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ON STRONG AFFINE REPRESENTATIONS OF THE

POLYCYCLIC MONOIDS

MIKLÓS HARTMANN AND TAMÁS WALDHAUSER

Abstract. Jones and Lawson have discovered in [16] that certain representa-

tions of the so-called polycyclic monoids are closely related to some permutative
representations of the Cuntz algebras On studied by Bratteli and Jorgensen in [4].

We investigate these representations of the polycyclic monoids, and we generalize

some results from [16]. We give a (sharp) upper bound on the number of atoms
in case one of the parameters tends to infinity and present an infinite family of

representations having only one atom. Furthermore, by making use of a C++

program we present some observations regarding the number of atoms in the case
n = 3.

1. Introduction

Let d1, . . . , dn be a complete system of residues modulo n (i.e., integers that repre-
sent each residue class modulo n) and let fi : Z→ nZ+di, x 7→ nx+di. The union of
the inverse maps f−1i constitutes a transformation R : Z→ Z defined by R (x) = x−di

n ,
where di is the unique element of the set D = {d1, . . . , dn} such that x ≡ di (modn).
In this paper we investigate the set B∞ (D) of periodic points of R:

(1.1) B∞ (D) :=
{
x ∈ Z : R` (x) = x for some ` ∈ N

}
.

Determining the number and structure of periodic orbits of R is a highly nontrivial
problem, which is of interest on its own, and it is also connected to the study of
representations of the polycyclic monoids and of the Cuntz C∗-algebras as well as to
generalized radix representations and the corresponding “digit tilings” of Euclidean
spaces. We briefly describe these connections below, but in the rest of the paper we
refer only to the elementary setup outlined above, in order to make the paper more
accessible and self-contained.

1.1. Radix representations. Iterating the map R on a given integer x and recording
at each step the element of D that we used, we obtain a sequence a0, a1, . . . ∈ D such
that Ri (x) ≡ ai (modn) for every i ∈ N0. It is then straightforward to verify that x =
a0+na1+· · ·+nk−1ak−1+nkRk (x) for all k ∈ N. If x ≥ 0 and D = {0, 1, . . . , n− 1} is
the canonical residue system modulo n, then Rk (x) = 0 for sufficiently large k, hence
we get x = a0 + na1 + · · · + nk−1ak−1, which is just the usual base-n representation
of x. For other choices of D and x, we may not have a finite representation, but we
can still regard the formal infinite sum x = a0 + na1 + · · · + nk−1ak−1 + . . . as a
generalized n-ary representation of x corresponding to the digit set D. It turns out
that the sequence of digits a0, a1, . . . is always ultimately periodic, and then one can
interpret the infinite radix representation as a geometric series (see Remark 2.10).

Several authors have studied similar, and even more general radix representations:
Kátai and Szabó [18] considered number systems for Gaussian integers; Gilbert gen-
eralized their results to quadratic number fields [11] and also investigated radix rep-
resentations in arbitrary algebraic number fields [10]. Another widely investigated
generalization concerns base-N representations of elements of Zν , where N is a ν × ν
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expanding integer matrix (i.e., every eigenvalue of N has absolute value greater than
one) and the set D of “digits” is a system of representatives of the cosets correspond-
ing to the subgroup NZν of Zν . We refer the reader to the survey paper by Vince [30]
and the references therein for more information on this topic.

1.2. Fractals, tilings and wavelets. Radix representations are closely related to
tilings and self-affine sets, which in turn have applications in the theory of wavelets.
First, let us consider once more the standard n-ary number system with digit set
D = {0, 1, . . . , n− 1}, this time considering x ∈ R instead of x ∈ Z. If x ≥ 0, then x
has a (possibly infinite and possibly not unique) base-n expansion x = nkak + · · · +
a0 +n−1a−1 + . . . with ai ∈ D. Numbers having no digits to the left of the “decimal”
point (i.e., ai = 0 for all i ≥ 0) form the interval [0, 1], whereas numbers with no digits
to the right of the “decimal” point (i.e., ai = 0 for all i < 0) constitute the set N0 of
nonnegative integers. The subgroup of R generated by N0 is the lattice Z, and it is
clear that R is the union of translates of [0, 1] by elements of Z; moreover, any two of
these translated intervals intersect only in a set of measure zero (in fact, in at most
one point), i.e., [0; 1] tiles R.

Now if D = {d1, . . . , dn} is an arbitrary complete system of residues modulo n,
then the interval [0, 1] shall be replaced by the set

(1.2) T (D) :=

{ ∞∑
i=1

n−iai : ai ∈ D
}
.

(This set depends on D as well as on n, but n shall always be clear from the con-
text, and we will sometimes also omit D from the notation when there is no risk of
ambiguity.) Note that T is a self-affine set (a union of smaller copies of itself):

T =
d1
n

+
1

n
· T ∪ · · · ∪ dn

n
+

1

n
· T.

Bandt [2] proved that T is a compact set with nonempty interior, and Lagarias and
Wang [24] showed that the boundary of T has measure zero. This implies that T is Jor-
dan measurable, and Gröchening and Haas [13] determined its (Jordan or Lebesgue)
measure:

(1.3) µ (T) = gcd {di − dj : 1 ≤ i, j ≤ n} .

Again, T yields a tiling of R (hence the notation T), but this time we need to use
translates by the lattice µ (T) · Z (translates by Z would give a µ (T)-fold covering of
R) [13, 22, 24].

Similar tiling phenomena occur in the ν-dimensional case outlined in the previous
subsection (see, e.g., [23, 22, 24, 30]); in this case we do not have a simple formula for
the measure of the corresponding tile T, but Bondarenko and Kravchenko provided
an algorithm to compute µ (T) [3]. The tile T is again a self-affine set, often with a
fractal structure, and its topological and geometrical properties have been studied by
many authors [1, 2, 8, 14, 20]. Gröchenig and Madych [12] established a one-to-one
correspondence between certain wavelet bases of L2 (Rν) and tiles T of Rν of measure
one. Further results relating tilings and wavelets can be found in [7, 21].

1.3. Operator algebras. The Cuntz C∗-algebra On is the C∗-algebra generated by
n pairwise orthogonal isometries on a Hilbert space. More precisely, let H be an
infinite-dimensional separable Hilbert space, and let Si (i = 1, . . . , n) be bounded lin-
ear operators on H such that S∗i Si = I for every i and S1S

∗
1 + · · · + SnS

∗
n = I.

This implies that S∗i Sj = 0 whenever i 6= j, and Cuntz [5] has proven that the C∗-
algebra On generated by S1, . . . , Sn is (up to isomorphism) independent of the choice
of these isometries – hence the definite article in the first sentence of this paragraph.
The so-called permutative representations of On are defined by Siej = efi(j), where
{ej : j ∈ Z} is an orthonormal basis of H. Thus, in this case the isometries Si permute
the elements of the orthonormal basis. These operators satisfy the defining relations
of On if and only if each fi is injective and their ranges form a partition of Z. In
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particular, the maps fi (x) = nx+ di (i = 1, . . . , n) yield permutative representations
of On when d1, . . . , dn be a complete system of residues modulo n. Bratteli and Jor-
gensen [4] have studied such representations and their relationship to the dynamics of
the map R and to the structure of the tile T, also in the ν-dimensional case mentioned
in Subsection 1.1 (we borrow some notation from this paper, in particular, the symbol
B∞ for the set of periodic points). Let us recall a proposition from [4] that will play
a crucial rule in Section 6.

Proposition 1.1 ([4]). If D is a complete system of residues modulo n, then the
negatives of the integers in T (D) are exactly the periodic points of R: B∞ (D) =
−T (D) ∩ Z.

Jeong [15] generalized results of [4] about irreducible subrepresentations of permu-
tative representations and obtained an upper bound for the number of periodic points
as well as a sufficient condition for R to have only one periodic point. Continued
fractions can be regarded as a “base-∞” number system, where the set of digits is N.
Kawamura, Hayashi and Lascu [19] adopted this point of view to explore a connection
between continued fractions and permutative representations of O∞; here quadratic
irrationals correspond to periodic points.

1.4. Semigroups. For each n ≥ 2 the polycyclic monoid Pn is defined as a monoid
with zero by the presentation

Pn = 〈a1, . . . , an, a−11 , . . . , a−1n : a−1i ai = 1 and a−1i aj = 0, i 6= j〉.

These monoids were introduced by Nivat and Perrot in [29] and have been rediscov-
ered by Cuntz [5], hence they are sometimes referred to as the Cuntz inverse semi-
groups. Besides the Cuntz algebras, the monoids Pn are also related to the Thompson
groups Vn,1 [25, 26] and pushdown automata [17]. The important role played by these
monoids within semigroup theory is underlined by a result of Meakin and Sapir [28]
showing that congruences of free monoids correspond to certain submonoids of poly-
cyclic monoids (this was generalized to right congruences in [27]), which allows one
to translate general questions about monoids to questions about submonoids of poly-
cyclic monoids.

A representation of Pn is a monoid homomorphism from Pn to a symmetric inverse
monoid, i.e., to the monoid of all partial bijections on a set X. All such representations
can be constructed in the following way. Let X be an infinite set and let X1, . . . , Xn, Y
be disjoint subsets of X such that their union is X and the subsets Xi have the same
cardinality as X. For every 1 ≤ i ≤ n, let fi : X → Xi be a bijection which we will
consider to be a partial bijection on X. In this case we can define a representation of
Pn by sending ai to fi and a−1i to f−1i . If Y = ∅ then we say that the representation
is strong [26]. Thus a strong representation can be given by the data (X; f1, . . . , fn),
which is called a branching function system [4]. The strong representations given by

(X; f1, . . . , fn) and
(
X̃; f̃1, . . . , f̃n

)
are equivalent if there is a bijection ϕ : X → X̃

such that fiϕ = ϕf̃i for i = 1, . . . , n.
Lawson [27] described representations of the polycyclic monoids in terms of strong

ones, hence it suffices to study strong representations. Affine representations consti-
tute an important class of strong representations. These are given by X = Zν and
fi (x) = Nx + di, where N is a nonsingular ν × ν matrix over Z and d1, . . . ,dn is a
system of representatives of the cosets corresponding to the subgroup NZν of Zν (cf.
Subsections 1.1 and 1.2). Here n = [Zν : NZν ] equals the determinant of N .

In this paper we consider only one-dimensional affine representations, i.e., the case
ν = 1. As we shall see, even this seemingly simple case raises highly nontrivial
problems, and we are still very far from a full understanding of the one-dimensional
strong affine representations of Pn. In the remainder of this section we review some
results from the literature that are specific to this one-dimensional case, and we briefly
and informally explain our contributions to this topic.
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1.5. Main results. The structure of the one-dimensional strong affine representation
of Pn corresponding to (Z; f1, . . . , fn) with fi (x) = nx+ di, where D = {d1, . . . , dn}
is a complete system of residues modulo n, is to a large extent determined by the set
B∞ (D) of periodic points (see Section 2 for more details). Bandt [2] already mentions
that R has only a finite number of periodic orbits and hints at the importance of
studying these orbits in connection with radix representations and tilings, and several
authors considered sporadic examples, mainly for n = 3 (see, e.g., [4, 12, 30]). Let
us also mention the recent paper by Dutkay and Haussermann [6] where the case
n = 4, D = {0,m} with m being an odd integer is analyzed. Clearly, here D is not
a complete system of residues modulo n (hence the map R is only partially defined),
but the periodic orbits of R still have interesting number-theoretic properties and they
have relevance to the harmonic analysis of a certain fractal measure.

Our work is motivated by the papers [4] and [16], which appear to contain the only
systematic studies of the periodic points, namely, for n = 2. In this case one can
assume without loss of generality that D = {0, p}, where p is an odd positive integer
(see Fact 2.2). Bratteli and Jorgensen [4] proved that B∞ (0, p) = {−p, . . . ,−1, 0} and
that the period of an arbitrary x ∈ B∞ (0, p) equals the order of 2 modulo p/ gcd (x, p).
It is well known (and a nice exercise in number theory) that this order is the same as
the period of the binary expansion of the fraction x/p. Jones and Lawson [16] showed
that this is not a coincidence: the structure of the cycle containing x is strongly
related to the digits in the binary expansion of x/p. Two other special cases are also
considered in [4], namely, B∞ (0, 1, . . . , n− 1) = {−1, 0} and B∞ (1, 3, 5) = {−2,−1}.

In all of the special cases mentioned above, d1, . . . , dn is an arithmetic sequence. In
Section 3 we generalize the results of [4, 16] by proving that the set B∞ (D) consists of
the integers in the interval I :=

[
− dn
n−1 ,−

d1
n−1

]
whenever d1, . . . , dn is an arithmetic

sequence (Theorem 3.1), and we also relate the structure of the cycle containing the

integer x ∈ B∞ (D) to the n-ary expansion of the fraction (n−1)x+d1
dn−d1 (Theorem 3.3).

It is easy to see that we have B∞ (D) ⊆ I for every D (Fact 2.4), hence we can
say that for arithmetic sequences the set of periodic points is as large as possible.
We show in Section 4 that we may have such a large set of periodic points even if
d1, . . . , dn is not an arithmetic sequence. We will characterize explicitly the sequences
satisfying B∞ (D) = I ∩ Z (Theorem 4.1), and we will see that these sequences are
in some sense not far from being arithmetic (Remark 4.2). In Section 6 we study the
asymptotic behaviour of the number of periodic points as one of the parameters, say

dn, tends to infinity, while d1, . . . , dn−1 are fixed. We prove that |B∞ (D)| = O
(
d
logn 2
n

)
(Theorem 6.4), and we also provide infinite series of examples showing that this upper
bound cannot be improved (Theorem 6.5). For a lower bound, we have the trivial
estimate |B∞ (D)| ≥ 1, and we will prove in Section 5 that in general one cannot have
a better lower bound, since it is possible to let dn tend to infinity in such a way that
the number of periodic points stays constant 1 (Theorem 5.1).

2. Preliminaries

We recall some facts from [4, 16, 27] that we shall need in the sequel; we present
these in terms of branching functions systems, which provide a combinatorial frame-
work for studying permutative representations of the Cuntz C∗-algebrasOn and strong
representations of the polycyclic monoids Pn, hence familiarity with the theory of op-
erator algebras or semigroups is not assumed.

A branching function system is a tuple (X; f1, . . . , fn), whereX is an infinite set and
fi : X → X (i = 1, . . . , n) are injective maps such that their ranges form a partition
of X. One can visualize a branching function system as a directed graph with colored
edges: the vertices are the elements of X, and an arrow of color i is drawn from x to
y if fi (x) = y; we shall frequently refer to this graph in the following. We say that
two branching function systems are equivalent if the corresponding colored graphs are
isomorphic (where the isomorphism is required to preserve colors); this corresponds
to the usual notion of equivalence of representations of semigroups.
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Figure 1. A part of the graph of the branching function system with
parameters (d1, d2, d3) = (0, 1, 53)

Observe that the definition of a branching function system requires that for every
vertex there are n outgoing edges (one of each of the n colors, leading to n different
vertices) and that there is exactly one incoming edge. These two properties imply that
there can be at most one cycle in every connected component of the graph and this
cycle must be directed. (By a cycle we mean a closed path, as usual in graph theory.
However, note that this terminology is different from that of [4, 16]; see Remark 2.1.)
It is straightforward to verify that if a connected component contains a cycle, then
the order of the colors appearing in the cycle determine that connected component up
to isomorphism. (See Figure 1; it shows only a finite part of the graph of a branching
function system with n = 3, but the missing parts are easy to imagine: an infinite
ternary tree is rooted at the vertices −54,−53, 50,−3, etc. The numbering of the
vertices will be explained later.) Let us note that cycle-free components can be more
complicated; however, for the special branching function systems that we consider in
this paper, each component contains a cycle (see Fact 2.4).

The inverses of the maps fi are partial bijections on X whose union is a surjective
map R : X → X, where R (x) is the unique element y ∈ X such that there exists i ∈
{1, . . . , n} with fi (y) = x. The branching function system (X; f1, . . . , fn) can also be
studied via the discrete dynamical system (X;R). The trajectory x,R (x) , R2 (x) , . . .
of a point x can be seen as a walk in the graph that starts from x and follows the
arrows backwards. Let σ (x) = (j0, j1, . . .) be the sequence of the colors of the edges in
this walk: x = fj0 (R (x)), R (x) = fj1

(
R2 (x)

)
, etc.; this defines the so-called coding

map σ : X → {1, . . . , n}N0 . We say that x is a periodic point if the trajectory of x is
periodic, i.e., if x is a fixed point of R` (x) for some ` ∈ N. If ` is the least positive
exponent such that R` (x) = x, then (and only then) x lies on a cycle of length `
in the graph. Following [4], we denote the set of periodic points by B∞. Using the
terminology of discrete dynamical systems, we shall say that a set A ⊆ X is positively
invariant if R (A) ⊆ A, and A is said to be absorbing if for every x ∈ X, the trajectory
of x lies eventually in A, i.e., we have

{
Rt (x) , Rt+1 (x) , . . .

}
⊆ A for some t ∈ N.

Remark 2.1. Let us define two equivalence relations ∼ and ≈ on X by x ∼ y ⇐⇒
∃s, t : Rs (x) = Rt (y) and x ≈ y ⇐⇒ ∃t : Rt (x) = Rt (y). In [4, 16] the main objects
of study are the blocks of ∼ and ≈, which were called there cycles and atoms, respec-
tively. Our terminology is different: we use the term cycle in the graph-theoretical
sense, and we refer to the blocks of ∼ as connected components. For branching func-
tion systems corresponding to one-dimensional affine representations of Pn, there is
a one-to-one correspondence between atoms and periodic points (see Scholium 3.9 of
[4] and Proposition 4.9 of [16]). Since we deal only with this case, we work with the
simpler concept of a periodic point instead of that of an atom.

Now let us turn to the special branching function systems mentioned in Subec-
tion 1.5. The notation that we introduce here will be used throughout the paper
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without further mention. Let n ≥ 2 be a positive integer, let D = {d1, . . . , dn} be
a complete system of residues modulo n, and let qi and ri denote the quotient and
the remainder of di, when divided by n, i.e., di = nqi + ri and 0 ≤ ri < n. Clearly,
we have {r1, . . . , rn} = {0, . . . , n− 1}. The functions fi (x) := nx + di (i = 1, . . . , n)
define a branching function system (Z; f1, . . . , fn), and the corresponding dynamical
system is (Z;R), where R (x) = x−di

n with di being the uniqe element of D such that
x ≡ di (modn). As an example, see Figure 1, which shows the graph of the branching
function system corresponding to n = 3 and (d1, d2, d3) = (0, 1, 53), where dotted,
dashed and solid arrows represent f1, f2 and f3, respectively. Iterations of R can be
seen in the figure by following the arrows backwards. For instance, the trajectory of
50 is 50,−1,−18,−6,−2,−1,−18,−6,−2, . . . and σ (50) = (3, 3, 1, 1, 2, 3, 1, 1, 2, . . .).

In the following we collect some basic facts about these branching function systems.
These results all appeared in [4, 16, 27]; for the reader’s convenience we restate and
reprove them. Unless otherwise mentioned, we will always assume that d1 < · · · < dn.

Fact 2.2. The following sequences give rise to equivalent branching function systems:

a) d1, . . . , dn;
b) −d1,−d2, . . . ,−dn;
c) d1 + k(n− 1), d2 + k(n− 1), . . . , dn + k(n− 1), for arbitrary k ∈ Z.

Proof. It is easy to check that the maps β : Z→ Z, x 7→ −x and γ : Z→ Z, x 7→ x− k
establish isomorphisms from the graph corresponding to a) to the graph corresponding
to b) and c), respectively. �

By this fact, one can always assume that the parameters d1 < · · · < dn are chosen
such that 0 ≤ d1 < n− 1. Let I denote the interval

[
− dn
n−1 ,−

d1
n−1

]
, let A (D) = I ∩Z

and let B∞ (D) be the set of periodic points, as defined in (1.1); sometimes we will
write simply A and B∞ whenever the parameters d1, . . . , dn are clear from the context.
(From Figure 1 we see that B∞ (0, 1, 53) = {−20,−18,−7,−6,−2,−1, 0} and we have
A (0, 1, 53) = {−26, . . . , 0}.)

Lemma 2.3. The set A is a finite positively invariant absorbing set.

Proof. Since d1 < · · · < dn, we have x−dn
n ≤ R (x) ≤ x−d1

n for every x ∈ Z. From
these inequalities one can deduce the following implications:

a) x <
−dn
n− 1

=⇒ x < R (x) <
−d1
n− 1

;

b)
−dn
n− 1

≤ x ≤ −d1
n− 1

=⇒ −dn
n− 1

≤ R (x) ≤ −d1
n− 1

;

c)
−d1
n− 1

< x =⇒ −dn
n− 1

< R (x) < x.

The second implication immediately yields that A is positively invariant. If x /∈ A
then either x < R (x) < R2 (x) < · · · < Rt (x) ∈ A or x > R (x) > R2 (x) > · · · >
Rt (x) ∈ A for some t ∈ N by a) or c) depending on whether x < − dn

n−1 or x > − d1
n−1 .

In both cases b) shows that the rest of the trajectory of x stays in A. �

Fact 2.4. The graph corresponding to the branching function system determined by D
has finitely many connected components, and each component contains a cycle. These
cycles are all contained in A (D), i.e., we have

B∞ (D) ⊆ A (D) .

The trajectory of every integer x ∈ Z is eventually periodic: there exist `, t ∈ N such
that Ri+` (x) = Ri (x) whenever i ≥ t.

Proof. For every x ∈ Z, the trajectory of x is finite, since Ri (x) belongs to the
finite set A for almost every i, by Lemma 2.3. This implies that every trajectory is
eventually periodic, hence each connected component contains a cycle. These cycles
are contained in A, thus there are finitely many cycles and finitely many connected
components. �
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According to Fact 2.4, B∞ is a nonempty set consisting of finitely many cycles,
and every trajectory eventually winds around one of these cycles. This implies that
the sequence σ (x) is also eventually periodic for every x ∈ Z. We show below how to
use these facts to see that σ (x) uniquely determines x, i.e., that the coding map is
injective. (Representations of On with an injective coding map are called multiplicity-
free representations in [4].)

Fact 2.5. Suppose that the trajectory of x becomes `-periodic after t terms, i.e.,
Rt+` (x) = Rt (x), and let σ (x) = (j0, j1, . . .). Then we have

(2.1) x = dj0 + ndj1 + · · ·+ nt−1djt−1
−
djtn

t + · · ·+ djt+`−1
nt+`−1

n` − 1
.

Proof. From the definition of R and σ one can deduce by induction on k that x =
dj0 +ndj1 + · · ·+nk−1djk−1

+nkRk (x) holds for all k ∈ N. Applying this formula for
k = t and k = t+ ` we obtain

x = dj0 + ndj1 + · · ·+ nt−1djt−1 + ntRt (x)

= dj0 + ndj1 + · · ·+ nt−1djt−1
+ ntdjt + · · ·+ nt+`−1djt+`−1

+ nt+`Rt+` (x) .

By our assumption we have Rt+` (x) = Rt (x), hence
(
1− n`

)
ntRt (x) = ntdjt + · · ·+

nt+`−1djt+`−1
follows, and this proves (2.1). �

If x ∈ B∞ lies on a cycle of length `, then the sequence σ (x) is `-periodic,
that is, σ (x) = (j0, . . . , j`−1, j0, . . . , j`−1, . . .), so we can describe it by a finite word
w = j0 · · · j`−1 over the alphabet {1, . . . , n}, which we will refer to as the word cor-
responding to x. This word can be read from the graph by recording the colors of
the edges on the cycle, starting from x and following the arrows backwards. Words
corresponding to periodic points on the same cycle are conjugates, i.e., they can be
obtained from each other by cyclic shifts. (For example, the words corresponding to
−1,−2,−6 and −18 on Figure 1 are 3112, 2311, 1231 and 1123, respectively.) Since
our branching function systems have finitely many connected components, each con-
taining a cycle (see Fact 2.4), their structure can be completely described by the words
corresponding to periodic points (or cycles). Therefore, exploring periodic points and
the corresponding words is essential in the study of representations of Pn and On.

If a word w is not the repetition of a shorter word, i.e., it cannot be written in the
form w = u · · ·u = uk (k ≥ 2), then w is said to be a primitive word. Observe that
every word is the power of a unique primitve word. The next corollary of Fact 2.5
states that the word corresponding to a periodic point is always primitive, and we also
get a characterization of those primitive words that correspond to a periodic point.
(Note that primitivity of the word corresponding to x means that the shortest period
of σ (x) is the same as he shortest period of the sequence x,R (x) , R2 (x) , . . .. In an
arbitrary branching function system it is possible that the former is a proper divisor
of the latter; however, this cannot happen for the special branching function systems
considered here.)

Corollary 2.6. A word w = j0 · · · j`−1 over {1, . . . , n} corresponds to some periodic
point if and only if w is primitive and

(2.2) x = −
dj`−1

n`−1 + · · ·+ dj1n+ dj0
n` − 1

is an integer. If this holds, then the integer x defined by (2.2) is a periodic point on
a cycle of length `, and w is the word corresponding to x.

Proof. First we prove the second statement: let us assume that w = j0 · · · j`−1 is a
primitive word such that the number given by (2.2) is an integer. Then x = dj0+dj1n+

· · ·+dj`−1
n`−1+n`x, which implies that R (x) =

x−dj0
n = dj1 +· · ·+dj`−1

n`−2+n`−1x,
since x ≡ dj0 (modn), and dj0 is the only element of D with this property. Continuing

this way we get R2 (x) =
R(x)−dj1

n = dj2 + · · · + dj`−1
n`−3 + n`−2x, etc., and after `

steps we obtain R` (x) = x. This means that x is indeed a periodic point; furthermore,
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if u is the word corresponding to x then w = uk with ` = km, where m denotes the
length of u (that is, the length of the cycle that contains x). Since w is a primitive
word, we must have k = 1, thus the length of the cycle containing x is ` and the word
corresponding to x is w.

The argument above proves not only the second statement of the corollary, but also
the “if” part of the first statement, thus it remains to prove the “only if” part. Let
w = j0 · · · j`−1 be the word corresponding to some periodic point y. We can apply
Fact 2.5 with t = 0 to obtain that the right hand side of the equality (2.2) equals
y, therefore it is an integer. Finally, we prove primitivity of w: let w = uk, where
u = j0 · · · jm is a primitive word and ` = km. Then we have ji = jimodm for every
i ∈ {0, . . . , `− 1}, and this allows us to rewrite the right hand side of (2.2) as follows:

x = −
(
djm−1n

m−1 + · · ·+ dj1n+ dj0
)
·
(
1 + nm + · · ·+ n(k−1)m

)
n` − 1

= −
(
djm−1

nm−1 + · · ·+ dj1n+ dj0
)
· n

km−1
nm−1

n` − 1
= −

djm−1
nm−1 + · · ·+ dj1n+ dj0

nm − 1
.

Applying the first paragraph of this proof to the primitive word u, we see that x
belongs to a cycle of length m (and the word corresponding to x is u). Consequently,
k = 1 and u = w, proving that w is indeed primitive. �

Remark 2.7. The proof of Corollary 2.6 shows that if the number x given by (2.2) is
an integer, then it is a periodic point even if the word w is not primitive. Moreover,
if w = uk, where u is a primitive word, then the word corresponding to x is u. Thus,
the periodic points are exactly the integers of the form

a`−1n
`−1 + · · ·+ a1n+ a0

1− n`
(` ∈ N, a0, . . . , a`−1 ∈ D) .

Two such expressions yield the same number if and only if the words describing the
coefficients a0, . . . , a`−1 are the powers of the same primitive word. In particular,
different expressions of the same length ` give different periodic points.

Fact 2.8. The words corresponding to periodic points on different cycles are not con-
jugate.

Proof. Let v and w be words corresponding to periodic points x and y that lie on
different cycles, and suppose that v and w are conjugates. Then there exists a point x′

on the same cycle as x such that the word corresponding to x′ is w. However, according
to Corollary 2.6, a periodic point is uniquely determined by the corresponding word
by (2.2). This implies that x′ = y, hence x and y belong to the same cycle, contrary
to our assumption. �

Summarizing the above facts, we can say that the structure of the branching func-
tion system corresponding to d1, . . . , dn is determined by a finite set of primitive words
over the alphabet {1, . . . , n}, each considered up to conjugacy. For the sake of canon-
icity, it is customary to choose the lexicographically least word from each conjugacy
class; these words are called Lyndon words. (The Lyndon words describing the three
cycles of Figure 1 are 1123, 23 and 1.) One possible approach to find these Lyndon
words is to follow the trajectories of the elements of A (D). Another possibility is to
determine all numbers of the form a`−1n

`−1 + · · · + a1n + a0 with a0, . . . , a`−1 ∈ D
that are divisible by n` − 1 (cf. Remark 2.7). Since A (D) is finite, both searches can
be completed in a finite number of steps (note that we must have ` ≤ |B∞| ≤ |A|).

Corollary 2.9. It is decidable whether two one-dimensional strong affine representa-
tions of Pn are equivalent.

Remark 2.10. Let σ (x) = (j0, j1, . . .) and let us write out the representations of x
considered in the proof of Fact 2.5 for k = 1, 2, 3, . . .:

x = dj0 + nR (x) = dj0 + ndj1 + n2R2 (x) = dj0 + ndj1 + n2dj2 + n3R3 (x) = · · · .
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It would be natural to extend this to an infinite expansion of x:

(2.3) x = dj0 + ndj1 + n2dj2 + n3dj3 + · · · .

Of course, this infinite series does not converge in general. However, we can infer from
(2.3) that x ≡ dj0 (modn), x ≡ dj0 +ndj1

(
modn2

)
, x ≡ dj0 +ndj1 +n2dj2

(
modn3

)
,

etc. Moreover, since the expansion is periodic, we can sum the right hand side of (2.3)
formally by letting 1 +n`+n2`+ · · · = 1

1−n` . Although this geometric series is clearly
divergent, this formal evaluation gives actually the correct value of x. Indeed, let
a = dj0+ndj1+· · ·+nt−1djt−1

and b = djtn
t+· · ·+djt+`−1

nt+`−1 (with t and ` being the

same as in Fact 2.5); then we can rewrite (2.3) as x = a+b+bn`+bn2`+· · · = a+ b
1−n` ,

and this is the same as (2.1).
One can regard (2.3) as a representation of x in a number system with radix n and

digits d1, . . . , dn. As mentioned in Subection 1.5, B∞ (0, . . . , n− 1) = {−1, 0} (see also
Theorem 3.1). This means that using the standard digits 0, . . . , n − 1, the sequence
of digits in the expansion of every integer is eventually constant 0 or constant n− 1,
namely for nonnegative integers the digits are eventually 0 (as it is well known), and
for negative integers the digits are eventually n− 1. For instance, the representation
of x = −1 is −1 = (n− 1) + (n− 1)n + (n− 1)n2 + · · · , which can be verfied using
the formal summation 1 + n+ n2 + · · · = 1

1−n .
As another example, we can read from Figure 1 that 50 can be represented in the

number system with radix 3 and digits 0, 1, 53 as

50 = d3 + nd3 + n2d1 + n3d1 + n4d2 + n5d3 + n6d1 + n7d1 + n8d2 + · · ·
= 53 + 53 · 3 + 0 · 32 + 0 · 33 + 1 · 34 + 53 · 35 + 0 · 36 + 0 · 37 + 1 · 38 + · · ·
= 53 + 240 ·

(
1 + 34 + 38 + · · ·

)
.

Evaluating 1+34+38+· · · formally as 1
1−34 , we indeed get 53+240· 1

−80 = 53−3 = 50.

Finally, we state an elementary identity about integer parts that will be needed
later; its proof is left to the reader.

Lemma 2.11. For all x ∈ R and n ∈ N we have
∑n−1
k=0

⌊
x+ k

n

⌋
= bnxc.

3. Arithmetic sequences

In this section we investigate periodic points and cycles in the case when the param-
eters form an arithmetic sequence. For notational convenience, we shift the indices by 1
(as it is done in Section 5 of [16]): instead of d1, . . . , dn we shall work with d0, . . . , dn−1,
and we will use words over {0, . . . , n− 1} to describe the cycles. Thus, we assume
throughout this section that d0, . . . , dn−1 is an arithmetic sequence: di = d0 + ih for
i = 0, . . . , n − 1, where h ∈ N is relatively prime to n and 0 ≤ d0 < n − 1. Observe
that A = {−h, . . . ,−1, 0} if d0 = 0 and A = {−h, . . . ,−1} if 0 < d0 < n− 1.

Theorem 3.1. If d0 < · · · < dn−1 is an arithmetic sequence, then B∞ = A, therefore
the number of periodic points is h+ 1 or h (depending on whether d0 = 0 or not).

Proof. Since A is a positively invariant set (Lemma 2.3) and B∞ ⊆ A (Fact 2.4), it
suffices to prove that the restriction of R to A is bijective. In fact, it is sufficient to
establish injectivity, as A is finite. Let x, y, z ∈ A such that R (x) = R (y) = z and
x < y. Then we have x = nz + di, y = nz + dj for some i, j ∈ {1, . . . , n}, therefore
y − x = dj − di = h (j − i) ≥ h. If d0 6= 0 then this is already a contradiction, as the
diameter of the set A is h− 1 in this case. If d0 = 0, then the diameter of A is h, and
this implies that x = minA = −h and y = maxA = 0. However, R (−h) = −h and
R (0) = 0, contradicting the assumption R (x) = R (y). �

The next lemma is essentially just a reformulation of Corollary 2.6 for arithmetic
sequences.
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Lemma 3.2. Assume that the sequence d0 < · · · < dn−1 is arithmetic, let w =
j0 · · · j`−1 be a primitive word over {0, . . . , n− 1} and let ←−w ∈

{
0, 1, . . . , n` − 1

}
be

the nonnegative integer given by the base-n representation determined by the reverse
of w:

←−w = j`−1 · · · j1j0 n =

`−1∑
i=0

jin
i.

Then w corresponds to a cycle if and only if

n` − 1

∣∣∣∣d0(n` − 1)

n− 1
+ h←−w .

Proof. Substituting d0 + jih for dji in the numerator of the right hand side of (2.2),we
obtain

`−1∑
i=0

d0n
i +

`−1∑
i=0

jihn
i =

d0(n` − 1)

n− 1
+ h←−w .

By Corollary 2.6, w corresponds to a periodic point if and only if the above number
is divisible by n` − 1. �

Now we are ready to generalize Theorem 5.5 of [16] by relating the words corre-
sponding to periodic points to base-n expansions of certain fractions. (Note that for
n = 2 we must have d0 = 0, hence the following theorem indeed contains Theorem 5.5
of [16] as a special case.)

Theorem 3.3. Assume that d0 < · · · < dn−1 is an arithmetic sequence. If d0 = 0
then the words corresponding to the periodic points are the reverses of the periods of
the base-n representations of the fractions 0

h , . . . ,
h
h . If 0 < d0 < n − 1, then the

corresponding words are the reverses of the periods of the base-n representations of
1
h −

d0
h(n−1) , . . . ,

h
h −

d0
h(n−1) .

Proof. Let x ∈ B∞ and let w = j0 · · · j`−1 be a primitive word over {0, . . . , n− 1}.
By (the proof of) Lemma 3.2, w corresponds to x if and only if −x = d0

n−1 + h←−w
n`−1 ,

which is equivalent to

−
x+ d0

n−1
h

=
←−w/n`

1− 1/n`
=←−w

(
1

n`
+

1

n2`
+ · · ·

)
= j`−1

1

n
+ · · ·+ j0

1

n`
+ j`−1

1

n`+1
+ · · ·+ j0

1

n2`
+ · · ·

= 0. j`−1 · · · j0 j`−1 · · · j0 · · · n.

Thus, the word corresponding to x ∈ B∞ is the reverse of the period in the base-n
expansion of −xh −

d0
h(n−1) . Taking into account that B∞ = {−h, . . . ,−1, 0} if d0 = 0

and B∞ = {−h, . . . ,−1} if 0 < d0 < n− 1, we obtain the (negatives of the) fractions
listed in the statement of the theorem. �

Corollary 3.4. If D is an arithmetic sequence, then the length of the cycle containig
the periodic point

x ∈ B∞ (D)

equals the multiplicative order of n modulo h(n−1)
gcd
(
x(n−1)+d0,h(n−1)

) .

Proof. It is well known that if a, b ∈ N are relatively prime and b is also relatively
prime to n, then the length of the period of the base-n representation of ab is the order
of n modulo b. We have seen in the proof of Theorem 3.3 that the length of the cycle

containing x ∈ B∞ is the length of the period of the base-n expansion of x(n−1)+d0
h(n−1) ;

therefore, it only remains to observe that after simplification the denominator becomes
h(n−1)

gcd
(
x(n−1)+d0,h(n−1)

) , which is clearly relatively prime to n, as both h and n − 1

are. �
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Corollary 3.5. For any finite set C of primitive words over the alphabet {0, . . . , n−
1} there exists an arithmetic sequence d0 < · · · < dn−1 such that the set of words
corresponding to the elements of B∞ (d0, . . . , dn−1) contains C.

Proof. By Lemma 3.2, it suffices to find d0 and h such that

d0(n|w| − 1)

n− 1
+ h←−w ≡ 0

(
modn|w| − 1

)
for every w ∈ C, where |w| denotes the length of w. Clearly, for d0 = 0 and h =
lcm

{
n|w| − 1: w ∈ C

}
each of these congruences are satisfied (note that h is relatively

prime to n). �

We finish this section by showing that the only equivalences between representations
(or branching function systems) given by arithmetic sequences are the trivial ones of
Fact 2.2.

Theorem 3.6. Let 0 ≤ d0, d
′
0 < n − 1 and let h, h′ be relatively prime to n. The

representations of Pn arising from the arithmetic sequences d0, d0+h, . . . , d0+(n− 1)h
and d′0, d

′
0 + h′, . . . , d′0 + (n− 1)h′ are equivalent if and only if d0 = d′0 and h = h′.

Proof. Let the two representations given in the statement of the theorem be equivalent,
and first let us assume that h 6= h′; without loss of generality we can suppose that
h < h′. Since equivalent representations have the same number of periodic points,
Theorem 3.1 implies that d0 = 0, d′0 6= 0 and h′ = h+ 1. Then 0 ∈ B∞ (d0, . . . , dn−1)
and the corresponding word is 0 (of length one). However, since n− 1 - d′0, this word
corresponds to no element of B∞

(
d′0, . . . , d

′
n−1
)
, contradicting the equivalence of the

representations.
Now let us assume that h = h′ but d0 6= d′0. Recall that two representations are

equivalent if and only if the sets of words determined by their periodic points are the
same. Let w be a word of length ` corresponding to some element of B∞ (d0, . . . , dn−1);
then w also corresponds to some element of B∞

(
d′0, . . . , d

′
n−1
)
. Lemma 3.2 implies

that
d0(n` − 1)

n− 1
+ h←−w ≡ d′0(n` − 1)

n− 1
+ h′←−w ≡ 0

(
modn` − 1

)
,

which in turn implies that d0 ≡ d′0 (modn− 1), as h = h′. However, this is impossible,
since 0 ≤ d0, d′0 < n− 1 and d0 6= d′0. �

4. Many periodic points

Arithmetic sequences give rise to branching function systems where the set of pe-
riodic points is “as large as possible”, i.e., B∞ = A. In this section we characterize
sequences d1, . . . , dn that have the same property; as we shall see, these are “almost
arithmetic sequences”.

Theorem 4.1. Let d1 < · · · < dn, let I denote the interval
[
− dn
n−1 ,−

d1
n−1

]
as before,

and let Ii = 1
nI −

1
ndi for i = 1, . . . , n. The following conditions are equivalent:

(i) B∞ = A;
(ii) A ⊆ I1 ∪ · · · ∪ In;
(iii) for all i ∈ {1, . . . , n− 1} we have⌊

d1
n (n− 1)

+
di+1

n

⌋
=

⌊
dn

n (n− 1)
+
di
n

⌋
.

Proof. Just as in the proof of Theorem 3.1, we can see that B∞ = A if and only if
the restriction of R to A is bijective. Since A is finite, bijectivity is equivalent to
surjectivity in this case, thus (i) holds if and only if R−1 (x) ∩ A = R−1 (x) ∩ I 6= ∅
for all x ∈ A. This latter condition means that for every x ∈ A there exists an
i ∈ {1, . . . , n} such that nx + di ∈ I, i.e., x ∈ Ii. This proves the equivalence of (i)
and (ii).

The intervals Ii are all translates of the interval 1
nI. The leftmost one of these

intervals is In, and the left endpoint of In coincides with the left endpoint of I;
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similarly, the right endpoint of I1 coincides with the right endpoint of I. Therefore,
condition (ii) holds if and only if there is no integer between the right endpoint of
Ii+1 and the left endpoint of Ii for every i ∈ {1, . . . , n− 1}:

(4.1) @x ∈ Z : − d1
n (n− 1)

− di+1

n
< x < − dn

n (n− 1)
− di
n
.

Since 1 6= i + 1, we have d1 6≡ di+1 (modn), and this implies that − d1
n(n−1) −

di+1

n is

not an integer; similarly, the right hand side of (4.1) is not an integer either, as n 6= i.

Hence (4.1) is equivalent to
⌊
− d1
n(n−1) −

di+1

n

⌋
≥
⌊
− dn
n(n−1) −

di
n

⌋
, which, in turn, is

equivalent to

(4.2)

⌊
d1

n (n− 1)
+
di+1

n

⌋
≤
⌊

dn
n (n− 1)

+
di
n

⌋
.

This shows that condition (ii) is satisfied if and only if the inequality (4.2) is true
for i = 1, . . . , n − 1. In order to prove the equivalence of (ii) and (iii), we just need
to verify that if (4.2) holds for all i ∈ {1, . . . , n− 1}, then we actually have equality
in (4.2) for every i. This will follow immediately from the observation that adding
the inequalities (4.2) for i = 1, . . . , n− 1, we obtain the same values on the left hand
side and on the right hand side. Indeed, summing the left hand sides of (4.2) for
i = 1, . . . , n− 1 we get

n−1∑
i=1

⌊
d1

n (n− 1)
+
di+1

n

⌋
=

n∑
j=1

⌊
d1

n (n− 1)
+
nqj + rj

n

⌋
−
⌊

d1
n (n− 1)

+
d1
n

⌋
(a)
=

n∑
j=1

qj +

n−1∑
k=0

⌊
d1

n (n− 1)
+
k

n

⌋
−
⌊

d1
n− 1

⌋
(b)
=

n∑
j=1

qj ,

where in step (a) we used the fact that {r1, . . . , rn} = {0, . . . , n− 1}, as d1, . . . , dn is
a complete system of residues modulo n, and in step (b) we applied Lemma 2.11 with
x = d1

n(n−1) . A similar calculation shows that the sum of the right hand sides of (4.2)

for i = 1, . . . , n− 1 is also
∑n
j=1 qj . �

Remark 4.2. Assuming (without loss of generality) that 0 ≤ d1 < n−1, condition (iii)
of Theorem 4.1 yields

(4.3) qi+1 − qi =

⌊
dn

n (n− 1)
+
ri
n

⌋
∈
{⌊

dn
n (n− 1)

⌋
,

⌊
dn

n (n− 1)

⌋
+ 1

}
.

Thus in this case q1, . . . , qn is almost an arithmetic sequence: the difference of consec-
utive entries can assume at most two different values (which are consecutive integers),
and then the numbers di = nqi + ri are also quite evenly distributed in the interval
[d1, dn]. So we can say informally that B∞ = A if and only if d1, . . . , dn is not far from
being an arithmetic sequence. (Note that this intuitive interpretation of Theorem 4.1
can be misleading; see Example 4.3.) It is straightforward to verify that d1, . . . , dn
form an arithmetic sequence if and only if the equality in condition (iii) holds even
without taking integer parts.

From (4.3) we also obtain the following explicit formula for qi (taking into account
that q1 = 0):

(4.4) qi =

⌊
dn

n (n− 1)
+
r1
n

⌋
+ · · ·+

⌊
dn

n (n− 1)
+
ri−1
n

⌋
.

This means that if we prescribe the residues r1, . . . , rn and we also fix d1 and dn, then
there is at most one possibility for the numbers d2, . . . , dn−1 such that B∞ (D) =
A (D). However the numbers d2, . . . , dn−1 calculated by (4.4) do not necessarily form
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an increasing sequence (cf. Example 4.4). In this case we can conclude from The-
orem 4.1 that there is no branching function system with the given values for the
residues and for d1 and dn with B∞ = A.

Example 4.3. The following table gives the data for a branching function system
with n = 10 and B∞ = A. We can observe that qi+1 − qi ∈ {1, 2} for i = 1, . . . , 9, in
accordance with (4.3). The last line of the table gives the members of the arithmetic
sequence si with s1 = d1 = 0 and s10 = d10 = 141, rounded to the nearest integer,
i.e., si =

⌊
(i− 1) · 1419

⌉
. Theorem 4.1 and Remark 4.2 might give the impression that

di should be one of the integers that are closest to si and congruent to ri modulo n.
However, this is not true; for instance, one would expect that d5 is either 56 or 66,
but the actual value is d5 = 76. The case i = 7 is even more counterintuitive: s7 = 94
is already congruent to r7 = 4 modulo 10 (and we do not even need to round when
computing s7, as 6 · 1419 is an integer), yet d7 = 114 is quite far from s7.

i 1 2 3 4 5 6 7 8 9 10

ri 0 9 8 7 6 5 4 3 2 1

qi 0 1 3 5 7 9 11 12 13 14

di 0 19 38 57 76 95 114 123 132 141

si 0 16 31 47 63 78 94 110 125 141

Example 4.4. Let us try to find a branching function system with B∞ = A for n = 4
such that it satisfies r1 = 2, r2 = 3, r3 = 1, r4 = 0 and d1 = 2, d4 = 8. The values
computed from (4.4) are given in the table below. We can see that d3 > d4, and this
means that no branching function system with the given parameters satisfies B∞ = A.
(Note that if we switch r2 and r3 then we have B∞ = A with d2 = 5, d3 = 7.)

i 1 2 3 4

ri 2 3 1 0

qi 0 1 2 2

di 2 7 9 8

5. A single periodic point

In [4], the authors raised the question when a representation of On has a single
periodic point (these representations are necessarily irreducible). Jeong has given some
examples in [15] of such representations. In this section we provide an infinite family
of representations having a single periodic point and give some sporadic examples
indicating that there are far more such representations.

If d1, . . . , dn are consecutive integers, then the number of periodic points is either
one or two, by Theorem 3.1. In the next theorem we investigate how the number
of periodic points changes when one of the di’s is replaced by di + nk. We will see
that for most choices of di the number of periodic points does not change, but in
certain special cases the number of periodic points increases exponentially with k.
By the remark following Fact 2.2, we may assume without loss of generality that
(d1, . . . , dn) = (b, . . . , b+ n− 1) with 0 ≤ b ≤ n− 2.

Theorem 5.1. Let 0 ≤ b ≤ n − 2, let r ∈ {b, b + 1, . . . , b + n − 1} and k ∈ N. The
number of periodic points corresponding to

(d1, . . . , dn) =
(
b, . . . , r − 1, r + nk, r + 1, . . . , b+ n− 1

)
is given by Table 1.

Proof. Let (d1, . . . , dn) =
(
b, . . . , r − 1, r + nk, r + 1, . . . , b+ n− 1

)
, i.e., di = b+ i−1

for i 6= r− b+1 and di = b+ i−1+nk for i = r− b+1. Let x be an arbitrary periodic
point on a cycle of length `, let σ (x) = (j0, j1, . . .), and let ai = dji . By Corollary 2.6,
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|B∞|

b = 0 r = 0 1

b = 0 r ∈ {1, . . . , n− 3} 2

b = 0 r ∈ {n− 2, n− 1} 2k + 1

1 ≤ b ≤ n− 3 r ∈ {n− 2, n− 1} 2k

1 ≤ b ≤ n− 3 r /∈ {n− 2, n− 1} 1

b = n− 2 r ∈ {n− 2, n− 1} 2k

b = n− 2 r ∈ {n, . . . , 2n− 4} 1

b = n− 2 r = 2n− 3 2

Table 1. The number of periodic points for some special branching
function systems (see Theorem 5.1)

we have x = −y/
(
n` − 1

)
, where y = n`−1a`−1 + · · ·+ na1 + a0; moreover, {ai} is a

periodic sequence whose shortest period is `.
Let us define the following two modified sequences of coefficients (here, and in the

sequel, 	 and ⊕ stand for subtraction and addition modulo `, respectively):

a′i :=

{
ai − nk, if ai = r + nk;

ai, otherwise;
a′′i :=

{
a′i + 1, if a′i	k = r;

a′i, otherwise.

Note that 0 ≤ a′′i ≤ b+n ≤ 2n−2 for all i ∈ {0, . . . , `− 1}. We can now express y mod-
ulo n`−1 with these new coefficients, using s ≡ t (mod `) =⇒ ns ≡ nt

(
modn` − 1

)
:

y =
∑

i=0,...,`−1

a′in
i +

∑
i=0,...,`−1
ai=r+n

k

nkni ≡
∑

i=0,...,`−1

a′in
i +

∑
i=0,...,`−1
ai=r+n

k

ni⊕k

=
∑

j=0,...,`−1

a′jn
j +

∑
j=0,...,`−1
a′j	k=r

nj =
∑

j=0,...,`−1

a′′j n
j =: y′′

(
modn` − 1

)
.

Since 0 ≤ a′′i ≤ 2n − 2, we have 0 ≤ y′′ ≤ (2n− 2)
∑`−1
j=0 n

j = 2
(
n` − 1

)
. On

the other hand, y′′ ≡ y ≡ 0
(
modn` − 1

)
, therefore y′′ ∈

{
0, n` − 1, 2

(
n` − 1

)}
. We

examine these three cases separately.

1) If y′′ = 0, then a′′i = 0 for all i, hence a′i = 0 and a′i	k 6= r for all i. This
happens if and only if b = 0, r 6= 0 and ai = 0 for all i. This gives us the
periodic point x = 0 with ` = 1.

2) If y′′ = n`−1, then a′′i = n−1 for all i. Indeed, −1 ≡ n`−1 = y′′ ≡ a′′0 (modn)
and 0 ≤ a′′0 ≤ 2n− 2 imply that a′′0 = n− 1. Then we have −1 ≡ n`−1 − 1 =
(y′′ − a′′0) /n ≡ a′′1 (modn) and 0 ≤ a′′1 ≤ 2n−2, hence a′′1 = n−1. Continuing
this way one can prove by induction on i that a′′i = n − 1 for every i. This
happens if and only if for each i we have either a′i = n − 1, a′i	k 6= r or
a′i = n− 2, a′i	k = r. Here we can distinguish three subcases.
2a) If r /∈ {n− 2, n− 1}, then a′i = ai = n − 1 for all i, therefore ` = 1 and

we obtain the periodic point x = −1.
2b) If r = n− 2, then a′i ∈ {n− 1, n− 2} and a′i	k = a′i for all i. Thus {ai}

is a k-periodic sequence with entries n − 1 and n − 2. (Recall that the
shortest period of {ai} was `, hence ` | k.) By Remark 2.7, we obtain 2k

different periodic points in this case.
2c) If r = n−1, then a′i ∈ {n− 1, n− 2} and a′i	k 6= a′i for all i, which implies

a′i	2k = a′i. Thus {ai} is a 2k-periodic sequence with entries n − 1 and
n−2 such that the first half of the period uniquely determines the second
half: a′i⊕k = 2n− 3− a′i. (Here we must have ` | 2k and ` - k.) Just like

in case 2b), we get 2k periodic points.
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1) 2a) 2b) 2c) 3) |B∞|

b = 0 r = 0 1 1

b = 0 r ∈ {1, . . . , n− 3} 1 1 2

b = 0 r = n− 2 1 2k 2k + 1

b = 0 r = n− 1 1 2k 2k + 1

1 ≤ b ≤ n− 3 r = n− 2 2k 2k

1 ≤ b ≤ n− 3 r = n− 1 2k 2k

1 ≤ b ≤ n− 3 r /∈ {n− 2, n− 1} 1 1

b = n− 2 r = n− 2 2k 2k

b = n− 2 r = n− 1 2k 2k

b = n− 2 r ∈ {n, . . . , 2n− 4} 1 1

b = n− 2 r = 2n− 3 1 1 2

Table 2. The number of periodic points in the different cases in the
proof of Theorem 5.1

3) If y′′ = 2
(
n` − 1

)
, then a′′i = 2n− 2 for all i, hence a′i = 2n− 3 and a′i	k = r

for all i. This happens if and only if b = n−2, r = 2n−3 and ai = 2n−3+nk

for all i. Just as in the first case, this implies ` = 1, and the corresponding

periodic point is x = − 2n−3+nk

n−1 .

Now only some bookkeeping is needed to finish the proof: one has to count the
number of periodic points in the above cases, and determine which cases can occur
for given values of b and r. The results are given in Table 2. �

Remark 5.2. The previous theorem concentrated on just one family of branching
function systems, however, there are many more cases with a single periodic point.
For example, we have∣∣B∞ (7a, 1 + 7b, 2 + 7c, 3 + 7d, 4 + 7i, 5, 6

)∣∣ = 1

for a ∈ {1, 2, 3, 4, 5}, b ∈ {0, 1, 2, 3, 4}, c ∈ {0, 1, 2, 3}, d ∈ {0, 1, 2} and i = 1, . . . , 8.
Similarly,∣∣B∞ (49, 1, 2, 3, 4 + 7i, 5, 6

)∣∣ = 1,
∣∣B∞ (56, 1, 2, 3, 4 + 7i, 5, 6

)∣∣ = 1,∣∣B∞ (7, 43, 2, 3, 4 + 7i, 5, 6
)∣∣ = 1,

∣∣B∞ (7, 50, 2, 3, 4 + 7i, 5, 6
)∣∣ = 1,∣∣B∞ (7, 1, 37, 3, 4 + 7i, 5, 6

)∣∣ = 1,
∣∣B∞ (7, 1, 45, 3, 4 + 7i, 5, 6

)∣∣ = 1,∣∣B∞ (7, 1, 2, 31, 4 + 7i, 5, 6
)∣∣ = 1,

∣∣B∞ (7, 1, 2, 38, 4 + 7i, 5, 6
)∣∣ = 1

hold for i = 1, . . . , 8, and we conjecture that all of these equalities are valid for every
positive integer i.

Example 5.3. Applying Theorem 5.1 for b = r = 0 we get∣∣B∞ (nk, 1, . . . , n− 1
)∣∣ =

∣∣B∞ (1, . . . , n− 1, nk
)∣∣ = 1,

while for b = r = n− 2 we obtain (also taking Fact 2.2 into account)∣∣B∞ (n− 2 + nk, n− 1, . . . , 2n− 3
)∣∣ =

∣∣B∞ (n− 1, . . . , 2n− 3, n− 2 + nk
)∣∣

=
∣∣B∞ (0, . . . , n− 2, nk − 1

)∣∣ = 2k.

These examples show that there may be a significant difference between the car-
dinalities |B∞ (d1, d2, . . . , dn)| and |B∞ (d1 + 1, d2 + 1, . . . , dn + 1)|, at least in cer-
tain special cases. (We will see in Theorem 6.4 that for fixed d1, . . . , dn−1 we have

|B∞ (d1, d2, . . . , dn)| = O
(
d
logn 2
n

)
, which yields

∣∣B∞ (0, . . . , n− 2, nk − 1
)∣∣ = O

(
2k
)
.

Therefore, we can say that the difference between |B∞ (d1, d2, . . . , dn)| and |B∞ (d1 + 1, d2 + 1, . . . , dn + 1)|
cannot be much larger compared to dn than in this example.)
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We know that |B∞ (0, 1, . . . , n− 1)| = 2 and
∣∣B∞ (0, 1, . . . , n− 2, n− 1 + nk

)∣∣ =

2k + 1 ≥ 3. The following proposition generalizes these results by giving a lower
estimate for |B∞ (0, 1, . . . , n− 2, dn)|.

Proposition 5.4. If dn ≡ n− 1 (modn) and dn > n− 1, then we have

|B∞ (0, 1, . . . , n− 2, dn)| ≥ 3.

If, in addition, n− 1 | dn, then |B∞ (0, 1, . . . , n− 2, dn)| ≥ 4.

Proof. Assume first that n − 1 - dn. Clearly, 0 ∈ B∞ (0, 1, . . . , n− 2, dn) and this
is the only periodic point with cycle length 1. The set A \ {0} is easily seen to be
nonempty and closed under R, hence it contains a cycle, which must have length at
least 2. Thus, we have at least two more periodic points besides 0.

If n − 1 | dn, then we have two periodic points with cycle length 1, namely 0
and −dn/ (n− 1). Now A \ {0,−dn/ (n− 1)} is closed under R, and it is nonempty,
since dn > n − 1. Therefore, we have at least two periodic points in this set, hence
|B∞ (0, 1, . . . , n− 2, dn)| ≥ 4 in this case. �

Remark 5.5. The estimates given in the previous proposition are sharp: for example
B∞ (0, 1, 32) = {−16,−12,−4, 0} and B∞ (0, 1, 1181) = {−443,−148, 0}.

6. Asymptotic behaviour of the number of periodic points

In this section we are interested in the number of periodic points when one or all of
d1, . . . , dn tend to infinity. If we let all the di’s go to infinity in such a way that their
differences stay the same, then we obtain the sequence |B∞ (d1 + s, . . . , dn + s)| for
the number of periodic points. The asymptotic behavior of this sequence as s → ∞
is not very interesting, since it is periodic with period at most n− 1 by Fact 2.2:

|B∞ (d1 + n− 1, . . . , dn + n− 1)| = |B∞ (d1, . . . , dn)| .

In some cases this sequence is constant, for instance we obtain the sequence 4, 4, . . . for
(d1, d2, d3) = (0, 1, 17) and also for (d1, d2, d3) = (0, 1, 257). In some other cases, there
might be big oscillations, as we have seen in Example 5.3. For example, we obtain the
sequence 16, 1, 16, 1, . . . for (d1, d2, d3) = (0, 1, 80), and we get 16, 1, 1, 16, 1, 1, . . . for
(d1, d2, d3, d4) = (0, 1, 2, 255).

Next we consider the case when d1, . . . , dn tend to infinity in such a way that their
quotients stay the same; as before, we assume that d1 < · · · < dn. We shall see
that the number of periodic points increases linearly in this case (see Theorem 6.1
in the special case c = 0). The proof is based on the fact that B∞ = −T ∩ Z (see
Proposition 1.1), where T = T (D) is the set defined by (1.2). Observe that the least
element of T is

∑∞
i=1 n

−id1 = d1
n−1 ; similarly, the greatest element of T is dn

n−1 , hence

T ⊆
[
d1
n−1 ,

dn
n−1

]
= −I. Recall from Subection 1.2 that T is Jordan measurable and

has measure µ (T) = gcd {di − dj : 1 ≤ i, j ≤ n}.

Theorem 6.1. Let d1 < · · · < dn be, let c be an arbitrary integer and let s → ∞
through integers relatively prime to n. Then we have

|B∞ (d1s+ c, . . . , dns+ c)|
|A (d1s+ c, . . . , dns+ c)|

→ n− 1

dn − d1
µ (T) ,

where µ (T) is the Lebesgue measure of T (d1, . . . , dn).

Proof. Let T = T(D), and let us observe that T (d1s+ c, . . . , dns+ c) = sT + c
n−1 .

Therefore we have

B∞ (d1s+ c, . . . , dns+ c) = {x ∈ Z : − x ∈ T (d1s+ c, . . . , dns+ c)}

=
{
x ∈ Z :

−x− c
n−1

s
∈ T

}
,
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which means that the elements of B∞ (d1s+ c, . . . , dns+ c) are in a one-to-one corre-
spondence with the elements of the intersection of T and 1

s

(
Z− c

n−1
)
. Since the latter

set partitions the real line into intervals of length 1
s , we see that

|B∞ (d1s+ c, . . . , dns+ c)| · 1

s
=

∣∣∣∣T ∩ 1

s

(
Z− c

n− 1

)∣∣∣∣ · 1

s

is a Riemann sum of the characteristic function of T. Since T is Jordan measurable, its
characteristic function is Riemann-integrable. It follows that |B∞ (d1s+ c, . . . , dns+ c)|·
1
s → µ (T) as s → ∞, i.e., |B∞ (d1s+ c, . . . , dns+ c)| is asymptotically equivalent to
s · µ (T).

Since A (d1s+ c, . . . , dns+ c) consists of the integers in the interval[
−dns+ c

n− 1
,−d1s+ c

n− 1

]
= sI− c

n− 1
,

the cardinality of A (d1s+ c, . . . , dns+ c) and (dn−d1)s
n−1 (which is the length of the

interval sI− c
n−1 ) differ by at most one. As a consequence, we have that

lim
s→∞

|B∞ (d1s+ c, . . . , dns+ c)|
|A (d1s+ c, . . . , dns+ c)|

=

= lim
s→∞

|B∞ (d1s+ c, . . . , dns+ c)| n− 1

(dn − d1) s
=

n− 1

dn − d1
µ (T) .

�

Our next goal is to study the number of periodic points when only one of the
parameters, say dn, tends to infinity, while the others are fixed. As a lower estimate
we have the trivial inequality |B∞ (D)| ≥ 1, and in general we cannot have a nontrivial
lower bound, since it is possible to let dn → ∞ in such a way that the number of
periodic points stays constant 1 (cf. Theorem 5.1).

To establish an upper estimate, we will need the box-counting dimension of certain
fractals. We briefly recall the necessary definitions and facts; for more background
we refer the reader to [9]. Let K be a bounded subset of the real line. For δ > 0, let
Nδ (K) be the number of intervals of the form [kδ, (k + 1) δ) with k ∈ Z that contain
at least one point from K. The box-counting dimension (or Minkowski dimension) of
K is defined as the limit

lim
δ→0

logNδ (K)

log (1/δ)
,

provided it exists.
Let Cn be the set defined similarly to the Cantor set, successively removing the

middle n−2
n part of the intervals (n = 3 gives the usual Cantor set). A real number

c ∈ [0, 1] belongs to Cn if and only if the base-n expansion of c contains only digits 0
and n−1. Just like the Cantor set, Cn is a self-similar fractal, and it has box-counting

dimension logn 2. Thus we have Nδ (Cn) ≤ (1/δ)
ε+logn 2

for small enough δ; however,
for our purposes the following stronger estimate will be necessary.

Proposition 6.2. For all 0 < δ < 1 we have

Nδ (Cn) ≤ 4 · (1/δ)logn 2
.

Proof. It is easy to verify that N1/nt (Cn) = 2t for all natural numbers t. Now let

δ < 1 be a positive real number, and let t ∈ N such that 1/nt ≤ δ ≤ 1/nt−1. Then we
have Nδ (Cn) ≤ 2 · N1/nt (Cn), as any interval of length 1/nt is covered by (at most)
two intervals of length δ. Taking into account that t ≤ 1 + logn (1/δ), we obtain the
desired inequality:

Nδ (Cn) ≤ 2 ·N1/nt (Cn) = 2t+1 ≤ 22+logn(1/δ) = 4 · (1/δ)logn 2
.

�
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The set 1
n−1 ·Cn consists of all numbers of the interval [0, 1] (actually, they are from

the interval
[
0, 1

n−1
]
) that have only 0 and 1 in their base-n representation. Obviously,

1
n−1 · Cn also has box-counting dimension logn 2, and we have a similar estimate for
Nδ as for Cn.

Corollary 6.3. There is a positive constant K depending only on n such that for all
0 < δ < 1

n−1 we have

Nδ

(
1

n− 1
· Cn
)
≤ K ·

(
1

δ

)logn 2

.

Proof. Clearly, Nδ

(
1

n−1 · Cn
)

= N(n−1)δ (Cn), hence

Nδ

(
1

n− 1
· Cn
)
≤ 4 ·

(
1

(n− 1) δ

)logn 2

.

�

Theorem 6.4. If d1 < · · · < dn−1 are fixed and dn →∞, then

|B∞ (d1, . . . , dn)| = O
(
dlogn 2
n

)
.

Proof. Let us decompose an arbitrary x =
∑∞
i=1

ai
ni ∈ T as x = ηx + γx, where

ηx =
∑
ai 6=dn

ai
ni

and γx =
∑
ai=dn

ai
ni
.

Then we have 0 ≤ ηx ≤ dn−1 ·
∑∞
i=1

1
ni = dn−1

n−1 , and γx = dn ·
∑
ai=dn

1
ni = dn · cx,

where cx ∈ [0, 1] has only digits 0 and 1 in its base-n expansion, i.e., cx ∈ 1
n−1 ·Cn. If x

is an integer, then it must be one of the numbers bγxc , bγxc+1, . . . , bγxc+
⌊
dn−1

n−1

⌋
+1,

thus we obtain the following “upper estimate” for the (negative of the) set of periodic
points:

−B∞ (D) = T ∩ Z ⊆⋃
c∈ 1

n−1 ·Cn

{
bdn · cc , bdn · cc+ 1, . . . , bdn · cc+

⌊
dn−1
n− 1

⌋
+ 1

}
.

Each set of this union has
⌊
dn−1

n−1

⌋
+ 2 elements, and the sets corresponding to c and

c′ coincide if and only if bdn · cc = bdn · c′c, hence

|B∞ (D)| = |T ∩ Z| ≤
(⌊

dn−1
n− 1

⌋
+ 2

)
·
∣∣∣∣{bdn · cc : c ∈ 1

n− 1
· Cn
}∣∣∣∣ .

An integer k appears as bdn · cc in the formula above if and only if there exists

c ∈ 1
n−1 · Cn such that dn ·c ∈ [k, k + 1). The latter is equivalent to c ∈

[
k
dn
, kdn + 1

dn

)
,

therefore

(6.1) |B∞ (D)| = |T ∩ Z| ≤
(⌊

dn−1
n− 1

⌋
+ 2

)
·N1/dn

(
1

n− 1
· Cn
)
.

From Corollary 6.3 it follows that for dn > n− 1 we have

N1/dn

(
1

n− 1
· Cn
)
≤ K · dlogn 2

n

for some constant K, and this together with (6.1) implies that |B∞| = O
(
d
logn 2
n

)
. �

The next theorem shows that the upper estimate obtained above cannot be sharp-
ened: for fixed d2, . . . , dn−1 it is possible to let dn →∞ in such a way that |B∞ (0, d2, . . . , dn)|
is bounded from below by a constant multiple of d

logn 2
n .

Theorem 6.5. Let 0, d2, . . . , dn−1, rn be a complete system of residues modulo n.
Then there is a sequence dn,1, dn,2, . . . of positive integers tending to ∞ such that for

all ` ∈ N, dn,` ≡ rn (modn), and |B∞ (0, d2, . . . , dn−1, dn,`)| = Θ
(
d
logn 2
n,`

)
as `→∞.
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Proof. Let dn,` be the least positive integer such that dn,` ≡ rn (modn) and dn,` ≡
0
(
modn` − 1

)
. Since the moduli are relatively prime, such a dn,` exists, and dn,` ≤

n
(
n` − 1

)
< n`+1. (Note that dn,` ≥ n` − 1, therefore dn,` indeed tends to ∞

as ` → ∞.) We are going to prove that there are at least 2` periodic points for
0, d2, . . . , dn−1, dn,`. This suffices to prove the theorem, since

2` =
1

2

(
n`+1

)logn 2
>

1

2
d
logn 2
n,` ,

thus the number of periodic points is bounded from below by a constant multiple of

d
logn 2
n,` , and we have seen in Theorem 6.4 that it is also bounded from above by a

constant multiple of d
logn 2
n,` .

Let us choose a sequence a0, . . . , a`−1 such that ai ∈ {0, dn,`} for i = 1, . . . , `. There
are 2` such sequences, and each of them gives a periodic point

x = −a0 + a1n+ · · ·+ a`n
`−1

n` − 1
.

Indeed, by Remark 2.7, we only need to verify that x is an integer, which is clearly
the case, as ai ∈ {0, dn,`} and dn,` ≡ 0

(
modn` − 1

)
. �

7. Some open problems

Concluding the paper, we list some open problems that seem worthwhile investi-
gating.

Theorem 3.6 characterizes the equivalence of branching function systems corre-
sponding to arithmetic sequences. Here we required that the equivalence preserves
the colors of the edges of the underlying graphs, i.e., di corresponds to d′i. It would
be interesting to consider a weaker notion of equivalence, where we are allowed to
permute the colors (i.e., di may correspond to some d′j with j 6= i). We conjecture
that Theorem 3.6 remains valid in this more general setting, too. Another natural
extension of Theorem 3.6 would be to classify the branching function systems arising
from the “almost arithmetic” sequences of Section 4 up to equivalence.

Corollary 3.5 also raises a natural question: Does every conjugation-closed set of
primitive words arise as the set of words corresponding to the periodic points of a
branching function system determined by a complete system of residues d1, . . . , dn?
(The answer is obviously “yes” if one allows arbitrary branching function systems.)

In Section 5 we presented examples with a single periodic point; however, there
are probably many other such branching function systems, and it is still an open
problem to characterize these. Proposition 5.4 gives a negative result: setting d1 =
0, . . . , dn−1 = n− 2, there is no dn such that |B∞ (D)| = 1. Is it possible to fix n− 2
parameters in such a way that the number of periodic points is at least 2, no matter
what the remaining two parameters are?

We had to assume d1 = 0 in Theorem 6.5 in order to make our construction work.
Is it possible to remove this assumption?

Figure 2 shows the distribution of the pairs
(
a
b ,min(0.5, |B∞||A| )

)
for triples of the

form (0, a, b) where 9000 < b < 9300 and 0 < a < b
2 . (We have cut the graph at

y = 0.5 in order to get a better resolution for smaller ratios.) The data has been
calculated by a C++ program.

The graph allows us to formulate some conjectures:

• Theorem 6.1 shows that for example triples of the form (0, a, 5a) yield propor-
tionately the same amount of periodic points for large a’s. The graph shows
furthermore that triples of the form (0, a+ ε, 5a+ ε) where a is large and ε is
small compared to a yield considerably fewer periodic points, and they yield
fewer as ε gets larger. This suggests that triples of the form (0, a, b) yield
locally the most periodic points when the greatest common divisor of a and b
is big, and they also induce more periodic points in their neighbourhood, but
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Figure 2. A graph of points of the form
(
a
b ,min(0.5, B∞(0,a,b)

A(0,a,b) )
)

the radius of this influence seems to be sublinear in b (the spikes on the same
graph corresponding to bigger b’s are narrower).

• If a
b is close to 1

2 then the ratio |B∞||A| is closer to 1, however, not for all such

a’s. Recall that the ratio equals 1 if a = b
2 by Theorem 3.1.
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