the empty set ∅ is the empty relation ∅.

Definition 4.3. Let A := (As)s∈S be an S-sorted set. Let f be an S-sorted operation

of declaration (w, s) on A (w = w1 . . . wn), and let (R,R′) ∈ Q(m)
A be an m-ary S-

sorted relation pair on A with R = (Rs)s∈S and R′ = (R′s)s∈S . We write M ≺w R
if M := (a1,a2, . . . ,an) is an m × n matrix such that aj ∈ Rwj

for all j ∈ [n]. For

a matrix M = (a1,a2, . . . ,an) such that aj ∈ Amwj
for all j ∈ [n], we write f(M) to

denote the m-tuple in Ams whose i-th entry is f(a1(i),a2(i), . . . ,an(i)), for i ∈ [m]. In
other words, if M = (aij), then

f(M) :=


f(a11, a12, . . . , a1n)
f(a21, a22, . . . , a2n)

...
f(am1, am2, . . . , amn)

 .

We say that f preserves (R,R′), or that f is a polymorphism of (R,R′), or (R,R′) is
invariant under f , and we write f B (R,R′), if for all m×n matrices M, the condition
M ≺w R implies f(M) ∈ R′s.

This notation extends to sets of S-sorted operations and sets of S-sorted relation
pairs in the obvious way: for any F ⊆ FA and Q ⊆ QA, we write F B Q to mean
that f B (R,R′) holds for all f ∈ F and for all (R,R′) ∈ Q. Furthermore, we
simplify the notation for singletons and write f B Q for {f} B Q and F B (R,R′) for
F B {(R,R′)}.

Let us point out three special cases.

• If m = 0, then the condition M ≺w R asserts that M = (∅, ∅, . . . , ∅), and
f(M) = ∅ ∈ A0

s. Consequently, f B (R,R′) if and only if

(∀i ∈ [n] : Rwi
= {∅}) =⇒ R′s = {∅}.

Thus, whether a function f preserves a nullary relation pair depends only on
the declaration of f .

• If w = ε and m ≥ 1, then f B (R,R′) if and only if (c, . . . , c) ∈ R′s, where c is
the constant value taken by f .
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• If Aw = ∅ and m ≥ 1, then Rwi = ∅ for some i ∈ [n], so there is no matrix M
such that M ≺w R. Hence the implication in the definition of preservation
holds vacuously. Thus, every empty function preserves every relation pair of
arity at least 1.

Definition 4.4. The preservation relation induces a Galois connection between multi-
sorted operations and multisorted relation pairs on A. For any set F ⊆ FA of S-sorted
operations and for any set Q ⊆ QA of S-sorted relation pairs, we write

mInvF := {(R,R′) ∈ QA | ∀f ∈ F : f B (R,R′)},
mPolQ := {f ∈ FA | ∀(R,R′) ∈ Q : f B (R,R′)}.

Definition 4.5. Assume that A = (As)s∈S is an S-sorted set in which every compo-
nent As is finite. For any w = w1 . . . wn ∈W (S), let Xw = (xw1 , . . . ,x

w
n ) be the N ×n

matrix whose rows are all the n-tuples in Aw in some fixed order, where N = |Aw|.
Then each column xwi is a tuple in ANwi

. Let χw = (χw,s)s∈S be the N -ary S-sorted
relation in which the component χw,s of sort s ∈ S comprises those columns xwi of
Xw for which wi = s, i.e., χw,s := {xwi | i ∈ [n], wi = s}.

Let us point out two special cases.

• If w = ε, then N = 1 and n = 0, and χε = (χε,s)s∈S is the unary S-sorted
relation with χε,s = ∅ for all s ∈ S.

• If Aw = ∅, then N = 0, n = |w|, and χw = (χw,s)s∈S is the nullary S-sorted
relation with χw,s = {∅} if s = wi for some i ∈ [n], and χw,s = ∅ otherwise.

Definition 4.6. For an S-sorted relation σ and a set F ⊆ FA of S-sorted operations
on A, let

ΓF (σ) :=
⋂
{R′ | F B (σ,R′)}.

Remark 4.7. The relation pair (σ,ΓF (σ)) is an invariant of F , since it is the inter-
section of the relation pairs (σ,R′) ∈ mInvF . In fact, ΓF (σ) is the least relation R′

such that F B (σ,R′).

Lemma 4.8. Let A = (As)s∈S be an S-sorted set in which every set As is finite.
Assume that F ⊆ FA is minor-closed. Then for every word w ∈ W (S) we have
ΓF (χw) = ({f(Xw) | f ∈ F (w,s)})s∈S.

Proof. Write γs := {f(Xw) | f ∈ F (w,s)} and let γ = (γs)s∈S . In order to prove
the inclusion ΓF (χw) ⊆ γ, we show that (χw, γ) ∈ mInvF . Let f ∈ F , say with
dec(f) = (u, s), |u| = m, and let M ≺u χw. Then there exists λ : [m]→ [n] such that
M = (xwλ(1), . . . ,x

w
λ(m)) and thus ui = wλ(i) for all i ∈ [m]. Then fwλ ∈ F (w,s), because

F is minor-closed, and consequently f(M) = fwλ (Xw) ∈ γs.
In order to prove the converse inclusion γ ⊆ ΓF (χw), we show that γ ⊆ R′ for every

R′ such that (χw, R
′) ∈ mInvF . Indeed, let r ∈ γs. Then there exists f ∈ F (w,s) such

that r = f(Xw). Since Xw ≺w χw and f B (χw, R
′), we must have r = f(Xw) ∈ R′s,

and this proves that γ ⊆ R′. From the definition of ΓF (χw), we conclude that γ ⊆
ΓF (χw). �

Lemma 4.9. Let A = (As)s∈S be an S-sorted set in which every set As is finite. Let
F ⊆ FA be a minor-closed class and w ∈W (S). Then the following statements hold.

(i) For any s ∈ S and f, g ∈ F (w,s)
A , f = g if and only if f(Xw) = g(Xw).

(ii) For any f ∈ FA satisfying ar(f) = w we have f ∈ F if and only if f B
(χw,ΓF (χw)).

(iii) ΓF (χw) = ΓF ′(χw), where F ′ := {f ∈ F | ar(f) = w}.
(iv) F B (χw,ΓF (χw)).
(v) F = mPol{(χw,ΓF (χw)) | w ∈W (S)}.
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Proof. (i) Obvious, because the rows of Xw are all the n-tuples of the set Aw and
hence f(Xw) is the tuple listing the values of f at each point in its domain.

(ii) If f ∈ F , then f B (χw,ΓF (χw)) by Remark 4.7. Since Xw ≺w χw, it follows
that f(Xw) ∈ ΓF (χw), so by Lemma 4.8 there is f ′ ∈ F with dec(f ′) = dec(f) such
that f(Xw) = f ′(Xw). By (i) we obtain f = f ′ ∈ F .

(iii) Since F ′ ⊆ F , we have mInvF ⊆ mInvF ′, whence ΓF ′(χw) ⊆ ΓF (χw). For
the converse inclusion, note that F ′ =

⋃
s∈S F

(w,s). Since Xw ≺w χw, we must

have ({f(Xw) | f ∈ F (w,s)})s∈S ⊆ R′ for every R′ such that (χw, R
′) ∈ mInvF ′.

Lemma 4.8 and the definition of ΓF ′(χw) then yield ΓF (χw) ⊆ ΓF ′(χw).
(iv) Follows immediately from Remark 4.7.
(v) Follows immediately from items (ii) and (iv). �

Theorem 4.10. Let A := (As)s∈S be an S-sorted set, and assume that the sets As
are all finite. Let F ⊆ FA be a set of S-sorted operations on A. Then F = mPolQ for
some Q ⊆ QA if and only if F is minor-closed. Consequently, 〈F 〉mc = mPol mInvF
for any F ⊆ FA.

Proof. The “if” part is given by Lemma 4.9. For the converse, assume that F =
mPolQ. Let f ∈ F (w,s), w = w1 . . . wn. Let u := u1 . . . um ∈ W (S) be such that
{w1, . . . , wn} ⊆ {u1, . . . , um}, and let λ : [n] → [m] be a map satisfying wi = uλ(i)
for all i ∈ [n]. We need to show that fuλ ∈ F . Let (R,R′) ∈ Q be a q-ary relation
pair. Let M := (a1,a2, . . . ,am) be a q ×m matrix with columns aj (j = 1, . . . ,m)
and assume that M ≺u R. Then (aλ(1), . . . ,aλ(n)) ≺w R, so we have fuλ (M) =

f(aλ(1), . . . ,aλ(n)) ∈ R′s, because f B (R,R′). We conclude that fuλ ∈ mPolQ = F ,
so F is minor-closed.

We have shown that F is minor-closed if and only if F = mPolQ for some
Q ⊆ QA. By the general properties of Galois connections, the latter is equivalent
to F = mPol mInvF . Thus we see that the closed classes corresponding to the closure
operators F 7→ mPol mInvF and F 7→ 〈F 〉mc are the same, therefore the two closure
operators coincide: 〈F 〉mc = mPol mInvF for all F ⊆ FA. �

We are now going to describe the Galois closed sets of relation pairs. We follow the
approach taken by Lau [3, Section II.2] and Pöschel and Kalužnin [8, Sections 1.1–1.2]
for describing the Galois closed sets of relations in the classical theory of clones and
relational clones. The notions and ideas present in these pieces of literature can be
translated in a straightforward way to the realm of S-sorted operations and relation
pairs.

For an arbitrary equivalence relation % on [m], let δm% = (δm%,s)s∈S , where

δm%,s := {(a1, . . . , am) ∈ Ams | (i, j) ∈ % =⇒ ai = aj}.
We write simply δ% when m is clear from the context. Relation pairs of the form
(δm% , δ

m
% ) are called diagonal relation pairs. (Note that δ0%,s = {∅}.)

Remark 4.11. It is easy to verify that every S-sorted operation in FA preserves
every diagonal relation pair (δm% , δ

m
% ).

Recall the “elementary operations” ζ, τ , pr, × and ∧ on relations (see Lau [3,

Section II.2.3]). Let R and R̃ be m-ary and m′-ary relations on a set B, respectively.

Then ζR = τR = R for m ≤ 1, prR = R for m = 0, R ∧ R̃ = R for m 6= m′, and

ζR := {(a2, a3, . . . , am, a1) | (a1, a2, . . . , am) ∈ R} (m ≥ 2),

τR := {(a2, a1, a3, . . . , am) | (a1, a2, . . . , am) ∈ R} (m ≥ 2),

prR := {(a2, . . . , am) | (a1, a2, . . . , am) ∈ R} (m ≥ 1),

R× R̃ := {(a1, . . . , am, b1, . . . , bm′) | (a1, . . . , am) ∈ R, (b1, . . . , bm′) ∈ R̃},

R ∧ R̃ := {(a1, . . . , am) | (a1, . . . , am) ∈ R ∩ R̃} (m = m′).

The operation ζ is called cyclic shift of rows, τ is called transposition of first two
rows, pr is called deletion of first row, × is called Cartesian product, and ∧ is called
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intersection. Observe that if R is an empty relation (of arbitrary arity), then prR = ∅
and R× R̃ = ∅ for every relation R̃. If R is a nonempty unary relation, then we have
prR = {∅}, and if R is the nonempty nullary relation (i.e., R = {∅}), then R×R̃ = R̃.

We define analogous elementary operations of S-sorted relation pairs. For (R,R′) ∈
Q(m)
A , we set ζ(R,R′) := (ζR, ζR′), where ζR := (ζRs)s∈S and ζR′ := (ζR′s)s∈S .

Similarly, τ(R,R′), pr(R,R′), (R,R′)× (R̃, R̃′) and (R,R′)∧ (R̃, R̃′) are defined com-
ponentwise and in parallel in each sort.

A relation pair (R,R′) is a relaxation of (R̃, R̃′) if R ⊆ R̃ and R′ ⊇ R̃′. We say

that (R,R′) is obtained from (R̃, R′) by restricting the antecedent if R ⊆ R̃, and we

say that (R,R′) is obtained from (R, R̃′) by extending the consequent if R′ ⊇ R̃′.

Definition 4.12. Following Pippenger [6], we say that a set Q ⊆ QA of relation
pairs is minor-closed if it contains the diagonal relation pairs and is closed under the
elementary operations ζ, τ , pr, ×, ∧, relaxations and arbitrary intersections.

Remark 4.13. The closure under arbitrary intersections subsumes the closure under
∧. If the set S of sorts is finite and every component of the S-sorted set A is finite,
then closure under arbitrary intersections can be omitted from Definition 4.12.

Moreover, we would like to mention that the closure of sets of S-sorted relation
pairs under the operations ζ, τ , pr, ×, ∧ is equivalent to the closure with respect to
pp-formulas (more precisely, with respect to logical operations on relations defined by
primitive positive first-order formulas) as it is known from the one-sorted case (cf.,
e.g., [7, Remark 1.6]).

Using the argument provided by Lau [3, Section II.2.5], one can show that a minor-
closed set Q is also closed under operations derivable from the elementary operations,
such as permutation of rows, projection onto rows i1, i2, . . . , it (denoted by pri1,i2,...,it),
identification of rows, repetition of rows, introduction of fictitious rows, relational
product. We denote by [Q]mc the minor-closure of a set Q ⊆ QA, i.e., the smallest
minor-closed set of relation pairs containing Q.

It follows immediately from the definitions that mInvF is minor-closed for every
F ⊆ FA.

Lemma 4.14. Let A = (As)s∈S be an S-sorted set in which every set As is finite.
Let (R,R′) ∈ QA and F ⊆ FA. Assume that (R,R′) ∈ mInvF . Then there exists
(R,R′′) ∈ mInvF such that R′′ ⊆ R′, and there are a word w ∈W (S) and i1, . . . , im ∈
[q], q := |Aw|, such that (R,R′′) = pri1,...,im(χw,ΓF (χw)). In particular,

mInvF = [{(χw,ΓF (χw)) | w ∈W (S)}]mc.

Proof. Assume that R is m-ary and SR = {s1, . . . , st}. For s ∈ S, let ns := |Rs|, and
let N :=

∑
s∈S ns. Note that N is a well-defined integer, because SR is finite and

every set As is finite. Let MR be the m×N matrix, whose leftmost columns are the
ns1 tuples in Rs1 , which are followed by the ns2 tuples in Rs2 , and so on, and the
rightmost columns are the nst tuples in Rst . Let

w := s1 . . . s1︸ ︷︷ ︸
ns1

s2 . . . s2︸ ︷︷ ︸
ns2

. . . st . . . st︸ ︷︷ ︸
nst times

.

There exist i1, . . . , im ∈ [q], q := |Aw|, such that pri1,...,im(Xw) = MR and hence
pri1,...,im(χw) = R. Let R′′ := pri1,...,im(ΓF (χw)).

We claim that R′′ ⊆ R′. Let r ∈ R′′s . By Lemma 4.8 and Theorem 4.10, there

exists fr̃ ∈ 〈F 〉(w,s)mc = (mPol mInvF )(w,s) such that fr̃(Xw) = r̃ and r = pri1,...,im(r̃).
Then

r = pri1,...,im(r̃) = pri1,...,im(fr̃(Xw)) = fr̃(pri1,...,im(Xw)) = fr̃(MR) ∈ R′s,

because MR ≺w R and (R,R′) ∈ mInvF . Clearly, (R,R′′) ∈ mInvF since (χw,ΓF (χw)) ∈
mInvF by Remark 4.7 and mInvF is minor-closed. �
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Lemma 4.15. Let A = (As)s∈S be an S-sorted set in which every set As is finite.
Let Q ⊆ QA be a minor-closed class, and let F := mPolQ. Then (χw,ΓF (χw)) ∈ Q
for every w ∈W (S).

Proof. Fix w ∈W (S), and let γ :=
⋂
{R′ | (χw, R′) ∈ Q}. Then (χw, γ) ∈ Q, because

Q is minor-closed. We are going to show that γ ⊆ ΓF (χw); from this it follows that
(χw,ΓF (χw)) ∈ Q, because Q is closed under extension of consequents.

Suppose, to the contrary, that γ * ΓF (χw). Then there exists s ∈ S and r ∈ Aqs,
q := |Aw|, such that r ∈ γs \ ΓF (χw)s. Define the function fr : Aw → As by the rule
fr(Xw) := r. Since r /∈ ΓF (χw) and Xw ≺w χw we have fr 7 (χw,ΓF (χw)). The set
F is minor-closed by Theorem 4.10, whence it follows by Lemma 4.9(ii) that fr /∈ F .
Since fr /∈ F = mPolQ, there exists a relation pair (R,R′) ∈ Q, say, of arity m, that
is not preserved by fr, i.e., there exists M ≺w R such that fr(M) /∈ R′s.

Let N be the (q +m)× |w| matrix obtained by placing Xw on top of M. Let % be
the partition of the set [q +m] in which elements i, j ∈ [q +m] belong to the same
block if and only if rows i and j of N are equal. Recall that the rows of Xw are all
tuples in Aw, so each row of M appears also as a row of Xw. Let h : [m]→ [q] be the
map such that for each i ∈ [m], the i-th row of M equals the h(i)-th row of Xw; thus
M = prh(1),...,h(m) Xw. Let

(σ, σ′) := ((χw, γ)× (R,R′)) ∧ (δ%, δ%),

(σ̃, σ̃′) := pr1,...,q(σ, σ
′).

Note that both (σ, σ′) and (σ̃, σ̃′) belong to Q because Q is closed under products,
intersections and projections. Observe also that χw ⊆ σ̃, because the columns of N
belong to (χw ×R) ∧ δ%. Furthermore, σ̃ ⊆ χw by definition, so σ̃ = χw and we have
(χw, σ̃

′) ∈ Q. By the definition of γ, we have (χw, γ) ⊆ (χw, σ̃
′) = (σ̃, σ̃′).

Since γ ⊆ σ̃′, we have r ∈ σ̃′s. This means, by the definition of σ̃′, that there exists
t ∈ ((γ × R′) ∩ δ%)s such that r = pr1,...,q(t); therefore t = (r1, . . . , rq, r

′
1, . . . , r

′
m) for

some r′ ∈ R′s. Since t ∈ δ%, we have r′ = prh(1),...,h(m) r. But now

r′ = prh(1),...,h(m) r = prh(1),...,h(m) fr(Xw)

= fr(prh(1),...,h(m) Xw) = fr(M) /∈ R′s.

This gives us the desired contradiction. �

Theorem 4.16. Let A = (As)s∈S be an S-sorted set in which every set As is finite.
Let Q ⊆ QA. Then [Q]mc = mInv mPolQ. Consequently, Q is minor-closed if and
only if Q = mInv mPolQ.

Proof. For any operation f , we have that mInv{f} is minor-closed. Thus, f ∈ mPolQ
if and only if f ∈ mPol[Q]mc, hence mPolQ = mPol[Q]mc =: F . Applying Lemma 4.15
to the minor-closed class [Q]mc, we obtain

[{(χw,ΓF (χw)) | w ∈W (S)}]mc ⊆ [Q]mc.

On the other hand, Lemma 4.14 implies that

mInvF = [{(χw,ΓF (χw)) | w ∈W (S)}]mc.

Therefore, we have mInvF ⊆ [Q]mc. We can conclude that

[Q]mc ⊆ mInv mPol[Q]mc = mInv mPolQ = mInvF ⊆ [Q]mc,

where the first inclusion follows from the fact that mInv mPol is a closure operator. �

Remark 4.17. We developed the Galois theory of minor-closed classes of multisorted
operations under the assumption that the components As of the S-sorted set A =
(As)s∈S are finite. Should we like to abandon the finiteness assumption, it would
seem necessary to introduce certain local closure conditions, much in the same way
as in Couceiro and Foldes’s [2] extension of Pippenger’s Galois theory to arbitrary,
possibly infinite sets. This remains beyond the scope of the current paper.



REFLECTIONS ON MINOR-CLOSED CLASSES OF MULTISORTED OPERATIONS 13

5. Reflections and invariant relation pairs

We are now going to generalize the notion of reflection (see Barto, Opršal and
Pinsker [1]) to the multisorted setting.

Definition 5.1. Let A and B be S-sorted sets. A reflection of A into B is a pair (h, h′)
of SB-sorted mappings h = (hs)s∈SB

, h′ = (h′s)s∈SB
, hs : Bs → As, h

′
s : As → Bs.

Note that reflections of A into B exist if and only if SB ⊆ SA. For, if SB ⊆ SA, then
As and Bs are nonempty for all s ∈ SB and there clearly exist maps hs : Bs → As
and h′s : As → Bs. If SB * SA, then there is s ∈ SB \SA, whence As = ∅ and Bs 6= ∅,
so there is no map hs : Bs → As.

Assume that A and B are S-sorted sets with SB ⊆ SA and (h, h′) is a reflection
of A into B. If (w, s) ∈ W (S) × S is a declaration that is reasonable in both A and
B and f : Aw → As, then we can define the (h, h′)-reflection of f to be the map
f(h,h′) : Bw → Bs that is the empty map if Bw = ∅ and is otherwise given by the rule

f(h,h′)(b1, . . . , bn) = h′s(f(hw1
(b1), . . . , hwn

(bn)))

for all (b1, . . . , bn) ∈ Bw, which we may write in a simpler way as f(h,h′)(b) =
h′s(f(hw(b))) for all b ∈ Bw. This is illustrated by the commutative diagram shown
below.

Aw As

Bw Bs
f(h,h′)

hw

f

h′s

Let F ⊆ FA be a set of S-sorted operations on A. If dec(f) is reasonable in B for
all f ∈ F , then the (h, h′)-reflection of F is defined as F(h,h′) := {f(h,h′) | f ∈ F}.

Proposition 5.2. Let A and B be S-sorted sets. Let F ⊆ FA, and let (h, h′) be a
reflection of A into B such that F(h,h′) is defined. If F is minor-closed, then F(h,h′)

is minor-closed.

Proof. Let g ∈ F(h,h′), with dec(g) = (w, s). Then g = f(h,h′) for some f ∈ F (w,s)
A .

Any minor of g is of the form guλ , where u = u1 . . . um ∈ W (S) is a word such that
{w1, . . . , wn} ⊆ {u1, . . . , um} and λ : [n] → [m] is a map satisfying wi = uλ(i) for all
i ∈ [n] (see Definition 3.2). Then for all (b1, . . . , bm) ∈ Bu,

guλ(b1, . . . , bm) = g(bλ(1), . . . , bλ(n)) = f(h,h′)(bλ(1), . . . , bλ(n))

= h′s(f(hw1
(bλ(1)), . . . , hwn

(bλ(n))))

= h′s(f
u
λ (hu1(b1), . . . , hum(bm))) = (fuλ )(h,h′)(b1, . . . , bm).

Since F is minor-closed, we have fuλ ∈ F . Hence guλ = (fuλ )(h,h′) ∈ F(h,h′). �

Suppose F ⊆ FA is a minor-closed class. Proposition 5.2 asserts that any reflection
F(h,h′) is minor-closed. Theorem 4.10 guarantees that there exists a set Q ⊆ QB of
relation pairs such that F(h,h′) = mPolQ, but the obvious question is how to find
such a set Q if we are given mInvF . We are now going to describe how the invariant
relation pairs of S-sorted operations are affected by reflections.

Definition 5.3. Let A and B be S-sorted sets, let h : A→ B be an S′-sorted mapping
for some S′ ⊆ S, let R be an m-ary S-sorted relation on A, and let T be an m-ary
S-sorted relation on B. The direct image h(R) of R under h and the inverse image
h−1(T ) of T under h are defined as follows. If m ≥ 1, then h(R) := (hs(Rs))s∈S and
h−1(T ) := (h−1s (Ts))s∈S , where

hs(Rs) := {(hs(a1), . . . , hs(am)) ∈ Bms | (a1, . . . , am) ∈ Rs},
h−1s (Ts) := {(a1, . . . , am) ∈ Ams | (hs(a1), . . . , hs(am)) ∈ Ts},
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for s ∈ S′, and hs(Rs) := ∅, h−1s (Ts) := ∅ for s ∈ S \ S′. If m = 0, then h(R) := R
and h−1(T ) := T .

Proposition 5.4. Let A and B be S-sorted sets, (R,R′) ∈ QA, (T, T ′) ∈ QB, and
let (h, h′) be a reflection of A into B. Assume that (w, s) is reasonable in both A and

B, and let f ∈ F (w,s)
A . Then the following statements hold.

(i) If f B (R,R′) then f(h,h′) B (h−1(R), h′(R′)).

(ii) If f(h,h′) B (T, T ′) then f B (h(T ), h′−1(T ′)).
(iii) If F ⊆ FA and dec(f) is reasonable in B for all f ∈ F , then

mInvF(h,h′) = {(T, T ′) ∈ QB | (h(T ), h′−1(T ′)) ∈ mInvF}.

Proof. (i) The claim clearly holds if (R,R′) is nullary, so we assume that (R,R′)
has arity at least 1. Assume that f B (R,R′) and M ≺w h−1(R). Then M =
(a1, . . . ,an), where ai ∈ h−1wi

(Rwi
) for i ∈ [n]. Then hwi

(ai) ∈ Rwi
for all i ∈ [n],

so hw(M) := (hw1
(a1), . . . , hwn

(an)) ≺w R. Since f B (R,R′), we have f(hw(M)) ∈
R′s. Thus f(h,h′)(M) = h′s(f(hw(M))) ∈ h′s(R

′
s), and we conclude that f(h,h′) B

(h−1(R), h′(R′)).
(ii) Again, the case of nullary relations is clear, so we assume that (T, T ′) has arity

at least 1. Assume that f(h,h′) B (T, T ′) and M ≺w h(T ). Then M = (a1, . . . ,an),
where ai ∈ hwi(Twi) for i ∈ [n]. Then for each i there exists bi ∈ Twi such that
ai = hwi(bi). Consequently, (b1, . . . ,bn) ≺w T . Since f(h,h′) B (T, T ′), we have
f(h,h′)(b1, . . . ,bn) ∈ T ′s. Since

f(h,h′)(b1, . . . ,bn) = h′s(f(hw1(b1), . . . , hwn(bn)))

= h′s(f(a1, . . . ,an)) = h′s(f(M)),

we have f(M) ∈ h′s−1(T ′s), and we conclude that f B (h(T ), h′−1(T ′)).
(iii) The inclusion

mInvF(h,h′) ⊆ {(T, T ′) ∈ QB | (h(T ), h′−1(T ′)) ∈ mInvF}
follows immediately from part (ii). In order to prove the converse inclusion, assume
that (T, T ′) ∈ QB satisfies (h(T ), h′−1(T ′)) ∈ mInvF . Then (h−1(h(T )), h′(h′−1(T ′))) ∈
mInvF(h,h′) by part (i). Since T ⊆ h−1(h(T )) and T ′ ⊇ h′(h′−1(T ′)) and since
mInvF(h,h′) is closed under restrictions of antecedents and extensions of consequents,
we have that (T, T ′) ∈ mInvF(h,h′). �
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