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Abstract. The following natural problem, first considered by D. Lau, has been

tackled by several authors recently: Let C be a total clone on 2 := {0, 1}. Describe
the interval I(C) of all partial clones on 2 whose total component is C. We

establish some results in this direction and combine them with previous ones to
show the following dichotomy result: For every total clone C on 2, the set I(C)

is either finite or of continuum cardinality.

1. Preliminaries

Let k ≥ 2 be an integer and let k be a k-element set. Without loss of generality we
assume that k := {0, . . . , k − 1}. For a positive integer n, an n-ary partial function
on k is a map f : dom (f)→ k where dom (f) is a subset of kn, called the domain of

f . Let Par(n)(k) denote the set of all n-ary partial functions on k and let Par(k) :=⋃
n≥1

Par(n)(k). An n-ary partial function g is said to be a total function if dom (g) = kn.

Let Op(k) be the set of all total functions on k.
For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary i-th pro-

jection function defined by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn. Furthermore,
let Jk := {eni | 1 ≤ i ≤ n, n ∈ N \ {0}} be the set of all (total) projections.

Partial and total functions on k are composed in a natural way. We refer the reader
to [4, 10, 11] for details.

Definition. A partial clone on k is a composition closed subset of Par(k) containing
Jk. If a partial clone is contained in the set of all total functions Op(k), then it is
called a clone on k.

Remark 1.1. There are several other equivalent definitions for partial clones. One
definition uses Mal’cev’s formalism and the other uses the concept of one point exten-
sion. These definitions can be found in [10] and in Chapter 20 of [11]. Later on in this
paper we will use Mal’cev’s elementary operations as described in [10] and [11].

Example.
1) For a = 0, 1 let Ta be the set of all total functions satisfying f(a, . . . , a) = a,

M be the set of all monotone total functions and S be the set of all self-dual total
functions on 2. Then T0, T1,M and S are clones on 2.

2) Let T0,2 := {f ∈ Op(2) | [(a1, b1) 6= (1, 1), . . . , (an, bn) 6= (1, 1)]
=⇒ (f(a1, . . . , an), f(b1, . . . , bn)) 6= (1, 1)}.

T0,2 is a clone on 2 (see Chapter 3 of [11] for details.)

3) Let S̃ := {f ∈ Par(2) | {(a1, . . . , an), (¬a1, . . . ,¬an)} ⊆ dom (f)
=⇒ f(¬a1, . . . ,¬an) = ¬f(a1, . . . , an)},

where ¬ is the negation on 2. Then S̃ is a partial clone on 2.

The idea behind the last two examples is formalized as follows.
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Definition. For h ≥ 1 and n ≥ 1, let ρ be an h-ary relation on k and f be an n-ary
partial function on k. We say that f preserves ρ if for every h× n matrix M = [Mij ]
whose columns M∗j ∈ ρ, (j = 1, . . . , n) and whose rows Mi∗ ∈ dom (f) (i = 1, . . . , h),
the h-tuple (f(M1∗), . . . , f(Mh∗)) ∈ ρ. Define

pPol ρ := {f ∈ Par(k) | f preserves ρ}.

It is well known (see, e.g., [11] Chapter 20) that pPol ρ is a partial clone called the
partial clone determined by the relation ρ.

Note that if there is no h×n matrix M = [Mij ] whose columns M∗j ∈ ρ and whose
rows Mi∗ ∈ dom (f), then f ∈ pPol ρ. Note also that the clone on k determined by
the relation ρ is Pol ρ := pPol ρ ∩Op(k).

Thus in the example above T0,2 = Pol {(0, 0), (0, 1), (1, 0)} and S̃ = pPol {(0, 1), (1, 0)}.
All partial clones on k (clones on k), ordered by inclusion, form a lattice LPk

(LOk
,

respectively) in which the infimum is the set-theoretical intersection. Clearly LOk
is a

sublattice of LPk
. It is therefore very natural to ask about the position of the lattice

LOk
in LPk

. In [12] D. Lau initiated the study of the following problem for the case
k = 2.

Problem. Let C be a total clone on 2 := {0, 1}. Describe the set of all partial clones
on 2 whose total component is C, i.e., describe the set

I(C) := {D ⊆ Par(2) |D is partial clone such that

D ∩Op(2) = C}.

The same question was asked for clones on the finite set k with k ≥ 2, and results
in this direction have been established recently, mainly concerning the maximal clones
on k. We refer the reader to Section 20.7 in [11] for details. By Theorem 20.7.2 the
set I(C) is an interval for every total clone C on 2.

In this paper we focus our attention to the case k = 2. We give a full classification of
all intervals I(C), where C is one of the countably many clones on 2. More precisely,
we first show that I(T0,2) is of continuum cardinality on 2. Then we prove that the
same result holds for any clone on 2 contained in one of {T0,2, T1,2}.

Finally we combine these results with previous known results discussed in [10] to
prove our main result.

Let F := {Op(2), T0, T1, T0 ∩ T1,M,M ∩ T0,M ∩ T1,M ∩ T0 ∩ T1, S, S ∩ T0 ∩ T1}.
We have:

Dichotomy Theorem. Let C be a clone on 2. Then the interval I(C) in LP2 of
all partial clones whose total component is C is finite if and only if C ∈ F and is of
continuum cardinality otherwise.

We mention in passing that many results in this direction have been obtained by
several authors, (see [1, 5, 6, 7, 8, 9, 10, 15, 16, 17]).

2. Partial clones intersecting Op(2) in T0,2

Let ρ0,2 := {(0, 0), (0, 1), (1, 0)} and as seen above let T0,2 := Pol ρ0,2. It is shown
in [13] that the clone T0,2 is covered by the clone T0 = Pol {0} of all 0-preserving
functions. In this section we construct a continuum family of partial clones on 2
whose intersection with Op(2) is T0,2.

The idea behind the proof given in this section comes from [5] and is briefly discussed
in [4].

Throughout let k ≥ 4 be an even integer, and set n(k) = k(k + 1) + 1.
Define Rk↑ as the n(k)-ary relation whose members are tuples in which any two 1’s

are separated by at least one 0 (in particular, the first and last positions cannot be
simultaneously 1, since we consider the indices modulo n(k)). For i, j ∈ {1, . . . , n(k)},
we denote by d(i, j) the circular distance between i and j.
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Lemma 2.1. For every even integer k ≥ 4, T0,2 ⊆ pPolRk↑.

Proof. Since

Rk↑(x1, . . . , xn(k)) =
∧

i,j∈[n(k)]
d(i,j)=1

%0,2(xi, xj)

we have, by the general theory (see e.g., the Representation Lemma 20.3.4 in [11]) that
pPol ρ0,2 ⊆ pPolRk↑ , and since clearly T0,2 ⊆ pPol ρ0,2, the result follows. �

Let Mk
↑ be the n(k) × n(k) matrix with columns in Rk↑ , the first being c1 =

[1001010 . . . 1010]T and the remaining columns are obtained by applying cyclic shifts to
c1, i.e., c2 = [01001010 · · · 101]T , c3 = [101001010 · · · 10]T , . . ., cn(k) = [001010 · · · 101]T .

Note that every entry on the diagonal of the matrix Mk
↑ is 1.

Remark 2.2. Let ri and rj be two rows of Mk
↑ . If d(i, j) ≥ 2, then ri and rj have a

1 in the same position.

Lemma 2.3. If k′ < k, then there is no n(k′)× n(k) matrix N whose columns are in

Rk
′

↑ and whose rows are rows of Mk
↑ .

Proof. Suppose that k′ < k and that N is an n(k′)×n(k) matrix whose columns are in

Rk
′

↑ . For a contradiction, suppose that the rows of N are rows of Mk
↑ . By Remark 2.2,

the only possible “neighbor” rows of a row r in N are exactly the predecessor and
successor rows of r in Mk

↑ . But then n(k′) would be even, thus yielding the desired
contradiction. �

Define Rk↓ as the n(k)-ary relation whose members are tuples in which any two 1’s

are separated by at least k 0’s (in particular, if the first position is 1, then the last k
positions must be 0).

Lemma 2.4. For every even integer k ≥ 4, T0,2 ⊆ pPolRk↓.

Proof. As in Lemma 2.1, since

Rk↓(x1, . . . , xn(k)) =
∧

i,j∈[n(k)]
1≤d(i,j)≤k

%0,2(xi, xj)

we have T0,2 ⊆ pPol %0,2 ⊆ pPolRk↓ . �

Let Mk
↓ be the n(k) × n(k) matrix with columns in Rk↓ , the first being c′1 =

[1 0 · · · 0︸ ︷︷ ︸
k+1

1 0 · · · 0︸ ︷︷ ︸
k

· · · 1 0 · · · 0︸ ︷︷ ︸
k

]T and the remaining columns are obtained by applying

cyclic shifts to c′1 as before. As for the matrix Mk
↑ , every entry on the diagonal of

Mk
↓ is 1.

Remark 2.5. Since k ≥ 4 is even, if ri is a row of Mk
↑ , and r′j is a row of Mk

↓ , then

ri and r′j have a 1 in the same position.

Lemma 2.6. If k′ > k, then there is no n(k′)× n(k) matrix N whose columns are in

Rk
′

↓ and whose rows are rows of Mk
↓ .

Proof. Suppose that k′ > k and that N is an n(k′)× n(k) matrix whose columns are

in Rk
′

↓ . For a contradiction, suppose that the rows of N are rows of Mk
↓ . Since each

row of Mk
↓ has exactly k 1’s, we have that N has k · n(k′) 1’s. Hence, N has a column

with at least k·n(k′)
n(k) 1’s. However, it is easy to verify that since k′ > k ≥ 4, we have

that k·n(k′)
n(k) > k′. But this yields the desired contradiction, since all columns of N are

members of Rk
′

↓ , and each has at most k′ 1’s. �
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Let Rk be the 2n(k)-ary relation given by Rk := Rk↑ × Rk↓ . Since T0,2 ⊆ pPolRk↑
and T0,2 ⊆ pPolRk↓ , we have T0,2 ⊆ pPolRk. Now as T0,2 ⊆ pPolRk, we have that

pPolRk∩Op(2) is one of T0,2, T0 or Op(2). As the n(k)-ary function f on 2 defined by
f(0, . . . , 0) = 0 and f(x1, . . . , xn(k)) = 1 if (x1, . . . , xn(k)) 6= (0, . . . , 0) belongs to T0 but
does not preserve Rk, we conclude that pPolRk∩Op(2) = T0,2, i.e., pPolRk ∈ I(T0,2).

Define Mk as the 2n(k)× n(k) matrix given by

Mk =

(
Mk
↑

Mk
↓

)
.

Note that each column of Mk is a tuple of Rk.

Lemma 2.7. Let N be a 2n(k′) × n(k) matrix whose columns are in Rk′ and whose
rows are rows of Mk. Then, either all rows of N are rows of Mk

↓ , or the first n(k′) are

rows of Mk
↑ and the remaining n(k′) are rows of Mk

↓ .

Proof. By Remark 2.2 and the fact that Rk′ = Rk
′

↑ ×Rk
′

↓ , not all of the last n(k′) rows

can be rows of Mk
↑ , since for all columns in Rk

′

↓ the distance between two 1’s is at least

k′. If we assume that there are rows from Mk
↑ and Mk

↓ at the same time, we see that
two such rows are neighbors and by Remark 2.5 there is a column with adjacent 1’s.
But this contradicts the assumption that the columns belong to Rk′ . Thus there can
only be rows from Mk

↓ among the last n(k′) rows of N .

Moreover, from Remark 2.5 and the fact that Rk′ = Rk
′

↑ ×Rk
′

↓ , it follows that either

all of the first n(k′) rows of N are rows of Mk
↑ or all of the first n(k′) rows of N are

rows of Mk
↓ . �

Let fk be the n(k)-ary partial function whose domain is the set of rows of Mk, and
such that fk is constant 1 on the rows of Mk

↑ and constant 0 on the rows of Mk
↓ . Note

that since both Mk
↑ and Mk

↓ have entries 1 on their diagonal, the partial function fk
is undefined on the tuple (0, . . . , 0).

Lemma 2.8. Let k, k′ ≥ 4 be even integers. Then fk preserves Rk′ if and only if
k 6= k′.

Proof. Since [1 · · · 10 · · · 0]T does not belong to Rk′ , we have that if k = k′, then fk
does not preserve Rk′ .

So suppose that k 6= k′. If k < k′, then it follows from Lemmas 2.6 and 2.7, that fk
preserves Rk′ by default.

Suppose now that k > k′. If N is a 2n(k′)× n(k) matrix whose columns are in Rk′
and whose rows are rows of Mk (otherwise we are done for the domain of fk is exactly
the set of rows of Mk), then by Lemmas 2.3 and 2.7 it follows that all rows of N are
rows of Mk

↓ . Since fk is constant 0 on the rows of Mk
↓ , and since the 2n(k′)-tuple all

of whose entries are zero is a member of Rk′ , we conclude that fk preserves Rk′ . �

Denote by E≥4 := {4, 6, 8, . . . } the set of all even integers greater than or equal to
4 and denote by P(E≥4) the power set of E≥4. Since T0,2 ⊆ pPolRk for every even
integer k ≥ 4, we have that

T0,2 ⊆
⋂

k∈E≥4\X

pPolRk

for every subset X of E≥4. By Lemma 2.8 the map

χ : P(E≥4)→ I(T0,2) ∪ I(T0) ∪ I(Op(2))

defined by X 7−→ χ(X) :=
⋂

k∈E≥4\X

pPolRk is one-to-one. Since I(T0) and I(Op(2))

are finite (see Section 20.8 in [11]) we have the following result:

Theorem 2.9. The interval I(T0,2) of partial clones on 2 is of continuum cardinality.
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3. Partial clones intersecting Op(2) in a subclone of T0,2

In this section we show that Theorem 2.9 holds for every subclone of T0,2 in LO2 .
We will employ a result established in [10]. First we need to recall some notations.

Let f ∈ Par(2) be n-ary and g ∈ Par(2) be m-ary. Then the superposition of f and
g, denoted f ? g is the (n+m− 1)-ary partial function on 2 defined by

dom (f ? g) := {(a1, . . . , an+m−1) | (a1, . . . , am) ∈ dom (g) and

(g(a1, . . . , am), am+1, . . . , an+m−1) ∈ dom (f)}
and

(f ? g)(a1, . . . , an+m−1) := f(g(a1, . . . , am), am+1, . . . , an+m−1).
A set of partial functions F ⊆ Par(2) is called a closed set, if F ?F ⊆ F , ζ(F ) ⊆ F ,

τ(F ) ⊆ F , ∆(F ) ⊆ F and ∇(F ) ⊆ F . The operations ζ, τ,∆,∇, ? are known as
Mal’cev’s five elementary operations. We refer the reader to the introduction of [10]
and to Section 20.1 of [11] for more details. Notice that it is well known that a set of
partial functions F ⊆ Par(2) is a partial clone on 2 if and only if it is a closed subset
and it contains the set of all projections J2 (see, e.g., Section 20.1 of [11]).

We need the following result established in [10].

Lemma 3.1. (Theorem 8 [10]) Let C be a clone over 2 and let I be a nonempty set.
Furthermore, let (Qi)i∈I be a family of subsets of Par(2) such that

1) Qi ∩Op(2) = ∅,
2) Qi is a closed set of Par(2),
3) Qi ? C ⊆ Qi and C ? Qi ⊆ Qi.

Then, for every subclone B of C on 2 and every i ∈ I, we have that Qi∪B is a partial
clone on 2. If furthermore Qi 6= Qj for all i, j ∈ I, i 6= j, then |I(B)| ≥ |I|.

We use Theorem 2.9 and the lemma above to prove our second main result:

Theorem 3.2. Let B ⊆ T0,2 be a clone on 2. Then the interval of partial clones I(B)
is of continuum cardinality.

Proof. Denote by U0 the set of all partial functions undefined on (0, . . . , 0), i.e.,
U0 := {f ∈ Par(2) | (0, . . . , 0) 6∈ dom (f)}.

Now in Lemma 3.1 let C be the clone T0,2 on 2, I be the set P(E≥4) as defined in the

paragraph preceding Theorem 2.9, and for X ∈ P(E≥4) let QX := (
⋂
k 6∈X

pPolRk)∩U0.

We show that the family (QX)X∈P(E≥4) satisfies conditions 1), 2) and 3) of Lemma
3.1.

1) Since U0 contains no total functions we have QX ∩Op(2) = ∅.
2) It is easy to verify that the sets QX satisfy ζ(QX) ⊆ QX , τ(QX) ⊆ QX , ∆(QX) ⊆

QX and ∇(QX) ⊆ QX (see, e.g., [10]). We show that QX ?QX ⊆ QX . Let f, g ∈ QX .

Since
⋂
k 6∈X

pPolRk is a partial clone, we have that f ? g ∈
⋂
k 6∈X

pPolRk. Furthermore,

since (0, . . . , 0) 6∈ dom (g), we have that (0, . . . , 0) 6∈ dom (f ? g), i.e., f ? g ∈ U0 and
thus f ? g ∈ QX . This shows that QX is a closed set of Par(2).

3) To show that QX ? T0,2 ⊆ QX take f ∈ QX and g ∈ T0,2. Since T0,2 ⊆ pPolRk
for all k ≥ 4, we have f ? g ∈

⋂
k 6∈X pPolRk for every X ∈ P(E≥4) and it remains to

show that f ? g ∈ U0, i.e., (0, . . . , 0) 6∈ dom (f ? g).
Indeed since g ∈ T0,2 ⊆ T0, we have g(0, . . . , 0) = 0 and thus if f ? g(0, . . . , 0) =

f(g(0, . . . , 0), 0, . . . , 0) = f(0, . . . , 0) was defined, then we would have (0, ..., 0) ∈
dom (f), a contradiction to f ∈ U0. This gives that f ? g ∈ U0 and so f ? g ∈ QX .

The proof of T0,2 ? QX ⊆ QX is similar.
Now we show that QX 6= QY for every X 6= Y,X, Y ∈ P(E≥4). Since X 6= Y , say

there is a t ∈ X, t 6∈ Y . Then by Lemma 2.8 ft ∈
⋂
k 6∈X

pPolRk and ft 6∈
⋂
k 6∈Y

pPolRk.
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C |I(C)|
Op(2) 3

Ta (a ∈ {0, 1}) 6
M 6
S 6

T0 ∩ T1 30
M ∩ Ta (a ∈ {0, 1}) 15

M ∩ T0 ∩ T1 101
S ∩ T0 ∩ T1 380

Table 1. Sizes of the finite intervals I(C)

It is shown in Section 2 that the partial functions fk are undefined on (0, . . . , 0), thus
fk ∈ U0 for all k ≥ 4. This shows that ft ∈ QX and ft 6∈ QY proving that QX 6= QY .

By Lemma 3.1 we have that |I(B)| ≥ |P(E≥4)| and thus I(B) is of continuum
cardinality. �

Now let ρ1,2 := {(0, 1), (1, 0), (1, 1)} and let T1,2 := Pol ρ1,2. Then by duality we
have:

Theorem 3.3. Let B ⊆ T1,2 be a clone on 2. Then the interval of partial clones I(B)
is of continuum cardinality.

4. Complete classification of all intervals of the form I(C)

In this section we use results discussed in [10] and combine them with our results
established in the previous sections to complete the classification of all intervals of
partial clones of the form I(C) over 2. Let Ta (for a ∈ {0, 1}), M and S be as defined
in Section 1. Let L be the clone of all linear functions, furthermore for a ∈ {0, 1} and

µ ≥ 2 let Ta,µ = Pol ({0, 1}µ \ {(¬a, . . . ,¬a)}) and Ta,∞ =
⋂
µ≥2

Ta,µ, Λ be the clone

generated by {∧, c0, c1} and V be the clone generated by {∨, c0, c1} on 2.
Set F := {Op(2), T0, T1, T0 ∩ T1,M,M ∩ T0,M ∩ T1,M ∩ T0 ∩ T1, S, S ∩ T0 ∩ T1}.
In [10] the authors collect several known results and establish some new ones con-

cerning the intervals I(C) where C is a clone on 2. The following is a conclusion of
[10].

Theorem 4.1. Let C be a clone on 2. Then the interval of partial clones I(C) over
2 is finite if and only if C ∈ F . Furthermore if C ⊆ B with B ∈ {L,Λ, V, T0,∞, T1,∞},
then the set I(C) has the cardinality of the continuum. Finally if C ⊆ B with B ∈
{T0,2, T1,2}, then the set I(C) is infinite.

The reader can verify that with the exception of subclones of T0,∞ and T1,∞, the
theorem above leaves open the cardinality of I(C) for almost all subclones C of T0,2
and T1,2 (see Figure 1 at the end of this section for the positions of these various clones
on 2 in the Post Lattice).

Combining Theorems 3.2, 3.3 and 4.1 gives our Dichotomy Theorem stated in Sec-
tion 1 of this paper.

We mention in passing that as the clone S ∩M is a subclone of T0,2, we have by
Theorem 3.2 that the interval of partial clones I(S ∩M) is of continuum cardinality.
A result in this direction is shown in [5] where a continuum family of partial clones
containing the set of all partial monotone and self-dual functions is constructed.

Remark 4.2. This paper shows that there is no interval of partial clones of the form
I(C) that is countably infinite in LP2 .
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Op(2)

T0 T1M

L

[Op(2)(1)]

S

T0,2

T0,3

T0,∞

Λ

T1,2

T1,3

T1,∞

V

Figure 1. Post’s lattice

Call a partial clone D on 2 strong if it contains all subfunctions of its functions, i.e.,
if for every g ∈ Par(2), we have g ∈ D whenever g = f |dom (g), for some f ∈ D. Now
the lattice LO2 is a countably infinite sublattice of LP2 , but LO2 consists of clones of
total functions only. Thus the clones in LO2 are not strong partial clones on 2.

We pose the following problem:

Problem. Does the lattice LP2 have a countably infinite interval of strong partial
clones?

Note added in proof. One year after this paper was written, several such examples
were constructed, see [3].

Remark 4.3. As defined above let ρ0,2 := {(0, 0), (0, 1), (1, 0)} and let T0,2 := Pol ρ0,2.
Theorem 2.9 says that the interval of all partial clones that intersect Op(2) in T0,2 is of
continuum cardinality over 2. More results in this direction are established in [2]. Let
〈ρ0,2〉 be the smallest closed class of relations (see [11], Section 2.4) that contain ρ0,2
and let G be the set of all undirected finite graphs without multiple edges but possibly
with loops (up to an isomorphism). An appropriate closure operator is introduced
on G in [2] such that the closed classes of graphs are in a one-to-one correspondence
with the closed subclasses of 〈ρ0,2〉 which in turn are in a one-to-one correspondence
with the strong partial clones containing T0,2. This gives a simple proof to the result
established in Theorem 2.9 in the present paper. Moreover, this correspondence allows
us to to give some interesting descriptions of the bottom and the top of the lattice of
all strong partial clones containing the total clone T0,2 on 2.
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Szeged, Hungary
E-mail address: twaldha@math.u-szeged.hu


	1. Preliminaries
	2. Partial clones intersecting Op(�) in T0,2
	3. Partial clones intersecting Op(�) in a subclone of T0,2
	4. Complete classification of all intervals of the form I(C)
	5. Acknowledgments
	References

