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REFLECTION-CLOSED VARIETIES OF MULTISORTED

ALGEBRAS AND MINOR IDENTITIES

ERKKO LEHTONEN, REINHARD PÖSCHEL, AND TAMÁS WALDHAUSER

Abstract. The notion of reflection is considered in the setting of multisorted
algebras. The Galois connection induced by the satisfaction relation between

multisorted algebras and minor identities provides a characterization of reflec-

tion-closed varieties: a variety of multisorted algebras is reflection-closed if and
only if it is definable by minor identities. Minor-equational theories of multi-

sorted algebras are described by explicit closure conditions. It is also observed

that nontrivial varieties of multisorted algebras of a non-composable type are
reflection-closed.

1. Introduction

Motivated by considerations of the complexity of constraint satisfaction prob-
lems, Barto, Opršal and Pinsker [2] introduced an algebraic construction called
reflection. Given an algebra A = (A,FA) of type τ , a set B, and maps h1 : B → A
and h2 : A → B, we can define an algebra B = (B,FB) of type τ in which the
operations are given by the rule

(1.1) fB(x1, . . . , xn) := h2(fA(h1(x1), . . . , h1(xn))).

The algebra B is called a reflection of A. Reflections are a common generalization
of subalgebras and homomorphic images. It was shown in [2, Corollary 5.4] that
the classes of algebras closed under reflections and products are precisely the classes
defined by height-1 identities.

Multisorted (or heterogeneous) algebras generalize the notion of an algebra so
as to include functions that take arguments and values from possibly different sets.
Much of the general theory of usual one-sorted (also called homogeneous) alge-
bras applies to multisorted algebras, and the basics of the theory of multisorted
algebras were established as early as in the 1960’s and 1970’s. In particular, sub-
algebras, morphisms, congruences, direct products, and free algebras were defined
in the setting of multisorted algebras in the papers by Higgins [7] and Birkhoff and
Lipson [3]. Furthermore, Higgins [7] defined varieties of multisorted algebras and
proved Birkhoff’s HSP theorem for multisorted algebras. Further considerations on
varieties are included, e.g., in the paper by Taylor [9].

The defining equality (1.1) of reflections allows an immediate generalization from
algebras to multisorted algebras in which the carrier comprises two sets A and B
and the operations are functions f : An → B of several arguments from A to B
(“2-algebras”; see Example 2.13(5)). With a little modification of the definition,
the notion of reflection can be further generalized to arbitrary multisorted algebras
(see Section 4).

In this paper, we consider reflections of multisorted algebras and ask for a char-
acterization of reflection-closed varieties. As it turns out, the right notion for such
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a characterization are the so-called minor identities (also known as height-1 iden-
tities or primitive identities), i.e., identities of a special form, where all terms have
exactly one occurrence of a function symbol. We thus set out to investigate the
Galois connection Mod–mId induced by the relation of satisfaction between multi-
sorted algebras and minor identities. Analogously to the first Birkhoff theorem, the
Galois closures of this Galois connection are precisely the reflection-closed varieties
of multisorted algebras, i.e., Mod mIdK = RPK. (For usual one-sorted algebras,
this was proved by Barto, Opršal and Pinsker [2].) We also characterize by ex-
plicit closure conditions the minor-equational theories of multisorted algebras, i.e.,
the closed sets of minor identities of the Galois connection Mod–mId. (For usual
one-sorted algebras, this was done by Čupona and Markovski [5].)

We also discuss how reflection-closed varieties and usual varieties of multisorted
algebras are related to each other. These notions can be quite different in general,
but for varieties of multisorted algebras of a so-called non-composable type, the
only varieties that are not reflection-closed are in a certain sense trivial.

The main results of this paper were first announced in the 94th Workshop on
General Algebra (AAA94), held in conjunction with the 5th Novi Sad Algebraic
Conference (NSAC 2017), in Novi Sad, Serbia, during June 15–18, 2017.

2. Multisorted algebras

We will start with recalling the definitions of basic concepts in the theory of
multisorted sets and multisorted algebras. We will mainly follow the notation and
terminology used in the book by Wechler [10].

Definition 2.1. We denote by N the set of nonnegative integers and by N+ the
set of positive integers. For n ∈ N, let [n] := {1, . . . , n}. Note that [0] = ∅.
Definition 2.2. We write tuples (a1, a2, . . . , an) interchangeably as words a1a2 . . . an.
The set of all words over a set S is denoted by W (S). The empty word is denoted
by ε. The length of a word w ∈W (S) is the number of letters in w and it is denoted
by |w|. Thus, |w1w2 . . . wn| = n. For s ∈ S, the number of occurrences of s in w is
denoted by |w|s.
Definition 2.3. Let S be a set of elements called sorts. An S-indexed family of sets
is called an S-sorted set. Given S-sorted sets A = (As)s∈S and B = (Bs)s∈S , we
say that A is an (S-sorted) subset of B and we write A ⊆ B if As ⊆ Bs for all s ∈ S.
The union and intersection of S-sorted sets A and B are defined componentwise:
A ∪ B := (As ∪ Bs)s∈S and A ∩ B := (As ∩ Bs)s∈S . For any subset S′ ⊆ S, we
denote by A|S′ the S-sorted subset of A given by

(A|S′)s :=

{
As, if s ∈ S′,
∅, if s /∈ S′.

When we make statements such as “let A be an S-sorted set”, it is understood that
the member of the family A indexed by s ∈ S is denoted by As.

Definition 2.4. Let A be an S-sorted set. If As 6= ∅, then we say that sort s is
essential in A; otherwise sort s is inessential in A. Let SA := {s ∈ S | As 6= ∅}
be the set of essential sorts in A. It follows immediately from the definitions that
A|SA = A and SA|S′ ⊆ S′ for any S′ ⊆ S.

Definition 2.5. Let A and B be S-sorted sets. An S-sorted mapping f from A to
B, denoted by f : A→ B, is a family (fs)s∈S of maps fs : As → Bs. If x ∈ As and
there is no risk of confusion about the sort s, we may write f(x) instead of fs(x).

Definition 2.6. For an S-sorted set A = (As)s∈S and w = w1w2 . . . wn ∈ W (S),
let Aw := Aw1 ×Aw2 × · · · ×Awn . Note that Aε = {∅}.
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Definition 2.7. A pair (w, s) ∈ W (S) × S is called a declaration over S. Let A
be an S-sorted set. A declaration (w, s) with w = w1 . . . wn is reasonable in A if
As = ∅ implies Awi = ∅ for some i, or, equivalently, if Aw 6= ∅ implies As 6= ∅. Note
that the declaration (ε, s) is reasonable in A if and only if As 6= ∅.

An S-sorted operation on A is any function f : Aw → As for some declaration
(w, s) that is reasonable in A. Note that it is possible that Aw = ∅, in which case
f is just the empty function ∅ → As. The word w is called the arity of f and the
element s is called the (output) sort of f . The elements of S occurring in the word
w are called the input sorts of f . We denote the declaration, arity, sort, and the set
of input sorts of f by dec(f), ar(f), sort(f), and inp(f), respectively. If |w| = n,
then we also say that f has numerical arity n, or that f is n-ary.

Definition 2.8. A (multisorted similarity) type is a triple τ = (S,Σ,dec), where
S is a set of sorts, Σ is a set of function symbols, and dec is a mapping dec: Σ →
W (S)×S. If f ∈ Σ and dec(f) = (w, s), we say that f has arity w and sort s. Using
the same notation as for functions, we denote the arity, sort and the set of input sorts
of a function symbol f by ar(f), sort(f), and inp(f), respectively. For w ∈ W (S),
s ∈ S, we write Σ(w,s) := {f ∈ Σ | dec(f) = (w, s)}, Σs := {f ∈ Σ | sort(f) = s}.

A (multisorted) algebra of type τ is a system A = (A,ΣA), where A = (As)s∈S
is an S-sorted set, called the carrier (or universe) of A, and ΣA = (fA)f∈Σ is a
family of S-sorted operations on A, each fA of declaration dec(f). It is implicit in
the definition that dec(f) is reasonable in A for every f ∈ Σ. Denote by Alg(τ) the
class of all multisorted algebras of type τ .

Remark 2.9. One can find in the literature different definitions of multisorted
algebras that differ in whether or not the sets As in the carrier (As)s∈S of an
algebra may be empty. Following the approach taken by Higgins [7], we allow
carriers with empty components.

Definition 2.10. Let A = (A,ΣA) and B = (B,ΣB) be multisorted algebras of
type τ = (S,Σ,dec). We say that B is a subalgebra of A if B ⊆ A and for every
f ∈ Σ(w,s), the operation fB equals the restriction of fA to Bw. Running the risk
of being a bit sloppy, we may designate subalgebras of A simply by their carrier
sets and make statements such as “B is a subalgebra of A” when we mean that B
is the carrier of a subalgebra of A.

It is possible that some components Bs of the carrier of B are empty. However,
if ΣA contains a nullary operation which selects an element a ∈ As, then we require
that a ∈ Bs.

If C is an S-sorted subset of A, then the subalgebra of A generated by C, denoted
by 〈C〉A, is the smallest subalgebra B = (B,ΣB) of A such that C ⊆ B.

Definition 2.11. Let A = (A,ΣA) and B = (B,ΣB) be algebras of type τ =
(S,Σ,dec). A homomorphism of A to B is an S-sorted mapping ϕ : A → B such
that for every f ∈ Σ(w,s) with w = w1 . . . wn, it holds that

fB(ϕw1
(a1), . . . , ϕwn(an)) = ϕs(f

A(a1, . . . , an)),

for all (a1, . . . , an) ∈ Aw. If every ϕs is a surjective map onto Bs, then B is referred
to as a homomorphic image of A.

Definition 2.12. Let Γ be an index set of a family of multisorted algebras Aγ =
((Aγ,s)s∈S , (f

Aγ )f∈Σ) of type τ = (S,Σ,dec), γ ∈ Γ. The direct product
∏
γ∈Γ Aγ

is the algebra B = (B,ΣB) of type τ , where Bs =
∏
γ∈ΓAγ,s and

fB((aγ,1)γ∈Γ, . . . , (aγ,n)γ∈Γ) = (fAγ (aγ,1, . . . , aγ,n))γ∈Γ.

If Aγ = A for all γ ∈ Γ, then we speak of the Γ-th direct power of A, and we write
AΓ for

∏
γ∈Γ A.
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Note that the empty product
∏
γ∈∅Aγ is the algebra (Bs,Σ

B) where Bs = {∅}
for all s ∈ S. We will denote the empty product by

∏
∅.

Example 2.13. Examples of multisorted algebras include the following.

(1) If the set S of sorts is a singleton, then S-sorted sets, mappings, operations,
algebras, etc., correspond to the usual ones. Every algebra in the usual
sense can be viewed as a multisorted algebra of type τ = (S,Σ,dec) where
|S| = 1. Such algebras are called one-sorted (or homogeneous).

(2) Given a multisorted similarity type τ = (S,Σ,dec), we can construct the

canonical trivial algebra S = (S̃,ΣS) of type τ , in which the carrier S̃ =

(S̃s)s∈S consists of one-element sets only, S̃s := {s} for every s ∈ S, and for
any f ∈ Σ(w,s), the operation fS is trivially defined as the constant map
w 7→ s.

(3) Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y = (Ys)s∈S
be an S-sorted set in which the components are pairwise disjoint and also
disjoint from the function symbols Σ. The elements of Y are referred to
as variables. We often encounter the S-sorted standard set of variables,
namely, X = (Xs)s∈S where Xs = {xsi | i ∈ N}.

The S-sorted set Tτ (Y ) = (T sτ (Y ))s∈S of terms of type τ over Y is defined
as follows. Each set T sτ (Y ) of terms of type τ over Y of sort s is the least
set of words over Σ∪ Y such that Ys ⊆ T sτ (Y ) and for all function symbols
f ∈ Σ(w,s) and for all (t1, . . . , tn) ∈ (Tτ (Y ))w, the word ft1 . . . tn belongs
to T sτ (Y ). For better readability, we may add some punctuation marks and
write f(t1, . . . , tn) instead of ft1 . . . tn.

The terms of type τ over Y carry a multisorted algebra
Tτ (Y ) = (Tτ (Y ),ΣTτ (Y )) of type τ in which the operations are defined
as follows. For each f ∈ Σ(w,s), let fTτ (Y )(t1, . . . , tn) := ft1 . . . tn for all
(t1, . . . , tn) ∈ (Tτ (Y ))w. The algebra Tτ (Y ) is called the term algebra of
type τ over Y .

(4) An operation on a set A (an ordinary set, not an S-sorted set) is a map
f : An → A for some n ∈ N+, called the arity of f . The i-th n-ary projection
on A is the operation prni : An → A, (a1, . . . , an) 7→ ai. The composition of
f : An → A with g1, . . . , gn : Am → A is the operation f(g1, . . . , gn) : Am →
A given by the rule

f(g1, . . . , gn)(a) := f(g1(a), . . . , gn(a)),

for all a ∈ Am. The set of all n-ary operations on A is denoted by O(n)
A ,

and OA :=
⋃
O(n)
A . A clone on a set A is a set C ⊆ OA of operations on A

that contains all projections and is closed under composition.
Clones on A are sometimes viewed as multisorted algebras. Namely, let

S := N+,

Σ := {Cn,m | n,m ∈ N+} ∪ {en,i | n, i ∈ N+, 1 ≤ i ≤ n},
dec(Cn,m) := (nm . . .m︸ ︷︷ ︸

n

,m),

dec(en,i) := (ε, n),

and define the algebra F = (F,ΣF) of type τ = (S,Σ,dec), where F =

(Fn)n∈N+
with Fn := O(n)

A , and

CF
n,m(f, g1, . . . , gn) := f(g1, . . . , gn),

eFn,i := prni .
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The subalgebras of F are then in one-to-one correspondence with the clones
on A in an obvious way.

(5) A 2-algebra is a multisorted algebra of type τ = (S,Σ,dec), where S =
{1, 2} and for every f ∈ Σ, dec(f) = (1 . . . 1︸ ︷︷ ︸

n

, 2) for some n ∈ N. In other

words, the carrier of a 2-algebra comprises two sets A and B, and the
operations are functions f : An → B of several arguments from A to B.

Let us make a simple but very useful observation about the subalgebras of the
canonical trivial algebra S = (S̃,ΣS) of type τ = (S,Σ,dec) (see Example 2.13(2)).

We first introduce the shorthand S̃′ := S̃|S′ , for any subset S′ ⊆ S (for notation,

see Definition 2.3), i.e., S̃′ is the S-sorted set with S̃′s = {s} if s ∈ S′ and S̃′s = ∅
if s /∈ S′. Obviously, for subsets S′ and S′′ of S, the set inclusion S′ ⊆ S′′ holds if
and only if S̃′ ⊆ S̃′′ holds. In the sequel, we will often slightly abuse the notation
and write 〈S′〉S to mean the unique set S′′ ⊆ S such that 〈S̃′〉S = S̃′′. We will keep
the formally correct notation in the following lemma and its proof.

Lemma 2.14. For a multisorted algebra A = (A,ΣA) of type τ = (S,Σ,dec), S̃A is

a subalgebra of the canonical trivial algebra S = (S̃,ΣS) of type τ , i.e., 〈S̃A〉S = S̃A.

Proof. Since A is an algebra, the declaration of every f ∈ Σ is reasonable in A.

Clearly SA = S
S̃A

, so the declaration of every f ∈ Σ is reasonable in S̃A, too.

Moreover, for each f ∈ Σ(w,s), the uniquely determined operation (S̃A)w → (S̃A)s

coincides with the restriction of fS to S̃A. Therefore S̃A is a subalgebra of S. �

3. Minor terms and minor identities

As we have seen in Example 2.13(3), terms can be defined in the multisorted
setting in the expected way: the output sorts of the terms t1, . . . , tn must match
with the input sorts of the function symbol f when a complex term f(t1, . . . , tn)
is formed. However, the notion of identity (or equation) requires a bit of care. It
is not sufficient to define an identity simply as a pair of terms. One also has to
specify the variables that are to be valuated when one decides whether an identity
is satisfied by an algebra. This sounds superfluous, and it is indeed so in the case of
one-sorted algebras, but for multisorted algebras this makes a difference. Namely,
an identity would be trivially satisfied by an algebra A = (A,F ) if there is a variable
of sort s to which a value must be assigned but the set As is empty. If there is
no such variable, then the identity may or may not be satisfied by A, depending
on whether the two terms of the identity get the same value in all assignments of
values to variables. For further discussion and examples on this, see Wechler [10,
Section 4.1.1].

As explained above, for a reasonable definition of an identity in the multisorted
setting, it is necessary to specify the variables to which values are assigned. What
really matters here are the sorts of such variables. For this reason, we have cho-
sen to indicate only the sorts of the variables that are valuated, not the variables
themselves. Consequently, our definition of an identity is slightly, but not in any
essential way different from what is commonly seen in the literature (e.g., Adámek,
Rosický, Vitale [1], Manca, Salibra [8, Definition 1.9], Wechler [10, Section 4.1.1]).

Definition 3.1. Let A = (A,ΣA) be an algebra of type τ = (S,Σ,dec) and let
Y be an S-sorted set of variables. A valuation of Y in A is an S-sorted mapping
β : Y → A. (Note that valuations β : Y → A exist if and only if SY ⊆ SA.) The map
β admits a unique homomorphic extension β# : Tτ (Y )→ A (see Example 2.13(3)).
For a term t ∈ Tτ (Y ), we call β#(t) the value of t in A under β.
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Definition 3.2. Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y be
an S-sorted set of variables. An identity of sort s of type τ over variables Y is a
triple (S′, t1, t2), where S′ ⊆ S and t1, t2 ∈ T sτ (Y |S′). We will use a more suggestive
notation for identities and write t1 ≈S′ t2 for (S′, t1, t2). We say that t1 ≈S′ t2 is
valuated on sorts S′. We denote the set of all identities of sort s of type τ over Y
by IDs

τ (Y ), and we set IDτ (Y ) :=
⋃
s∈S IDs

τ (Y ).

An algebra A = (A,ΣA) of type τ is said to satisfy the identity t1 ≈S′ t2 if
β#(t1) = β#(t2) for all valuation maps β : Y |S′ → A. In this case we also write
A |= t1 ≈S′ t2. Note that A satisfies t1 ≈S′ t2 vacuously if Ys 6= ∅ and As = ∅ for
some s ∈ S′.

Remark 3.3. In the literature (e.g., [1, 8, 10]), identities are often written as
∀Y ′(t1 = t2), where Y ′ is a subset of the S-sorted set Y of variables and t1 and t2
are terms. Using this notation, an identity t1 ≈S′ t2 (according to our Definition 3.2,
where a set S′ is given instead of a set of variables) would be written as ∀Y |S′(t1 =
t2).

Lemma 3.4. Let A ∈ Alg(τ), and let t1 ≈S′ t2 ∈ IDs
τ (Y ). If A |= t1 ≈S′ t2, then

A |= t1 ≈S′′ t2 for all S′′ with S′ ⊆ S′′ ⊆ S.

Proof. For every valuation β : Y |S′′ → A, we have

β#(t1) = (β|S′)#(t1) = (β|S′)#(t2) = β#(t2).

Thus, if there exists a valuation β : Y |S′′ → A, then A |= t1 ≈S′ t2 implies that
A |= t1 ≈S′′ t2. If there is no such valuation, then A |= t1 ≈S′′ t2 vacuously. �

Remark 3.5. A valuation β : Y |S′′ → A exists if and only if Ys 6= ∅ =⇒ As 6= ∅
for every s ∈ S′′. If this is the case, then the converse of Lemma 3.4 is also true
(i.e., A |= t1 ≈S′ t2 if and only if A |= t1 ≈S′′ t2).

Definition 3.6. Terms containing exactly one function symbol are called minor
terms. We denote by MT s

τ (Y ) the set of all minor terms of sort s of type τ =
(S,Σ,dec) over Y , and we set MT τ (Y ) :=

⋃
s∈S MT s

τ (Y ).
In other words, a general minor term t ∈ MT s

τ (Y ) is of the form f(σ(1), . . . , σ(n)),
where f ∈ Σ with dec(f) = (w, s), w = w1 . . . wn, and σ : [n] → Y is a map
respecting the sorts, i.e., satisfying σ(i) ∈ Ywi for all i ∈ [n]. We denote this
term by fσ. The value of fσ in A under a valuation β : Y → A is β#(fσ) =
fA(β(σ(1)), . . . , β(σ(n))) = fA(β ◦ σ).

Note that constants f ∈ Σ are also minor terms, corresponding to the case n = 0.
Recall that [0] = ∅, so fσ = f for every σ : [0]→ Y and for any valuation β : Y → A
we have β#(f) = fA.

An identity t1 ≈S′ t2 is called a minor identity if both t1 and t2 are minor
terms. Minor identities are also known as height-1 identities (see Barto, Opršal,
Pinsker [2]) or primitive identities (see Čupona, Markovski [4, 5] and Čupona,
Markovski, Popeska [6]). We denote by MIDs

τ (Y ) the set of all minor identities of
sort of type τ over Y , and we set MIDτ (Y ) :=

⋃
s∈S MIDs

τ (Y ).

Definition 3.7. The satisfaction relation induces a Galois connection between
multisorted algebras and identities of type τ . For a class K ⊆ Alg(τ) of algebras of
type τ and for a set J ⊆ IDτ (Y ) of identities of type τ , let

IdY K := {t1 ≈S′ t2 ∈ IDτ (Y ) | ∀A ∈ K : A |= t1 ≈S′ t2},
mIdY K := {t1 ≈S′ t2 ∈ MIDτ (Y ) | ∀A ∈ K : A |= t1 ≈S′ t2},
ModJ := {A ∈ Alg(τ) | ∀t1 ≈S′ t2 ∈ J : A |= t1 ≈S′ t2}.

When Y is the standard set of variables X, then we write IdK and mIdK for IdX K
and mIdX K, respectively.
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Figure 1. Minor varieties of groupoids.

By Birkhoff’s theorem for (multisorted) algebras, ModJ is a variety for any set
J ⊆ IDτ (Y ) of identities. We call a variety V a minor variety if V = ModJ for
some set J ⊆ MIDτ (Y ) of minor identities. Minor varieties of one-sorted algebras
were investigated by Čupona and Markovski [4, 5] and Čupona, Markovski and
Popeska [6].

Example 3.8. As a concrete example of minor varieties, we present here the minor
varieties of groupoids (one-sorted algebras with a single binary operation), which
were determined by Čupona, Markovski and Popeska [6]. It is easy to verify that
every minor identity in the language of groupoids is equivalent to one of the follow-
ing:

(3.1) xy ≈ xy, xy ≈ yx, xx ≈ yy, xy ≈ xz, xy ≈ zy, xy ≈ zu,
where we have written identities as is usual in the classical framework and the
binary operation as juxtaposition. Therefore, there are six varieties defined by a
single minor identity:

G := Mod{xy ≈ xy} (all groupoids),

C := Mod{xy ≈ yx} (commutative groupoids),

U := Mod{xx ≈ yy} (unipotent groupoids),

L := Mod{xy ≈ xz} (left unars),

R := Mod{xy ≈ zy} (right unars),

K := Mod{xy ≈ zu} (constant groupoids).

The only new variety that can be formed as the intersection of any of the above is
CU := Mod{xy ≈ yx, xx ≈ yy} (commutative unipotent groupoids). The lattice of
minor varieties of groupoids is represented by the Hasse diagram shown in Figure 1.

Example 3.9. As another example, we determine the minor variety generated by
the variety of groups. Recall that a group is a one-sorted algebra (A; ·,−1, e) of
type (2, 1, 0) satisfying the identities

x · (y · z) ≈ (x · y) · z, e · x ≈ x, x · e ≈ x, x · x−1 ≈ e, x−1 · x ≈ e.
Every minor identity in the language of groups is equivalent to one of the groupoid
identities listed in (3.1) or one of the following:

(3.2)
xy ≈ z−1, xy ≈ x−1, xy ≈ y−1, xx ≈ y−1, xx ≈ x−1, xy ≈ e,
xx ≈ e, x−1 ≈ y−1, x−1 ≈ x−1, x−1 ≈ e, e ≈ e.
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As trivial identities, x−1 ≈ x−1 and e ≈ e are equivalent to xy ≈ xy. It is an easy
exercise to find, for each one of the nontrivial identities listed in (3.1) and (3.2),
an example of a group that does not satisfy that identity. Hence the only minor
identities satisfied by the variety of groups are the trivial ones, and we conclude that
the minor variety generated by the variety of groups is the variety of all algebras
of type (2, 1, 0).

Example 3.10. Our last example involves multisorted algebras that are not one-
sorted, and it aims at illustrating the role of empty components in carriers of
algebras, as well as the importance of specifying the sorts on which identities are
valuated. Consider the algebraic similarity type τ = (S,Σ,dec) with S = {s, t},
Σ = {·, ∗} and dec(·) = (ss, s), dec(∗) = (st, t). Algebras of type τ satisfying the
identity x ∗ (y ∗ u) ≈S (x · y) ∗ u are called groupoid actions. Groupoid actions that
additionally satisfy the identity x · (y · z) ≈{s} (x · y) · z are called semigroup ac-
tions. (Note that the defining identities of groupoid actions and semigroup actions
are not minor identities.)

Let us determine the minor varieties of algebras of type τ . To this end, we
introduce some notation. For a variety V of groupoids, as in Example 3.8, let us
denote by V∗ the set of all algebras A of type τ such that (As, ·) is in V. Let T be
the class of all algebras A of type τ such that At = ∅.

Let J be a set of identities in the language of groupoids (usual one-sorted), and
let J ′ ⊆ J . Define

I := {t1 ≈{s} t2 | t1 ≈ t2 ∈ J ′} ∪ {t1 ≈{s,t} t2 | t1 ≈ t2 ∈ J \ J ′}.

An algebra A of type τ satisfies the set I of identities if and only if (As, ·) |= t1 ≈ t2
for every t1 ≈ t2 ∈ J ′ and (As, ·) |= t1 ≈ t2 or At = ∅ for every t1 ≈ t2 ∈ J \ J ′.
This condition is equivalent to the following: (As, ·) |= t1 ≈ t2 for every t1 ≈ t2 ∈ J ,
or At = ∅ and (As, ·) |= t1 ≈ t2 for every t1 ≈ t2 ∈ J ′. In other words, A |= I if
and only if A ∈ V∗ ∪ (V ′∗ ∩ T ), where V := ModJ and V ′ := ModJ ′ are varieties
of groupoids.

Consequently, the varieties of algebras of type τ defined by identities of sort s
are of the form bV,V ′e := V∗ ∪ (V ′∗ ∩ T ), where V, V ′ are varieties of groupoids
such that V ⊆ V ′. We can deduce from Figure 1 that there are 20 varieties of type
τ that are defined by minor identities of sort s, and they are shown in Figure 2.

It is easy to verify that every minor identity of type τ of sort t is equivalent to
one of the following:

x ∗ u ≈S x ∗ u, x ∗ u ≈S x ∗ v, x ∗ u ≈S y ∗ u, x ∗ u ≈S y ∗ v.

Therefore, there are four varieties defined by a single minor identity of sort t:

M := Mod(x ∗ u ≈S x ∗ u), N := Mod(x ∗ u ≈S x ∗ v),

O := Mod(x ∗ u ≈S y ∗ u), P := Mod(x ∗ u ≈S y ∗ v).

Intersections of these four varieties do not yield any new varieties. These varieties
are shown in Figure 3.

We conclude that the minor varieties of type τ are of the form X ∩ Y, where X
is a variety defined by minor identities of sort s (see Figure 2) and Y is a variety
defined by minor identities of sort t (see Figure 3). Consequently, the total number
of minor varieties of type τ is 20 · 4 = 80, and the lattice of minor varieties is
isomorphic to the direct product of the lattices shown in Figures 2 and 3.

4. Reflections

We are now going to generalize the notion of reflection (see Barto, Opršal and
Pinsker [2]) to the multisorted setting.
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bK,Ke

bK, CUe

bK,Le bK, Ce bK,Ue bK,Re

bCU, CUe

bL,Le bCU, Ce bK,Ge bCU,Ue bR,Re

bC, Ce bCU,Ge bU,Ue

bL,Ge bC,Ge bU,Ge bR,Ge

bG,Ge

Figure 2. Minor varieties of the groupoid action type defined by
identities of sort s.

P

N O

M

Figure 3. Minor varieties of the groupoid action type defined by
identities of sort t.

Definition 4.1. Let A and B be S-sorted sets. A reflection of A into B is a
pair (h, h′) of SB-sorted mappings h = (hs)s∈SB , h′ = (h′s)s∈SB , hs : Bs → As,
h′s : As → Bs. Note that reflections of A into B exist if and only if SB ⊆ SA. For,
if SB ⊆ SA, then As and Bs are nonempty for all s ∈ SB and there clearly exist
maps hs : Bs → As and h′s : As → Bs. If SB * SA, then there is s ∈ SB \ SA,
whence As = ∅ and Bs 6= ∅, so there is no map hs : Bs → As.

Assume that A and B are S-sorted sets with SB ⊆ SA and (h, h′) is a reflection
of A into B. If (w, s) ∈W (S)×S is a declaration that is reasonable in both A and
B and f : Aw → As, then we can define the (h, h′)-reflection of f to be the map
f(h,h′) : Bw → Bs given by the rule

f(h,h′)(b1, . . . , bn) = h′s(f(hw1(b1), . . . , hwn(bn)))
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for all (b1, . . . , bn) ∈ Bw, which we write simply as f(h,h′)(b) = h′s(f(hw(b))) for all
b ∈ Bw. This is illustrated by the commutative diagram shown below. Note that
if Bwi = ∅ for some i ∈ {1, . . . , n}, then f(h,h′) = ∅.

Aw As

Bw Bs
f(h,h′)

hw

f

h′s

Let A = (A,ΣA) and B = (B,ΣB) be algebras of type τ = (S,Σ,dec). If (h, h′)
is a reflection of A into B and for all f ∈ Σ it holds that fB = (fA)(h,h′), then B is
called the (h, h′)-reflection of A. (Note that for every f ∈ Σ, the declaration dec(f)
of fA and fB is reasonable in both A and B, because A and B are algebras.) We
say that B is a reflection of A if B is an (h, h′)-reflection of A for some reflection
(h, h′) of A into B.

For a class K of multisorted algebras of type τ , let RK, HK, SK and PK denote
the classes of all reflections, homomorphic images, subalgebras and products of
algebras of K, respectively.

Lemma 4.2 (cf. [2, Lemma 4.4]). Let K be a class of multisorted algebras of type
τ . Then the following statements hold.

(1) HK ⊆ RK and SK ⊆ RK.
(2) RRK ⊆ RK.
(3) PRK ⊆ RPK.

Proof. (1) Assume that B = (B,ΣB) ∈ HK. Then there exists an algebra A =
(A,ΣA) ∈ K such that B is a homomorphic image of A. Let ϕ be a homomorphism
of A to B, with each ϕs : As → Bs surjective. Then there exist mappings hs : Bs →
As such that ϕs ◦ hs = idBs . Then for each f ∈ Σ(w,s) with w = w1 . . . wn and for
all (b1, . . . , bn) ∈ Bw, we have

fB(b1, . . . , bn) = fB(ϕw1
(hw1

(b1)), . . . , ϕwn(hwn(bn)))

= ϕs(f
A(hw1

(b1), . . . , hwn(bn))).

We clearly have SB = SA because the homomorphism ϕ is surjective. Setting
h = (hs)s∈SB and h′ = (ϕs)s∈SB , we conclude that B is an (h, h′)-reflection of A.
Thus HK ⊆ RK.

Assume then that B = (B,ΣB) ∈ SK. Then there exists an algebra A =
(A,ΣA) ∈ K such that B is a subalgebra of A. Then clearly SB ⊆ SA. Let
h = (hs)s∈SB and h′ = (h′s)s∈SB where each hs : Bs → As is the inclusion map of
Bs into As and each h′s : As → Bs is an arbitrary extension of the identity map on
Bs. Then for each f ∈ Σ(w,s) with w = w1 . . . wn, and for all (b1, . . . , bn) ∈ Bw,

we clearly have fB(b1, . . . , bn) = h′s(f
A(hw1

(b1), . . . , hwn(bn)), so B is an (h, h′)-
reflection of A. Thus SK ⊆ RK.

(2) Assume that C ∈ RRK. Then there exist algebras B ∈ RK and A ∈ K
such that C is a reflection of B, witnessed by (h, h′) = ((hs)s∈SC , (h

′
s)s∈SC ) where

hs : Cs → Bs and h′s : Bs → Cs, and B is a reflection of A, witnessed by (k, k′) =
((ks)s∈SB , (k

′
s)s∈SB ) where ks : Bs → As and k′s : As → Bs. Then SC ⊆ SB ⊆ SA,

so we can define a reflection (`, `′) ofA into C using the SC-sorted maps ` = (`s)s∈SC
where each `s : Cs → As is given by `s := ks ◦ hs and `′ = (`′s)s∈SC where each
`′s : As → Cs is given by `′s := h′s ◦ k′s. Furthermore, for every f ∈ Σ(w,s) with
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w = w1 . . . wn, we have

fC(c1, . . . , cn) = h′s(f
B(hw1

(c1), . . . , hwn(cn)))

= h′s(k
′
s(f

A(kw1
(hw1

(c1)), . . . , kwn(hwn(cn)))))

= `′s(f
A(`w1

(c1), . . . , `wn(cn)))

for all (c1, . . . , cn) ∈ Cw. We conclude that C is a reflection of A. Thus RRK ⊆ RK.
(3) Assume that C ∈ PRK. Then C =

∏
γ∈Γ Bγ for some algebras Bγ =

(Bγ ,Σ
Bγ ), and each Bγ is a reflection of some Aγ = (Aγ ,Σ

Aγ ) ∈ K, witnessed by
((hγ,s)s∈SBγ , (h

′
γ,s)s∈SBγ ), where hγ,s : Bγ,s → Aγ,s, h

′
γ,s : Aγ,s → Bγ,s.

Observe that if Cs =
∏
γ∈ΓBγ,s 6= ∅, then Bγ,s 6= ∅ for every γ ∈ Γ. Therefore

SC ⊆ SBγ ⊆ SAγ for every γ ∈ Γ. Define the SC-sorted maps h = (hs)s∈SC and h′ =
(h′s)s∈SC , where hs :

∏
γ∈ΓBγ,s →

∏
γ∈ΓAγ,s and h′s :

∏
γ∈ΓAγ,s →

∏
γ∈ΓBγ,s are

defined componentwise in terms of the hγ,s and h′γ,s as hs((bγ)γ∈Γ) = (hγ,s(bγ))γ∈Γ

and h′s((aγ)γ∈Γ) = (h′γ,s(aγ))γ∈Γ. Then, for every operation f ∈ Σ(w,s) with w =
w1 . . . wn and for all tuples ((b1,γ)γ∈Γ, . . . , (bn,γ)γ∈Γ) ∈ (

∏
γ∈ΓBγ)w, we have

f
∏

Bγ ((b1,γ)γ∈Γ, . . . , (bn,γ)γ∈Γ) = (fBγ (b1,γ , . . . , bn,γ))γ∈Γ

= (h′γ,s(f
Aγ (hγ,w1

(b1,γ), . . . , hγ,wn(bn,γ))))γ∈Γ

= h′s((f
Aγ (hγ,w1

(b1,γ), . . . , hγ,wn(bn,γ)))γ∈Γ)

= h′s(f
∏

Aγ ((hγ,w1
(b1,γ))γ∈Γ, . . . , (hγ,wn(bn,γ))γ∈Γ))

= h′s(f
∏

Aγ (hw1((b1,γ)γ∈Γ), . . . , hwn((bn,γ)γ∈Γ))).

This shows that the algebra C =
∏
γ∈Γ Bγ is the (h, h′)-reflection of the product∏

γ∈Γ Aγ . Thus C ∈ RPK, so PRK ⊆ RPK. �

Remark 4.3. Note that the converse of the inclusion of Lemma 4.2(3), namely
RPK ⊆ PRK, does not hold in general. For example, take K := ∅. Then P∅ =
{
∏
∅}. Since for any S-sorted set A = (As)s∈S , an algebra with carrier A can be

obtained as a reflection of
∏
∅ (the proof of this assertion is essentially included in

the proof of Theorem 6.3, implication (1) =⇒ (3)), it follows that RPK contains
algebras with arbitrary carrier sets. On the other hand, R∅ = ∅, whence PR∅ =
{
∏
∅}. Thus RP∅ * PR∅.

In order to give also a nonempty counterexample, let A = ({0, 1}; fA) and
B = ({a, b, c}; fB) where fA and fB are the identity functions on the corresponding
sets. We define maps h and h′ as follows:

h : B → A2, a 7→ (0, 0), b 7→ (0, 1), c 7→ (1, 0);

h′ : A2 → B, (0, 0) 7→ a, (0, 1) 7→ b, (1, 0) 7→ c, (1, 1) 7→ c.

Then B is the (h, h′)-reflection of A2, hence B ∈ RP{A}. On the other hand, if B
were in PR{A}, then B would be a reflection of A, since, having a prime number
of elements, it cannot be a proper product. However, B cannot be a reflection of
A, because the range of fB is larger than the range of fA. We can conclude that
B /∈ PR{A}, thus RP{A} * PR{A}.

The following proposition shows that it would, in principle, be sufficient to con-
sider multisorted algebras with carriers in which the same set is associated to every
essential sort (i.e., As = At for all s, t ∈ SA). Every S-sorted algebra is reflection-
equivalent to such an algebra with a single carrier set. This comes, however, at the
cost of the carrier sets becoming possibly much larger than in the given algebra.
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Proposition 4.4. Let A = (A,ΣA) be an algebra of type τ = (S,Σ,dec). Then
there exists an algebra B = (B,ΣB) of type τ such that SA = SB, Bi = Bj for all
i, j ∈ SB, and A and B are reflections of each other.

Proof. Let C be a set of cardinality greater than or equal to the cardinality of each
of the sets Ai, i ∈ S (for example, we may choose C :=

⋃
i∈S Ai). For i ∈ S, let

Bi := C if i ∈ SA and let Bi := ∅ if i /∈ SA. Then clearly SA = SB . For each
i ∈ SA, let h′i : Ai → C be an injection, and let hi : C → Ai be a pseudoinverse
of h′i, i.e., a map such that hi(h

′
i(a)) = a for all a ∈ Ai. Such maps h′i and hi

exist because |Ai| ≤ |C|. Let h := (hs)s∈SB , h′ := (h′s)s∈SB . Let B := (B,ΣB),
with fB := (fA)(h,h′) for each f ∈ Σ (for notation, see Definition 4.1). Then B
is an (h, h′)-reflection of A by definition. Furthermore, for each f ∈ Σ, say, of
declaration (w1 . . . wn, s), it holds that

(fB)(h′,h)(a1, . . . , an) = hs(h
′
s(f

A(hw1
(h′w1

(a1)), . . . , hwn(h′wn(an)))))

= fA(a1, . . . , an),

that is, fA = (fB)(h′,h) for every f ∈ Σ. In other words, A is an (h′, h)-reflection
of B. �

5. The Galois connection mId–Mod

It is known from the classical Birkhoff theorem for (multisorted) algebras that
HSP-closed classes are equational classes. By Lemma 4.2, RP-closed classes are also
HSP-closed and therefore must be characterizable by identities. In this section we
prove that the “right” kind of identities for this setting are the minor identities:
Mod mIdK = RPK for every class K ⊆ Alg(τ) of multisorted algebras. For the
proof we need the following technical lemma, which essentially states that (under
some reasonable assumptions) the validity of an identity does not change if we
rename the variables and extend the set of variables.

For a term t, denote by var(t) the S-sorted set of variables occurring in t, i.e.,
var(t) = (vs)s∈S where vs is the set of variables of sort s occurring in t.

Lemma 5.1. Let τ = (S,Σ,dec) be a multisorted similarity type, and let Y be an
S-sorted set of variables. Let µ := t1 ≈S′ t2 ∈ MIDs

τ (Y ), and assume that S′ ⊆ SY .
Let Y ′ := var(t1)∪ var(t2). Let Z be an S-sorted set of variables such that S′ ⊆ SZ
and there exists an injective S-sorted map δ : Y ′ → Z. Let t′1 and t′2 be terms in
MT s

τ (Z) that are obtained from t1 and t2, respectively, by replacing each occurrence
of a variable symbol y ∈ Y ′ by δ(y), and let µ′ := t′1 ≈S′ t′2 ∈ MIDs

τ (Z). Then for
every algebra A = (A,ΣA) of type τ , it holds that A |= µ if and only if A |= µ′.

Proof. Assume first that A |= t1 ≈S′ t2. We want to show that A |= t′1 ≈S′ t′2.
If S′ * SA, then A |= t′1 ≈S′ t′2 holds vacuously (note that S′ ⊆ SZ), so we may
assume that S′ ⊆ SA. Let β : Z|S′ → A be a valuation map, and define γ : Y |S′ → A
by the rule

γs(x) =

{
βs(δs(x)), if x ∈ Y ′s
as, if x ∈ Ys \ Y ′s ,

where as is an arbitrary fixed element of As. It is clear that β#(t′1) = γ#(t1) and
β#(t′2) = γ#(t2). Since A |= t1 ≈S′ t2, we have γ#(t1) = γ#(t2). Consequently,
β#(t′1) = β#(t′2), and we conclude that A |= t′1 ≈S′ t′2.

The proof of the converse implication is very similar. Assume that A |= t′1 ≈S′ t′2.
We want to show that A |= t1 ≈S′ t2. We may assume that S′ ⊆ SA, for otherwise
A |= t1 ≈S′ t2 holds vacuously (note that S′ ⊆ SY ). Let γ : Y |S′ → A be a
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valuation map, and define β : Z|S′ → A by the rule

βs(x) =

{
γ(y), if x = δs(y) for y ∈ Y ′s ,

as, otherwise,

where as is an arbitrary fixed element of As. Again, it is clear that β#(t′1) =
γ#(t1) and β#(t2) = γ#(t2). Since A |= t′1 ≈S′ t′2, we have β#(t′1) = β#(t′2).
Consequently, γ#(t1) = γ#(t2), and we conclude that A |= t1 ≈S′ t2. �

Theorem 5.2. Let K ⊆ Alg(τ). Then Mod mIdK = RPK.

Proof. For any set J of minor identities, the inclusion P(ModJ ) ⊆ ModJ holds
by the classical (multisorted) Birkhoff theorem. In order to show that R(ModJ ) ⊆
ModJ , let B ∈ R(ModJ ); then B is an (h, h′)-reflection of some A ∈ ModJ for
some h : B → A and h′ : A → B. We need to show that B |= fσ ≈S′ gπ for every
fσ ≈S′ gπ ∈ J . For every β : X|S′ → B, we have

β#(fσ) = fB(β ◦ σ) = h′(fA(h ◦ β ◦ σ)) = h′(fAσ (h ◦ β))

= h′(gAπ (h ◦ β)) = h′(gA(h ◦ β ◦ π)) = gB(β ◦ π) = β#(gπ),

where the fourth equality holds because A |= fσ ≈S′ gπ, whence fAσ (h ◦ β) =
(h ◦ β)#(fσ) = (h ◦ β)#(gπ) = gAπ (h ◦ β). We have proved the inclusion RPK ⊆
Mod mIdK.

It remains to show Mod mIdK ⊆ RPK. Assume that B = (B,ΣB) is an algebra
of type τ = (S,Σ,dec) satisfying every minor identity that holds in K. We want to
show that B ∈ RPK.

Let Y = (Ys)s∈S be the S-sorted set of variables with Ys := Bs × {s} for all
s ∈ S (i.e., we take the variable symbols to be the disjoint union of the sets Bs),
and let

N := {t1 ≈SY t2 ∈ MIDτ (Y ) | K 6|= t1 ≈SY t2}
be the set of minor identities over Y valuated on the set SY that do not hold in K.

We first consider the case N 6= ∅. Then for each ν ∈ N , say ν = fσ ≈SY gπ
with f ∈ Σ(w,s), σ : [n] → Y with |w| = n, g ∈ Σ(u,s), π : [m] → Y with |u| = m,

there exists a counterexample Aν = (Aν ,Σ
Aν ) ∈ K that does not satisfy ν. This

means that there exists a valuation map βν : Y |SY → Aν such that fAν (βν ◦ σ) 6=
gAν (βν ◦ π); hence SY ⊆ SAν . Now let P :=

∏
ν∈N Aν be the product of all

the counterexamples. Then P = (P,ΣP) and SP =
⋂
ν∈N SAν ⊇ SY . Note that

P ∈ PK.
For every y ∈ Ys with s ∈ SY , the tuple y := (βν(y))ν∈N is an element of Ps. Let

h = (hs)s∈SY where each hs : Bs → Ps is the map b 7→ (b, s) (note that (b, s) ∈ Ys).
For each s ∈ SY , let Zs := {fP(y1, . . . , yn) | f ∈ Σ(w,s), (y1, . . . , yn) ∈ Yw} ⊆ Ps.
Now we shall define maps h′s : Ps → Bs, for s ∈ SB and we set h′ = (h′s)s∈SB such
that B is an (h, h′)-reflection of P. For any z ∈ Ps \ Zs, the value h′s(z) can be
chosen arbitrarily in Bs. For an element fP(y1, . . . , yn) ∈ Zs, where yi := (bi, wi)
with bi ∈ Bwi (i = 1, . . . , n), define h′s(f

P(y1, . . . , yn)) := fB(b1, . . . , bn) according
to the reflection property (cf. Definition 4.1).

We have to verify that h′s is well defined. Suppose, to the contrary, that
fP(y1, . . . , yn) = gP(z1, . . . , zm) but fB(b1, . . . , bn) 6= gB(c1, . . . , cm) for some
f ∈ Σ(w,s), g ∈ Σ(u,s), (y1, . . . , yn) ∈ Pw, (z1, . . . , zm) ∈ Pu, where yi := (bi, wi) for
bi ∈ Bwi (i = 1, . . . , n) and zi := (ci, ui) for ci ∈ Bui (i = 1, . . . ,m). From the latter
it follows that B does not satisfy the minor identity µ := fσ ≈SY gπ ∈ MIDs

τ (Y ),
where σ : [n]→ Y , i 7→ yi and π : [m]→ Y , i 7→ zi. Write Y ′ := var(fσ) ∪ var(gπ),
and let δ : Y ′ → X be an injective map to the set X of standard variables.
Let µ′ := f ′σ ≈SY g′π ∈ MIDs

τ (X), where f ′σ and g′π are the minor terms in
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MT s
τ (X) that are obtained from fσ and gπ by replacing each occurrence of a

variable symbol y ∈ Y ′ by δ(y). Since B 6|= µ, it follows from Lemma 5.1
that B 6|= µ′. Since B ∈ Mod mIdK, this implies K 6|= µ′, whence K 6|= µ by
Lemma 5.1. Therefore µ ∈ N . Then, by the definition of Aµ and βµ, we have
fAµ(βµ(y1), . . . βµ(yn)) 6= gAµ(βµ(z1), . . . , βµ(zm)). This means that the µ-th coor-
dinates of the tuples fP(y1, . . . , yn) and gP(z1, . . . , zm) are different, contradicting
our assumption. We conclude that B ∈ RP ⊆ RPK.

Finally, we must consider the case N = ∅, i.e., K satisfies every minor identity
fσ ≈SY gπ where fσ, gπ ∈ MT s

τ (Y ) for some s ∈ S. Let f ∈ Σ(w,s), g ∈ Σ(u,s),
(a1, . . . , an) ∈ Bw, (b1, . . . , bm) ∈ Bu, and define σ : [n] → Y , σ(i) = (ai, wi) and
π : [m] → Y , π(i) = (bi, ui). Let β : Y |SY → B, β((x, s)) = x. Since B |= fσ ≈SY
gπ, we have β#(fσ) = β#(gπ). Therefore,

fB(a1, . . . , an) = fB(β ◦ σ) = β#(fσ) = β#(gπ) = gB(β ◦ π) = gB(b1, . . . , bn).

Since the choice of f , g and the ai and bi was arbitrary, it follows that there exist
constants cs ∈ Bs (s ∈ SB) such that every function fB of sort s is constant cs.
Let D = (D,ΣD) :=

∏
∅ be the empty product of algebras in K. Then D ∈ PK.

As noted in Definition 2.12, Ds equals the singleton {∅} for every s ∈ S. Define
h = (hs)s∈SB and h′ = (h′s)s∈SB where hs : Bs → Ds, b 7→ ∅ for all b ∈ Bs and
h′s : Ds → Bs, ∅ 7→ cs. Then for each f ∈ Σ(w,s) with w = w1 . . . wn, we have

fB(a1, . . . , an) = cs = h′s(f
D(hw1(a1), . . . , hwn(an))). Therefore B is an (h, h′)-

reflection of D. Thus B ∈ RPK. �

Theorem 5.2 characterizes the closed classes of algebras corresponding to the
Galois connection mId–Mod as the classes that are closed under reflections and
direct products. Next we describe the Galois closed classes of minor identities in
terms of closure conditions, which are analogous to the classical characterization
of equational theories as fully invariant congruences of free algebras. In order to
state the result, we make use of the canonical trivial algebra S of type τ defined
in Example 2.13(2). Recall also Lemma 2.14 and the notational shorthand 〈S′〉S
involving subalgebras of S introduced in the paragraph preceding Lemma 2.14.

Theorem 5.3. Let J ⊆ MIDτ (X) be a set of minor identities of type τ =
(S,Σ,dec) over X. Then J = mId ModJ if and only if J satisfies the follow-
ing conditions:

(1) For every S′ ⊆ S and s ∈ S, the set

J (S′)
s := {(fσ, gπ) | fσ ≈S′ gπ ∈ J , sort(f) = sort(g) = s}

is an equivalence relation on MT s
τ (X|S′).

(2) If t1 ≈S′ t2 ∈ J and S′ ⊆ S′′, then t1 ≈S′′ t2 ∈ J (“sort expansion”).
(3) If t1 ≈S′ t2 ∈ MIDτ (X) and t1 ≈〈S′〉S t2 ∈ J , then t1 ≈S′ t2 ∈ J (“sort

contraction”).
(4) If fσ ≈S′ gπ ∈ J , then fλ◦σ ≈S′ gλ◦π ∈ J for all λ : X|S′ → X|S′ (“closure

under minors”).

Proof. We will prove the equivalent statement that a set J ⊆ MIDτ (X) of minor
identities is of the form J = mIdK for some set K ⊆ Alg(τ) of algebras if and only
if J satisfies conditions (1)–(4).

Assume first that J = mIdK for some K ⊆ Alg(τ). It is easy to verify that
condition (1) holds. Condition (2) holds by Lemma 3.4.

Let t1 ≈S′ t2 ∈ MIDτ (X) and assume that t1 ≈〈S′〉S t2 ∈ J . Suppose, to the

contrary, that t1 ≈S′ t2 /∈ J . Then there exists an algebra A = (A,ΣA) ∈ K such
that A 6|= t1 ≈S′ t2, i.e., there exists a valuation β : X|S′ → A such that β#(t1) 6=
β#(t2). This is possible only if S′ ⊆ SA, which implies 〈S′〉S ⊆ 〈SA〉S = SA by
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Lemma 2.14. Consequently, there exist maps X|〈S′〉S → A, and for any extension

γ : X|〈S′〉S → A of β, it holds that γ#(t1) = β#(t1) 6= β#(t2) = γ#(t2). Therefore
A 6|= t1 ≈〈S′〉S t2, so t1 ≈〈S′〉S t2 /∈ J , a contradiction. We conclude that condition
(3) holds.

Let then (fσ, gπ) ∈ J (S′)
s and λ : X|S′ → X|S′ . Then for every valuation map

β : X|S′ → A, we have β#(fλ◦σ) = f(β ◦ λ ◦ σ) = (β ◦ λ)#(fσ) = (β ◦ λ)#(gπ) =

g(β ◦ λ ◦ π) = β#(gλ◦π). Consequently, (fλ◦σ, gλ◦π) ∈ J (S′)
s , that is, condition (4)

holds.
For the converse implication, assume that J satisfies conditions (1)–(4). For

each δ = fσ ≈S′ gπ ∈ MIDτ (X) \J , we will construct an algebra Fδ ∈ Alg(τ) such
that Fδ |= J but Fδ 6|= δ. Taking K to be the set of all such “separating” algebras
Fδ, for every δ ∈ MIDτ (X) \ J , we have J = mIdK.

Let δ = fσ ≈S′ gπ ∈ MIDτ (X) \ J . Let S′′ := 〈S′〉S. Define the algebra
Fδ = (F,ΣFδ) of type τ as follows. Let q := sort(f) = sort(g). For s ∈ S, let

Fs :=


∅, if s ∈ S \ S′′,
Xs, if s ∈ S′′ \ {q},
Xq ∪MT q

τ (X|S′′)/J (S′′)
q , if s = q.

Note that the quotient MT q
τ (X|S′′)/J (S′′)

q appearing in the definition of Fq is a

well-defined object, because J (S′′)
q is an equivalence relation on MT q

τ (X|S′′) by

condition (1). We will denote the J (S′′)
q -equivalence class of a term t ∈ MT q

τ (X|S′′)
by [t]. For d ∈ Σ(w,s), the operation dFδ : Fw → Fs is defined by the following rules

(for notation, see Definition 2.7). If inp(d) * S′′, then dFδ = ∅. If inp(d) ⊆ S′′

and s 6= q, then dFδ(α) = xs1 for all α ∈ Fw. If inp(d) ⊆ S′′ and s = q, then
dFδ(α) = [dϕ◦α], where ϕ : F → X is given by xsi 7→ xsi for any xsi ∈ X|S′′ and

[t] 7→ xq1 for any [t] ∈ MT q
τ (X|S′′)/J (S′′)

q . Note that SF = S′′ = 〈S′〉S, from which
it follows by Lemma 2.14 that the declaration of every d ∈ Σ is reasonable in F , so
the algebra Fδ is well defined.

We show first that Fδ 6|= δ. Let β : X|S′ → F be the inclusion map x 7→ x. Then
β#(fσ) = fFδ(β ◦ σ) = [fϕ◦β◦σ] = [fσ] and β#(gπ) = gFδ(β ◦ π) = [gϕ◦β◦π] = [gπ].
Since fσ ≈S′′ gπ /∈ J by condition (3), we have [fσ] 6= [gπ], and we conclude that
Fδ 6|= δ.

Finally we show that Fδ |= J . Let dρ ≈T d′ρ′ ∈ J . If sort(d) 6= q, then Fδ
obviously satisfies the identity dρ ≈T d′ρ′ . Assume that sort(d) = sort(d′) = q. If

T * S′′ = SF , then Fδ |= dρ ≈T d′ρ′ holds vacuously. Thus we may assume that

T ⊆ S′′. Let β : X|T → F . By condition (2) we have dρ ≈S′′ d′ρ′ ∈ J , and by

condition (4) we have dϕ◦β◦ρ ≈S′′ d′ϕ◦β◦ρ′ ∈ J . Then

β#(dρ) = dFδ(β ◦ ρ) = [dϕ◦β◦ρ] = [d′ϕ◦β◦ρ′ ] = d′Fδ(β ◦ ρ′) = β#(d′ρ′).

Thus Fδ satisfies dρ ≈T d′ρ′ . We conclude that Fδ |= J . �

Remark 5.4. Theorem 5.2 was proved in the case of usual one-sorted algebras by
Barto, Opršal and Pinsker [2, Corollary 5.4]. As for Theorem 5.3, sort expansion
and sort contraction play no role when |S| = 1, and the theorem reduces to the
description of closed sets of minor identities given by Čupona and Markovski [5,
Theorem 2.1].

6. How are HSP and RP related?

It is clear from Lemma 4.2 that every RP-closed class is also HSP-closed. The
converse is not true, and we would like to describe which HSP-closed classes are not
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RP-closed. For similarity types of a special form that does not admit compositions
of terms, we can provide a complete description: the HSP-closed classes that are
not RP-closed are somewhat “trivial” in this case. For arbitrary similarity types, a
characterization eludes us.

Definition 6.1. A multisorted similarity type τ = (S,Σ,dec) is non-composable if
S can be partitioned into two subsets I and O such that for every f ∈ Σ, it holds
that inp(f) ⊆ I and sort(f) ∈ O. A type is composable if it is not non-composable.

Examples of non-composable similarity types include all types of 2-algebras, as
introduced in Example 2.13(5).

Definition 6.2. The height of a term t, denoted by h(t), is defined inductively as
follows:

(1) Variable symbols have height 0, i.e., h(x) = 0 for all x ∈ Ys, s ∈ S.
(2) If t = f , where f ∈ Σ and dec(f) = (ε, s) (constant), then h(t) = 1.
(3) If t = f(t1, . . . , tn), where f ∈ Σ, dec(f) = (w1 . . . wn, s), n ≥ 1, and

t1, . . . , tn are terms, then h(t) = max(h(t1), . . . , h(tn)) + 1.

Theorem 6.3. Let τ = (S,Σ,dec) be a non-composable similarity type, and let
K ⊆ Alg(τ) be an HSP-closed class of algebras. Then the following are equivalent.

(1) K is R-closed.
(2) For all s ∈ S, K 6|= xs1 ≈S xs2.
(3) For all s ∈ S, there exists A ∈ K such that SA = S and |As| ≥ 2.

Proof. (1) =⇒ (3) Assume that K is R-closed. Since HSPK = K, we have P =
(P,ΣP) :=

∏
∅ ∈ K. Let A = (As)s∈S be an S-sorted set with |As| ≥ 2 for all

s ∈ S, let h : A → P , h′ : P → A be arbitrary maps, and let A be the (h, h′)-
reflection of P; hence A ∈ RK ⊆ K. The required condition is then satisfied by A
for every s ∈ S.

(3) =⇒ (2) An algebra A = (A,ΣA) with SA = S and |As| ≥ 2 clearly does not
satisfy the identity xs1 ≈S xs2. Since K contains such an algebra for every s ∈ S, it
follows that K 6|= xs1 ≈S xs2 for all s ∈ S.

(2) =⇒ (1) Assume that K 6|= xs1 ≈S xs2 for all s ∈ S. Let J := IdK; since
K is HSP-closed, we have K = ModJ . We need to show that every identity in
J is satisfied by all reflections of every algebra in K. Let µ := t1 ≈S′ t2 ∈ J . If
t1 = t2, then µ is satisfied by every algebra in Alg(τ). Therefore we may assume
that t1 6= t2. Since τ is non-composable, the terms t1 and t2 have height at most 1.
Consider the different possibilities. If h(t1) = h(t2) = 0, then µ = xsi ≈S′ xsj with
i 6= j. It is clear that then K |= xs1 ≈S′ xs2, from which it follows by Lemma 3.4
that K |= xs1 ≈S xs2. This contradicts our assumption and shows that this case is
impossible. If h(t1) = h(t2) = 1, then µ is a minor identity, and RK |= µ holds
by Theorem 5.2. Finally, if h(t1) 6= h(t2), say h(t1) = 1 and h(t2) = 0, then
µ = fσ ≈S′ xsi for some f ∈ Σ(w,s). Note that s /∈ inp(f), because τ is non-
composable. Then in fact fσ ≈S′ xsj ∈ J for every j ∈ N. By symmetry and
transitivity, we get xs1 ≈S′ xs2 ∈ J . As above, this leads to a contradiction and
shows that this last case is impossible. We conclude that RK ⊆ K. �

Remark 6.4. Note that the proofs of the implications (1) =⇒ (3) =⇒ (2) of
Theorem 6.3 did not rely on the assumption that τ is non-composable, and it is
also easy to see that (2) and (3) are actually equivalent for every type τ (whether
it is composable or not). Hence the crucial part is (3) =⇒ (1) (or, equivalently,
(2) =⇒ (1)), and we will prove in the next proposition that this implication actually
characterizes non-composable types.
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Proposition 6.5. Let τ be a similarity type. If for every HSP-closed class K ⊆
Alg(τ), the conditions (1)–(3) of Theorem 6.3 are equivalent, then τ is non-com-
posable.

Proof. We prove the contrapositive. Assume that τ is composable. Then there exist
w = w1 . . . wn, u = u1 . . . um ∈ W (S), s ∈ S and i ∈ [n] such that Σ(w,s) 6= ∅ and
Σ(u,wi) 6= ∅. Without loss of generality, we may assume that i = 1. Let f ∈ Σ(w,s)

and g ∈ Σ(u,w1), let S′ := inp(f) ∪ inp(g), and let

µ := f(g(y1, . . . , ym), z2, . . . , zn) ≈S′ f(g(y′1, . . . , y
′
m), z′2, . . . , z

′
n),

where y1, . . . , ym, z2, . . . , zn, y
′
1, . . . , y

′
m, z

′
2, . . . , z

′
n are pairwise distinct variables with

yi, y
′
i ∈ Xui , zi, z

′
i ∈ Xwi , and let K := Modµ.

Define an S-sorted algebra A = (A,ΣA) of type τ as follows. The carrier is A =
(As)s∈S with As := {0, 1, 2} for all s ∈ S. Define fA : Aw → As and gA : Au → Aw1

by the rules

fA(a1, . . . , an) := ψ(a1), where ψ: 0 7→ 0, 1 7→ 0, 2 7→ 2,

gA(a1, . . . , am) := ϕ(a1), where ϕ: 0 7→ 0, 1 7→ 1, 2 7→ 0.

The other operations in ΣA can be defined in an arbitrary way. Since Im g = {0, 1},
we have

fA(gA(a1, . . . , am), c2, . . . , cn) = ψ(gA(a1, . . . , am)) = 0

for all a1, . . . , am, c2, . . . , cn ∈ {0, 1, 2}. Hence A |= µ, i.e., A ∈ K. Thus condition
(3) of Theorem 6.3 is satisfied with A for every s ∈ S.

Let B := A, i.e., Bs := As = {0, 1, 2} (s ∈ S). Let B = (B,ΣB) be the (h, h′)-
reflection of A with hs : Bs → As, 0 7→ 2, 1 7→ 1, 2 7→ 0 and h′s : As → Bs, x 7→ x.
Then

fB(b1, . . . , bn) = h′(fA(h(b1), . . . , h(bn))) = ψ(h(b1)) =


2, if b1 = 0,

0, if b1 = 1,

0, if b1 = 2,

gB(b1, . . . , bm) = h′(gA(h(b1), . . . , h(bm))) = ϕ(h(b1)) =


0, if b1 = 0,

1, if b1 = 1,

0, if b1 = 2.

Consequently,

fB(gB(b1, . . . , bm), c2, . . . , cn) = ψ(h(ϕ(h(b1)))) =


2, if b1 = 0,

0, if b1 = 1,

2, if b1 = 2.

Hence fB(gB(b1, . . . , bm), c2, . . . , cn) 6= fB(gB(b′1, . . . , b
′
m), c′2, . . . , c

′
n) if b1 = 0 and

b′1 = 1. Therefore B 6|= µ, i.e., B /∈ K, so K is not R-closed, that is, condition (1)
of Theorem 6.3 does not hold. We conclude that conditions (1)–(3) of Theorem 6.3
are not equivalent for K. �

Remark 6.6. According to Theorem 6.3, the only HSP-varieties of a non-compos-
able type τ that are not RP-varieties are the ones satisfying an identity of the form
xs1 ≈S xs2 for some s ∈ S. Using identities of this form, we can express the fact
that a sort s is trivial in an algebra A = (A,ΣA), in the sense that As is empty or
a singleton.



18 E. LEHTONEN, R. PÖSCHEL, AND T. WALDHAUSER

References
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