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DECISION-MAKING WITH SUGENO INTEGRALS
BRIDGING THE GAP BETWEEN MULTICRITERIA EVALUATION
AND DECISION UNDER UNCERTAINTY

MIGUEL COUCEIRO, DIDIER DUBOIS, HENRI PRADE, AND TAMAS WALDHAUSER

ABsTrAcT. This paper clarifies the connection between multiple criteria decision-
making and decision under uncertainty in a qualitative setting relying on a finite
value scale. While their mathematical formulations are very similar, the underlying
assumptions differ and the latter problem turns out to be a special case of the for-
mer. Sugeno integrals are very general aggregation operations that can represent
preference relations between uncertain acts or between multifactorial alternatives
where attributes share the same totally ordered domain. This paper proposes a
generalized form of the Sugeno integral that can cope with attributes having dis-
tinct domains via the use of qualitative utility functions. It is shown that in the
case of decision under uncertainty, this model corresponds to state-dependent pref-
erences on consequences of acts. Axiomatizations of the corresponding preference
functionals are proposed in the cases where uncertainty is represented by possibil-
ity measures, by necessity measures, and by general order-preserving set-functions,
respectively. This is achieved by weakening previously proposed axiom systems for
Sugeno integrals.

1. MOTIVATION

Two important chapters of decision theory are decision under uncertainty and multi-
criteria evaluation [5]. Although these two areas have been developed separately, they
entertain close relationships. On the one hand, they are not mutually exclusive; in fact,
there are works dealing with multicriteria evaluation under uncertainty [32]. On the
other hand, the structure of the two problems is very similar, see, e.g., [21}[23]. Decision-
making under uncertainty (DMU), after Savage [39], relies on viewing a decision (called
an act) as a mapping from a set of states of the world to a set of consequences, so that
the consequence of an act depends on the circumstances in which it is performed. Un-
certainty about the state of the world is represented by a set-function on the set of
states, typically a probability measure.

In multicriteria decision-making (MCDM) an alternative is evaluated in terms of its
(more or less attractive) features according to prescribed attributes and the relative
importance of such features. Attributes play in MCDM the same role as states of the
world in DMU, and this very fact highlights the similarity of alternatives and acts:
both can be represented by tuples of ratings (one component per state or per criterion)
Moreover, importance coefficients in MCDM play the same role as the uncertainty
function in DMU. A major difference between MCDM and DMU is that in the latter
there is usually a unique consequence set, while in MCDM each attribute possesses its
own domain. A similar setting is that of voting, where voters play the same role as
attributes in MCDM.

There are several possible frameworks for representing decision problems that range
from numerical to qualitative and ordinal. While voting problems are often cast in a
purely ordinal setting (leading to the famous impossibility theorem of Arrow), decision
under uncertainty adopts a numerical setting as it deals mainly with quantities (since
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its tradition comes from economics). The situation of MCDM in this respect is less
clear: the literature is basically numerical, but many methods are inspired by voting
theory; see [6].

In the last 15 years, the paradigm of qualitative decision theory has emerged in
Artificial Intelligence in connection with problems such as webpage configuration, rec-
ommender systems, or ergonomics (see [19]). In such topics, quantifying preference in
very precise terms is difficult but not crucial, as these problems require on-line inputs
from humans and answers must be provided in a rather short period of time. As a con-
sequence, the formal models are either ordinal (like in CP-nets, see [4]) or qualitative,
that is, based on finite value scales. This paper is a contribution to evaluation processes
in the finite value scale setting for DMU and MCDM. In such a qualitative setting, the
most natural aggregation functions are based on the so-called Sugeno integral [40].
They were first used in MCDM [30]. Theoretical foundations for them in the scope
of DMU have been proposed in the setting of possibility theory [27], then assuming a
more general representation of uncertainty [26]. The same aggregation functions have
been used in [33] in the scope of MCDM, and applied in [36] to ergonomics. In these
papers it is assumed that the domains of attributes are the same totally ordered set.

In the current paper, we remove this restriction, and consider an aggregation model
based on compositions of Sugeno integrals with qualitative utility functions on distinct
attribute domains, which we call Sugeno utility functionals. We propose an axiomatic
approach to these extended preference functionals that enables the representation of
preference relations over Cartesian products of, possibly different, finite chains (scales).
We consider the cases when importance weights bear on individual attributes (the
importance function is then a possibility or a necessity measure), and the general case
when importance weights are assigned to groups of attributes, not necessarily singletons.
We study this extended Sugeno integral framework in the DMU situation showing that
it leads to the case of state-dependent preferences on consequences of acts. The new
axiomatic system is compared to previous proposals in qualitative DMU: it comes down
to deleting or weakening two axioms on the global preference relation.

The paper is organized as follows. Section [2] introduces basic notions and terminol-
ogy, and recalls previous results needed throughout the paper. Our main results are
given in Section [3] namely, representation theorems for multicriteria preference relations
by Sugeno utility functionals. In Section[d] we compare this axiomatic approach to that
previously presented in DMU. We show that this new model can account for preference
relations that cannot be represented in DMU, i.e., by Sugeno integrals applied to a
single utility function. This situation remains in the case of possibility theory.

This contribution is an extended and corrected version of a preliminary conference
paper [7] that was presented at ECAI’2012.

2. BASIC BACKGROUND

In this section, we recall basic background and present some preliminary results
needed throughout the paper. For introduction on lattice theory see [37].

2.1. Preliminaries. Throughout this paper, let Y be a finite chain endowed with
lattice operations A and V, and with least and greatest elements Oy and 1y, respectively;
the subscripts may be omitted when the underlying lattice is clear from the context;
[n] is short for {1,...,n} C N.

Given finite chains X, i € [n], their Cartesian product X = J[;(,, X; constitutes a
bounded distributive lattice by defining

aAb=(a1 Aby,...,an Aby,), and aVb = (a1 Vbi,...,a,Vby,).

In particular, a < b if and only if a; < b; for every i € [n]. For k € [n] and ¢ € X}, we
use xj to denote the tuple whose i-th component is ¢, if ¢ = k, and z;, otherwise.

In the sequel, X will always denote such a cartesian product Hie[n] X; of finite chains
X, © € [n]. In some places, we will consider the case when the X;’s are the same chain
X, and this will be clearly indicated in the text.
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Let f: X — Y be a function. The range of f is given by ran(f) = {f(x) : x € X}.
Also, f is said to be order-preserving if, for every a,b € Hie[n] X; such that a < b, we
have f(a) < f(b). A well-known example of an order-preserving function is the median
function med: Y3 — Y given by

med(x1, xe, 23) = (1 Ax2) V (21 Ax3) V (22 A x3).

2.2. Basic background on polynomial functions and Sugeno integrals. In this
subsection we recall some well-known results concerning polynomial functions that will
be needed hereinafter. For further background, we refer the reader to, e.g., [18| 29].

Recall that a (lattice) polynomial function on Y is any map p: Y™ — Y which can
be obtained as a composition of the lattice operations A and V, the projections x — x;
and the constant functions x — ¢, c € Y.

As shown by Goodstein [28], polynomial functions over bounded distributive lattices
(in particular, over bounded chains) have very neat normal form representations. For
I C [n], let 1; be the characteristic vector of I, i.e., the n-tuple in Y™ whose i-th
component is 1 if ¢ € I, and 0 otherwise.

Theorem 2.1. A function p: Y™ =Y is a polynomial function if and only if

(1) plar,..z) =\ (p(r) A N\ ).

IC[n] i€l

Equivalently, p: Y™ — Y is a polynomial function if and only if

p(a:l, . ,Jin) = /\ (p(]-[n]\I) V \/ Z‘i).

1C[n) il

Remark 2.2. Observe that, by Theorem [2.1] every polynomial function p: Y — Y is
uniquely determined by its restriction to {0,1}". Also, since every lattice polynomial
function is order-preserving, the coefficients in are monotone increasing as well, i.e.,
p(17) < p(1;) whenever I C J. Moreover, a function f: {0,1}" — Y can be extended
to a polynomial function over Y if and only if it is order-preserving.

Polynomial functions are known to generalize certain prominent nonadditive aggre-
gation functions namely, the so-called Sugeno integrals. A capacity on [n] is a mapping
w: P([n]) = Y which is order-preserving (i.e., if A C B C [n], then pu(A) < u(B)) and
satisfies u(0) = 0 and w([n]) = 1; such functions qualify to represent uncertainty in
DMU and importance weights in MCDM.

The Sugeno integral associated with the capacity p is the function g,: Y" — Y
defined by

(2) Gular, - zn) =\ () A N ).

1C[n] i€l

The name “integral” for such an expression may sound surprising. However, it was
proposed first by Sugeno [40] under the name “fuzzy integral” in analogy with Lebesgue
integral under the following equivalent form:

qu(2) = maxmin(y, u(x > y)),
yey

where u(x > y) = p({i € [n]lz; > y}). The idea was to replace integral (sum) and
product in Lebesgue integral by fuzzy set union (max) and intersection (min). For
further background see, e.g., [31 [0} [41].

Remark 2.3. Asobserved in [33,[34], Sugeno integrals exactly coincide with those poly-
nomial functions ¢ : Y™ — Y that are idempotent, that is, which satisfy ¢(c,...,c) = ¢,
for every ¢ € Y. In fact, by it suffices to verify this identity for ¢ € {0,1}, that is,
q(1fn)) = 1 and ¢(1¢) = 0.

Remark 2.4. Note also that the range of a Sugeno integral ¢ : Y — Y isran(q) =Y.
Moreover, by defining p(I) = ¢(11), we get ¢ = g,.
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In the sequel, we shall be particularly interested in the following types of capacities.

A capacity p is called a possibility measure (resp. mnecessity measure) if for every
A,B C [n], n(AU B) = u(A) V pu(B) (resp. p(AN B) = pu(A) A u(B)).

Remark 2.5. In the finite setting, a possibility measure is completely characterized
by the value of p on singletons, namely, u({i}),i € [n] (called a possibility distri-
bution), since clearly, u(A) = \/,c, p#({i}). Likewise, a necessity measure is com-
pletely characterized by the value of 1 on sets of the form N; = [n] \ {i} since clearly,

1(A) = Niga n(N:)

Note that if 4 is a possibility measure [42] (resp. necessity measure [25]), then g, is
a weighted disjunction \/,.; u(i) A z; (resp. weighted conjunction A, ; u(N;) V z; for
some I C [n] [24] (where u(7), a shorthand notation for u({i}), represents importance
of criterion 7). The weighted disjunction operation is then permissive (it is enough
that one important criterion be satisfied for the result to be high) and the weighted
conjunction is demanding (all important criteria must be satisfied). In terms of DMU,
states are compared in terms of relative plausibility, and the weighted disjunction is
optimistic (it is enough that one plausible state yields a good consequence for the act
to be attractive), while the weighted conjunction is pessimistic (it is required that all
plausible states yield good consequences for the act to be attractive).

Polynomial functions and Sugeno integrals have been characterized by several au-
thors, and in the more general setting of distributive lattices see, e.g., [9} 10, [3T].

The following characterization in terms of median decomposability will be instru-
mental in this paper. A function p: Y™ — Y is said to be median decomposable if for
every x € Y,

p(x) = med (p(x3), 1, p(x1)) (k= 1,...,n),

where x{ denotes the tuple whose i-th component is ¢, if ¢ = k, and z;, otherwise.

Theorem 2.6 ([8, B34]). Let p: Y™ — Y be a function on an arbitrary bounded chain
Y. Then p is a polynomial function if and only if p is median decomposable.

2.3. Sugeno utility functionals. Let X1,...,X,, and Y be finite chains. We denote
(with no danger of ambiguity) the top and bottom elements of X1,...,X,, and Y by 1
and 0, respectively.

We say that a mapping ¢;: X; = Y, i € [n], is a local utility function if it is order-
preserving. It is a qualitative utility function as mapping on a finite chain. A function
f: X = Y is a Sugeno utility functional if there is a Sugeno integral ¢: Y™ — Y and
local utility functions ¢,;: X; — Y, i € [n], such that

(3) fx) = q(er(z1), ..., on(zn)).

Note that Sugeno utility functionals are order-preserving. Moreover, it was shown in
[15] that the set of functions obtained by composing lattice polynomials with local
utility functions is the same as the set of Sugeno utility functionals.

Remark 2.7. In [15] and [16] a more general setting was considered, where the inner
functions ¢;: X; — Y, i € [n], were only required to satisfy the so-called “boundary
conditions”: for every x € X;,

(4) ©i(0) < pi(z) <pi(1) or »i(1) < pi(z) < 9i(0).

The resulting compositions where ¢ is a polynomial function (resp. Sugeno integral)
were referred to as “pseudo-polynomial functions” (resp. “pseudo-Sugeno integrals”). As
it turned out, these two notions are in fact equivalent.

Remark 2.8. Observe that pseudo-polynomial functions are not necessarily order-
preserving, and thus they are not necessarily Sugeno utility functionals. However,
Sugeno utility functionals coincide exactly with those pseudo-polynomial functions (or,
equivalently, pseudo-Sugeno integrals) which are order-preserving, see [15].
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Sugeno utility functionals can be axiomatized in complete analogy with polynomial
functions by extending the notion of median decomposability. We say that f: X — Y
is pseudo-median decomposable if for each k € [n] there is a local utility function
vk X — Y such that

() F(x) = med (f(x}), on(r), £ (x))

for every x € X.

Theorem 2.9 ([15]). A function f: X — Y a Sugeno utility functional if and only if
f is pseudo-median decomposable.

Remark 2.10. In [15] and [16] a more general notion of pseudo-median decomposabil-
ity was considered where the inner functions ¢;: X; — Y, @ € [n], were only required
to satisfy the boundary conditions.

Note that once the local utility functions p;: X; — Y (i € [n]) are given, the pseudo-
median decomposability formula provides a disjunctive normal form of a polynomial
function py which can be used to factorize f. To this extent, let 1, denote the charac-
teristic vector of I C [n] in X, i.e., 1; € X is the n-tuple whose i-th component is 1x,
if i € I, and Ox, otherwise.

Theorem 2.11 ([16]). If f: X — Y is pseudo-median decomposable w.r.t. local util-
ity functions pp: Xy — Y (k € [n]), then f = po(v1,...,¢n), where the polynomial
function pg is given by

(6) po (o) =\ (F(0) A N wi)-

IC[n] i€l

This result naturally asks for a procedure to obtain local utility functions ¢;: X; = Y
(i € [n]) which can be used to factorize a given Sugeno utility functional f: X — Y
into a composition . In the more general setting of pseudo-polynomial functions,
such procedures were presented in [I5] when Y is an arbitrary chain, and in [I6] when
Y is a finite distributive lattice; we recall the latter in Appendix I.

The following result provides a noteworthy axiomatization of Sugeno utility function-
als which follows as a corollary of Theorem 19 in [I6]. For the sake of self-containment,
we present its proof in Appendix II.

Theorem 2.12. A function f: X — Y is a Sugeno utility functional if and only if it
is order-preserving and satisfies

F(xR) < f(xR) and f(y) < f(vi) = f(x}) < f(yR)
for dllx,y € X and k € [n], a € X},.

Let us interpret this result in terms of multicriteria evaluation. Consider alternatives
x and y such that 2 = yx = a. Then f(x)) < f(x) means that down-grading
attribute k makes the corresponding alternative xg strictly worse than x. Similarly,
fy)<f (y}c) means that upgrading attribute £ makes the corresponding alternative
y}, strictly better than y. Then pseudo-median decomposibility expresses the fact that
the value of x is either f(x9), or f(xi) or ¢g(xx), which expresses a kind of non-

compensation. In such a situation, given another alternative y such that y; = z; = a:
F(xR) < f(x) =med (f(x}), pr(a), f(x1)) = ¢rla) A f(xi) < orla),
Fvi) > f(y) = med (f(y2). ela), f(yi) = wr(a) V f(y}) = e(a),

and so f(x) < yr(a) < f(y). Hence, if maximally downgrading (resp. upgrading)
attribute k& makes the alternative worse (resp. better) it means that its overall rating
was not more (resp. not less) that the rating on attribute k. We shall further discuss
this and other facts in Section [l

It is also interesting to comment on Sugeno utility functionals as opposed to Sugeno
integrals applied to a single local utility function. First, the role of local utility functions
is clearly to embed all the local scales X; into a single scale Y in order to make the
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scales X; commensurate. In other words, a Sugeno integral cannot be defined if
there is no common scale X such that X; C X, for every ¢ € [n]. In particular, the
situation in decision under uncertainty is precisely that where [n] is the set of states
of nature, and X; = X, for every i € [n], is the set of consequences (not necessarily
ordered) that is, the utility of a consequence resulting from implementing an act does
not depend on the state of the world in which the act is implemented. Then it is clear
that ¢; = ¢, for every ¢ € [n], namely, a unique utility function is at work. In this
sense, the Sugeno utility functional becomes a simple Sugeno integral of the form

(7) Guyis- o) =\ (DA N\

IC[n) iel

where Y = ¢(X). It is the utility function ¢ that equips X with a total order: z; <
z; <= ¢(x;) < o(x;). The general case studied here corresponds to that of DMU
but where the utility function are state-dependent. In the state-dependent situation,
the evaluation of x is of the form , i.e., consequences x; € X are not evaluated
in the same way in each state: what is denoted by ¢;(z;) stands for ¢(i,z;),where
v :[n] x X =Y, ie. the utility function evaluates pairs (state, consequence). This
situation was already considered in the literature of expected utility theory [38], here
adapted to the qualitative setting.

3. PREFERENCE RELATIONS REPRESENTED BY SUGENO UTILITY FUNCTIONALS

In this section we are interested in relations which can be represented by Sugeno
utility functionals. In Subsection [3.1] we recall basic notions and present preliminary
observations pertaining to preference relations. We discuss several axioms of DMU
in Subsection [3.2] and present several equivalences between them. In Subsections [3.3
and we present axiomatizations of those preference relations induced by possibility
and necessity measures, and of more general preference relations represented by Sugeno
utility functions.

3.1. Preference relations on Cartesian products. One of the main areas in de-
cision making is the representation of preference relations. A weak order on a set
X = Hie[n] X; is a relation X C X2 that is reflexive, transitive, and complete (Vx,y €
X :x 2y or y 3 x). Like quasi-orders (i.e., reflexive and transitive relations), weak
orders do not necessarily satisfy the antisymmetry condition:

(AS) Vx,y e X:x 3y, y3IXx = x=Yy.

Not having this property implies the existence of an “indifference” relation which we
denote by ~, and which is defined by y ~ x if x 3 y and y T x. Clearly, ~ is an
equivalence relation. Moreover, the quotient relation 3 / ~ satisfies (AS); in other
words, 3 / ~ is a complete linear order (chain).

By a preference relation on X we mean a weak order = which satisfies the Pareto
condition:

(P) Vx,ye X:x<y = x3Iy.

In this section we are interested in modeling preference relations, and in this field
two problems arise naturally. The first deals with the representation of such preference
relations, while the second deals with the axiomatization of the chosen representation.
Concerning the former, the use of aggregation functions has attracted much attention
in recent years, for it provides an elegant and powerful formalism to model preference
[5, B0] (for general background on aggregation functions, see [31, 2]).

In this approach, a weak order =X on a set X = Hie[n] X, is represented by a so-called
global utility function U (i.e., an order-preserving mapping which assigns to each event
in X an overall score in a possibly different scale Y), under the rule: x 3 y if and only
if U(x) < U(y). Such a relation is clearly a preference relation.

Conversely, if 3 is a preference relation, then the canonical surjection r: X — X/ ~,
also referred to as the rank function of 3, is an order-preserving map from X to X/ ~
(linearly ordered by C:=3 / ~), and we have x 3y <= r(x) C r(y). Thus, 3
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is represented by an order-preserving function if and only if it is a preference relation,
and in this case 3 is represented by r.

3.2. Axioms pertaining to preference modelling. In this subsection we recall
some properties of relations used in the axiomatic approach discussed in [23| 26]; here
we will adopt the same terminology even if its motivation only makes sense in the realm
of decision making under uncertainty. We also introduce some variants, and present
connections between them.

First, for x,y € X and A C [n], let xAy denote the tuple in X whose i-th component
is x; if 1 € A and y; otherwise. Moreover, let 0 and 1 denote the bottom and the top
of X, respectively, and let =< be a preference relation on X.

We consider the following axioms. The optimism axiom [27] is

(OPT) Vx,y € X,VA C [n] : xAy <x = x ZyAx.

The intuition behind this axiom is as follows [26]. Noticing that xAx = x, xAy < x
indicates improved attractiveness of the act if y is changed into x in the case that event
[n]\ A occurs. Thus it indicates that [n]\ A is plausible for the decision-maker. As (s)he
is optimistic, this level of attractiveness is maintained even if x is changed into y when
A occurs, regardless of whether A is plausible. The name optimism is also justified
considering the case where x = 1 and y = 0. Then reads A < [n] implies
[n] 3 [n]\ A (full trust in at least A or [n]\ A, an optimistic approach to uncertainty).
This axiom subsumes’| two instances of interest, namely,

(OPT) vx € X,VA C [n] : xA0 < x = x 2 04x,
(OPTy) vx,y € X,k € [n],a € X :x) <x§ = x§ Jyp.

Note that under (P) the conclusion of (OPT’) is equivalent to x ~ 0Ax. Similarly,
h

the conclusion of (OPT;)) could be replaced by x{ ~ 0% (state k is considered fully
plausible, and consequences of other states are neglected).
Dual to optimism we have the pessimism axiom

(PESS) Vx,y € X,VA C [n] : xAy - x = x Z y4x.

The intuition behind this axiom is analogous to that of optimism [26]. Statement
xAy = x indicates increased attractiveness of the act if x is changed into y when
[n] \ A occurs, and thus it indicates that [n] \ A is plausible for the decision-maker. As
(s)he is pessimistic, this level of attractiveness of x cannot be improved by changing x
into y when A occurs, regardless of whether A is plausible. When x =0 and y = 1,
(PESS) reads [n] \ A = @ implies () 7 A (full distrust in at least one of A or [n]\ A, a
pessimistic approach to uncertainty).

The pessimism axiom subsumes the two dual instances
(PESS’) Vx € X,VA C [n] : xAl » x = x I 14x,
(PESS;) Vx,y € X,k €[n],a € Xy : X} = X§ = x§ = yb
Again, under (P), the conclusions of (PESS') and (PESS)) are equivalent to x ~ 1Ax
and x¢ ~ 1%, respectively.

We will also consider the disjunctive and conjunctive axioms
(V) Vy,zeX:yVz~yoryVz~az,
(N) Vy,ze X:yAzZ~yoryAzn~z.

Moreover, we have the so-called disjunctive dominance and strict disjunctive domsi-
nance
(DD+) Vx,y,z€X:xZy, X2z = XyVz,
(DD.) VX, y,z€X:X>y,X>2 = X>YyV3z,

For (OPT) — (OPTi)), just take x = x¢, y = y% and A = [n] \ {k}.
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as well as their dual counterparts, conjunctive dominance and strict conjunctive domi-
nance

(CDy) Vx,y,z€ Xy X, 20X = YAz X,

(CD,.) Vx,y,z€X:y=X,2>X = yAZ>X.

The four above axioms clearly make sense for one-shot decisions as they model non-
compensation between consequences of states in the presence of uncertainty.

Theorem 3.1. If = is a preference relation, then azioms (OPT|), (OPT’), (OPT,),
, (DDx-) and (DD.) are pairwise equivalent.

Proof. We prove the theorem by establishing the following six implications:
(OPT) = @PT) = (OPT) = @
— (D) — OO — ©ED).
Note that the implication = is trivial, and recall that is just

a special case of (OPT)). Thus, we only need to prove the four implications below.

(OPT) = (OPT): Suppose that xAy < x. By the Pareto property we have
xA0 = xAy, and then xA0 < x follows by the transitivity of <. Applying and
([P), we obtain x 3 0Ax 3 yAx, and then x 3 yAx follows again from transitivity.

(OPT,)) = (V): Let us suppose that y V z » z; we will prove using that
yVz ~y. From (P] we see that z Xy Vz, hence we have z < y V z by our assumption.
If A={i€[n]:y; > 2}, then obviously yAz = y V z. Let ¢ denote the cardinality of
A, let A= {i1,...,i¢}, and define the sets A; := {i1,...,4;} for j =1,...,¢. Using the
Pareto property, we obtain the following chain of inequalities:

zlyAizZ - JyAiz=yVz

Since z < y V z, at least one of the above inequalities is strict. If the s-th inequality is
the last strict one, then

(8) z3yA1z3 - ZyAsi1z <yAsz~ - ~yAiz=y\Vaz.

To simplify notation, let us put x = yAs; 1z, ¥ = is and a = y;. Then we have
x) 3 x =yAs_1z < yAsz = x¢, hence x¢ 3 y¢ follows from (OPT;). On the other
hand, we see from () that yA,z ~ y V z, therefore

yVz~yAz=x; Iy, =y lYyVg,

where the last inequality is justified by (]ED Since 3 is a weak order, we can conclude
that yvz ~y.

(DDy-) = : Assume that x > y,x = z. Since = is complete, we can
suppose without loss of generality that y >~ z. By reflexivity, we also have y >~ y, hence
it follows from (DDw|) that y 2~ y Vz. Since x > y, we obtain x > y V z by transitivity.

(DD,]) = (OPT'): Putting y = xA0 and z = 0A4x, we clearly have y V z = x. If
x >y and x > z, then implies x = y V z, which is a contradiction. Therefore,
we must have x ¥ y or x  z. This shows that x =y = x ¥ z = x 3 z, where
the second implication holds because = is complete. Thus we have y < x = x X z,
and this is exactly what asserts. O O

Dually, we have the following result which establishes the pairwise equivalence be-
tween the remaining axioms.

Theorem 3.2. If 3 is a preference relation, then azioms (PESS|), (PESS’), (PESS;)),
, CD-|) and (CD,.) are pairwise equivalent.

3.3. Preference relations induced by possibility and necessity measures. In
this subsection we present some preliminary results towards the axiomatization of pref-
erence relations represented by Sugeno utility functionals (see Theorem . More
precisely, we first obtain an axiomatization of relations represented by Sugeno utility
functionals associated with possibility measures (weighted disjunction of utility func-
tions).
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Theorem 3.3. A preference relation 3 satisfies one (or, equivalently, all) of the ax-
ioms in Theorem if and only if there are local utility functions p;, i € [n], and
a possibility measure [, such that = is represented by the Sugeno utility functional

f = q#(@h”w@n)-

Proof. First let us assume that = is represented by a Sugeno utility functional f =
qu(#1, -, Pn), where u is a possibility measure. As observed in Subsection f can
be expressed as a weighted disjunction:

F) =\ (L) Aei(x)).
i€[n]

Using the fact that each ; is order-preserving and Y is a chain, we can verify that f
commutes with the join operation of the lattice X:

flyva) =\ (u)Agi(yi V)

1€[n]

= \/ (1) A (@i (i) V @i (2)))

i€[n]

\/ (1 (@) A i (i) V \/ (1 (@) Nepi () = f(y) V [ (2).

i€[n) i€[n]

Since the ordering on Y is complete, we have f (y V z) € {f (y), f (z)}, and this implies
that yVz~yoryVz~zforall y,z € X, ie., = satisfies .

Now let us assume that 3 satisfies , and let Y = X/ ~. Using the rank function
r of 3, we define a set function p: P ([n]) = Y by u(I) = r(110) and a unary map
vi: Xi = Y by ¢; (a) = r(0¢) for each i € [n]. The Pareto condition ensures that p
and each ;, i € [n], are all order-preserving; moreover, u is a capacity, since 0 and 1
have the least and greatest rank, respectively.

Condition can be reformulated in terms of the rank function as
(9) Vy,ze X:r(yVz)=r(y)Vr(z),

and this immediately implies that u is a possibility measure. Therefore, as observed in
Subsection the Sugeno utility functional f := g, (¢1,...,pn) can be written as

Fe0) =\ () A () =\ (r(0}) Ar(07)),
i€[n] i€[n]
since (i) = r(1{i}0) = r (0}). By the Pareto condition, we have 0} = 07", hence
7 (0}) Ar(07") =7 (07"), and thus f (x) takes the form
fe =\ r(f).
i€[n]
Applying (]%[) repeatedly, and taking into account that x = Vie[n] 07, we conclude that
X

f(x) =r(x). As observed in Subsection r represents 3, and thus 3 is represented
by the Sugeno utility functon f corresponding to the possibility measure u. 0O [

Remark 3.4. Note that the above theorem does not state that every Sugeno utility
functional representing a preference relation that satisfies the conditions of Theorem
corresponds to a possibility measure. As an example, consider the case n = 2 with
X1 =X2={0,1} and Y = {0,a,b,1}, where 0 < a < b < 1. Let us define local utility
functions p;: X; - Y (i=1,2) by

1(0)=0, p1 (1) =b, ¥2(0)=a, p2(1) =1,

and let u be the capacity on {1,2} given by
p@) =0, p({1}) =a, p({2}) =b, p({1,2}) = 1.

It is easy to see that p is not a possibility measure, but the preference relation = on
X1 x X, represented by f := q,(p1,p2) clearly satisfies , since (0,0) ~ (1,0) <
(0,1) ~ (1,1). On the other hand, the same relation can be represented by the second
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projection (z1,x2) — 2 on {0, 1}EI, which is in fact a Sugeno integral with respect to
a possibility measure satisfying 0 = p(0) = p({1}) and p({2}) = p({1,2}) = 1.

Concerning necessity measures, by duality, we have the following characterization of
the weighted conjunction of utility functions.

Theorem 3.5. A preference relation 3 satisfies one (or, equivalently, all) of the ax-
ioms in Theorem if and only if there are local utility functions p;, i € [n], and
a necessity measure p, such that = is represented by the Sugeno wutility functional

f = q#(‘pla .. 7(;071)

3.4. Axiomatizations of preference relations represented by Sugeno utility
functionals. Recall from Subsection that 3 is a preference relation if and only if
= is represented by an order-preserving function valued in some chain (for instance,
by its rank function). The following result that draws from Theorem (and whose
interpretation was given immediately after) axiomatizes those preference relations rep-
resented by general Sugeno utility functionals.

Theorem 3.6. A preference relation X on X can be represented by a Sugeno utility
functional if and only if

(10) xp < xi and yi <yp = xj 3yi
holds for all x,y € X and k € [n], a € Xj.

Proof. From Theorem [2.12]it follows that r is a Sugeno utility functional if and only if
holds. Thus, to prove Theorem it is enough to verify that < can be represented
by a Sugeno utility functional if and only if r is a Sugeno utility functional.

The sufficiency is obvious. For the necessity, let us assume that 3 is represented by
a Sugeno utility functional f: X — Y of the form f = ¢, (¢1,...,¢,). Furthermore,
we may assume that f is surjective.

Since r also represents 3, we have f (x) < f(y) <= r(x) C r(y), and hence the
mapping a: Y — X/ ~ given by a(f (x)) = r (x) is a well-defined order-isomorphism
between Y and X/ ~. As « is order-preserving, it commutes with the lattice operations
V and A, and hence

rx)=alf () =\ (au@)r N\ alpi (@)

1C[n] i€l

for all x € X. Since « is an order-isomorphism, each composition ay;, i € [n], is a
local utility function, and the composition au is a capacity on [n]. Thus r is indeed a
Sugeno utility functional, namely, r = af = qau(e@1, ..., apy). d O

Example 3.7. To illustrate , suppose that alternatives xj and y{ stand for two
cars sharing the same colour a. By , if x{ is strictly preferred to y§, then either
x¢ is indifferent to the same car x but with the ugliest colour 0, or y¢ is indifferent
to the same car y;. but with the nicest colour 1.

In terms of DMU, one may also observe that x < x means that state k negatively
affects the worth of x, making it worse if not present. Dually, y < y; means that state
k positively affects the worth of y, making it better if &k is plausible. As in both cases
the consequence of these acts in state k is a, the axiom suggests that the utility of x is
not greater than the utility of consequence a in state k alone and that the utility of y
is not less than this utility.

4. DMU vs. MCDM

In [26], Dubois, Prade and Sabbadin considered the qualitative setting under uncer-
tainty, and axiomatized those preference relations on X = X" that can be represented

2Since X/ ~ has two elements, this is essentially the same as the rank function r: X — X/ ~.
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by special (state-independent, see end of Section Sugeno utility functionals f: X — Y
of the form

(11) f(x) =ple(x1),...,0(x)),

where p: Y™ — Y is a polynomial function (or, equivalently, a Sugeno integral; see, e.g.,
[11, 12]), and ¢: X — Y is a utility function. To get it, two additional axioms (more
restrictive than and (| m were considered, namely, the so-called restricted
disjunctive dommance and restricted conjunctive dommance

(RDD) Vx,y,ce X:x>y,x>¢c = x>yVc,
(RCD) Vx,y,ceX:y>X,c>X = yAC > X,

where c is a constant tuple.

Theorem 4.1 (In [26]). A preference relation X on X = X" can be represented by a
state-independent Sugeno wutility functional if and only if it satisfies and
(ECD).

Clearly, is a particular form of , and thus every preference relation = on X =
X™ which is representable by is also representable by a Sugeno utility functional

. In other words, we have that (RDD) and (RCD)) imply condition (10). However,
as the following example shows, the converse is not true.

Example 4.2. Let X = {1,2,3} = Y endowed with the natural ordering of integers,
and the consider the preference relation < on X = X? whose equivalence classes are

3),(2,3)},
2),(3,1),(1,3),(2,2), (2, 1)},
2), (1, 1)}.

This relation does not satisfy (RDD), e.g., take x = (2,3), y = (1,3) and ¢ = (2,2)
(similarly, it does not satisfy (RCD)), and thus it cannot be represented by a Sugeno
utility functional (II). However, with (21, z2) = (2A21) V (2A22) V (3Az1 Azs), and
w1 =1{(3,3),(2,3),(1,1)} and 2 = {(3,3),(2,1), (1,1)}, we have that = is represented
by the Sugeno utility functional f(z1,z2) = q(¢1(21), 2(x2)).

/\
\_/

)

{B3,
[( )] =1{B,
{a

In the case of preference relations induced by possibility and necessity measures,
Dubois, Prade and Sabbadin [27] obtained the following axiomatizations.

Theorem 4.3 (In [27]). Let X be a preference relation on X = X™. Then the following
assertions hold.

(i) = satisfies (OPT) and (RCD) if and only if there exist a utility function ¢
and a possibility measure p, such that = is represented by the Sugeno utility

functional f = q.(p,..., ).

(ii) 3 satisfies (PESS) and (RDD) if and only if there exist a utility function ¢
and a mecessity measure p, such that = is represented by the Sugeno utility
functional f = q,(p,...,9).

Again, every preference relation which is representable as in () or (i) of Theorem
is representable as in Theorems [3.3] and [.5] respectively. In other words, MCDM is at
least as expressive as DMU.

Now one could think that in these more restrictive possibility and necessity frame-
works the expressive power of state-independent DMU and MCDM (or state-dependent
DMU) would coincide. As the following example shows, state-dependent DMU (MCDM)
is again strictly more expressive than DMU.

Example 4.4. Let once again X = {1,2,3} = Y endowed with the natural ordering
of integers, and the consider the preference relation < on X = X? whose equivalence
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classes are

[(3,3)] ={(3,3),(3,2),(3,1),(1,3),(2,3)},
[(2,2)] ={(2,2),(2,1)},
[(172)] = {(172), (17 1)}

This relation does not satisfy , e.g., take x = (1,2), y = (1,3) and c = (2,2),
and thus it cannot be represented by a Sugeno utility functional f = q.(p,...,¢)
where p is possibility measure. However, with ¢(z1,22) = (3 A z1) V (3 A x2), with
possibility distribution p(1) = p(2) = 3, and ¢1 = {(3,3),(2,2),(1,1)} and ¢y =
{(3,3),(2,1),(1,1)}, we have that = is represented by the Sugeno utility functional
f(@1,@2) = q(e1(21), pa(22)).

Dually, we can easily construct an example of a preference relation representable in
the necessity setting of MCDM, but not in that of DMU.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

As recalled in the introduction, Sugeno integrals can be instrumental in DMU and
MCDM in situations where it is difficult or too time-consuming to evaluate preferences
between alternatives (by uncertainty of states or importance of criteria using a fine-
grained numerical scales, respectively). They generalize maximin and minimax criteria
in DMU. Moreover, more often than not, obtaining very precise quantified results in
these areas is not crucial outside economic domains. The use of Sugeno integrals only
requires finite value scales that can be adapted to the level of perception of decision-
makers. Conversely, Sugeno integrals can be applied to identify criteria aggregations
from data, and expressing them in interpretable ways by means of if-then rules [35] 20].

One draw-back is that such aggregation methods have limited expressive power. Our
proposal of Sugeno utility functionals thus improves the expressiveness of qualitative
aggregation methods.

Besides, in the numerical setting, utility functions play a crucial role in the expressive
power of the expected utility approach, introducing the subjective perception of (real-
valued) consequences of acts and expressing the attitude of the decision-maker in the
face of uncertainty. In the qualitative and finite setting, the latter point is taken into
account by the choice of the monotonic set-function in the Sugeno integral expression
(possibility measures for optimistic decision-makers, necessity measures for pessimistic
decision-makers).

So one might have thought that a direct appreciation of consequences is enough to
describe a large class of preference relations. This paper questions this claim by showing
that even in the finite qualitative setting, the use of local utility functions increases the
expressive power of Sugeno integrals, thus proving that the framework of qualitative
MCDM is formally more general that the one of state-independent qualitative DMU.
In fact, the same holds in the more restrictive frameworks dealing with possibility and
necessity measures.

6. APPENDIX I: FACTORIZATION OF SUGENO UTILITY FUNCTIONALS

In this appendix we recall the procedure given in [16] to obtain all possible factor-
izations of a given Sugeno utility functional into a composition of a Sugeno integral
(or, more generally, a polynomial function) with local utility functions. Note that
Theorem [2.11] provides a canonical polynomial function py that can be used in such a
factorization.

First, we provide all possible inner functions ¢y : X — Y which can be used in the
the factorization of any Sugeno utility functional. To this extent, we need to recall the
basic setting of [16], and in what follows we take advantage of Birkhoff’s Representation
Theorem [I] to embed Y into P (U), the power set of a finite set U. Identifying Y with
its image under this embedding, we will consider Y as a sublattice of P (U) with 0 = ()
and 1 = U. As Y is a finite chain, say with m + 1 elements, U can be chosen as
U=[m]|={1,2,...,m},and Y ={[0],[1],..., [m]}, where [0] = 0.



DECISION-MAKING WITH SUGENO INTEGRALS 13
The complement of a set S € P (U) will be denoted by S. Moreover, we consider
the two following operators on U. A closure operator cl
cl (S) = [max S|
and a dual closure operator int
int (S) = [min S —1].

Now given an order-preserving function f: X — Y, we define for each k € [n] two
auxiliary functions @, ,®; : X; — Y as follows:

(12) @ ()= \/ A(fG)AFEDY), @ (ax) = J\ int(f(x)VFf(xL)-

T=0ap T=af

Note that the terms f (x?) and f (x}) in do not depend on ay, and hence, since f
is order-preserving, both ®, and <I>z are also order-preserving.

With the help of these two mappings, we can determine all possible local utility
functions ¢;: X; — Y, i € [n], which can be used to factorize a Sugeno utility functional
f: X — Y as a composition

f) = pler(@1), -+ pnlen)),

where p: Y™ — Y is a polynomial function.

Theorem 6.1 (In [16]). For any order-preserving function f: X — Y and order-
preserving mappings ¢r: Xr — Y (k € [n]), the following conditions are equivalent:
(1) @, < < P holds for all k € [n];

(2) f(®) =po(p(x));
(3) there exists a polynomial function p: Y™ —'Y such that f (x) = p (¢ (x)).

In particular, ®,; and <I>,:f are the minimal and maximal, respectively, local utility
functions (w.r.t. the usual pointwise ordering of functions), which can be used to
factorize a Sugeno utility functional. Moreover, we have the following corollary.

Corollary 6.2. An order-preserving function f: X — Y is a Sugeno utility functional
if and only if

(13) ®, <@, foralkeln].

As mentioned, pg can be used in any factorization of a Sugeno utility functional, but
there may be other suitable polynomial functions. To find all such polynomial functions,
let us fix local utility functions pg: X, — Y (k € [n]), such that ®, < ¢, < @] for
each k € [n]. To simplify notation, let ar = @i (0),br = ¢ (1), and for each I C [n]
let 1; € Y™ be the n-tuple whose i-th component is a; if ¢ ¢ I and b; if i € I. If
p: Y™ =Y is a polynomial function such that f (x) = p (¢ (x)), then

(14) p(17) = f(1;) forall I C [n],

since 17 = go(i[) As shown in [16], is not only necessary but also sufficient to
establish the factorization f (x) = p (¢ (x)).

To make this description explicit, let us define the following two polynomial functions
first presented in [17], namely,

p (y)= \/ (c; A /\yz), where ¢; = cl(f(il) A /\aﬁ-),
IC[n] il igl

and

pT(y) = \/ (ci/\/\yi), where cf:int(f(I[)\/\/bj-).

IC[n] iel iel

3Recall that il denotes the characteristic vector of I C [n] in X, i.e., i; € X is the n-tuple whose
i-th component is 1x, if i € I, and Ox, otherwise.
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As it turned out, a polynomial function p is a solution of if and only if p~ < p < p*.
Since, by Theorem p is uniquely determined by its values on the tuples 1;, this is
equivalent to

c;=p (1) <p;) <pt(1;)=c¢f forallC[n].

These observations are reassembled in the following theorem which provides the de-
scription of all possible factorizations of Sugeno utility functionals.

Theorem 6.3 (In [16]). Let f: X — Y be an order-preserving function, for each
k€ [n] let pr: Xr, — Y be a local utility function, and let p: Y™ — 'Y be a polynomial
function. Then f(x) = p (¢ (x)) if and only if @, < ¢ < @} for each k € [n], and
p-<p<p".

7. APPENDIX II: PROOF OF THEOREM [2.12]

Let f: X — Y be an order-preserving function. As in Appendix I, Y is thought
of as the sublattice Y = {[0],[1],...,[m]} of P ([m]) , where [0] = @. Then f (x)) =
[u], f (x) = [v], f (x}) = [w] with u < v < w, and hence we have

FEOANFED) ={u+1,...,0v},
f)V D) ={1...,v,w+1,...,m}.
Therefore the terms in the definition of ®, and <I>;r can be determined as follows:

(15) (7 09 A T6D) ={ § 09 AL =0

(16) int (f (x) V f (x})) = { ];fx% i ; Eig 2%3

By making use of these observations we can now prove Theorem [2.12

Theorem 7.1 (In [16]). A function f: X — Y is a Sugeno utility functional if and
only if it is order-preserving and satisfies

(17) F(xR) < F(xf) and f(yi) < f(yr) = F(xp) < F(yi)
for dllx,y € X and k € [n], a € X},.

Proof. Suppose first that f is a Sugeno utility functional. As observed, f is order-
preserving, and thus we only need to verify that holds. For a contradiction,
suppose that there is k& € [n] such that for some a € X; and x,y € X, we have

F(xR) < f(x) and f(y§) < f (yi), but f(xf) > f (yf)- Then

cl(f (xi) A f(x) > int(f (yi) vV f (¥i)):
and thus @ (a) > @/ (a). This contradicts Corollary as f is a Sugeno utility
functional. Hence both conditions are necessary.
To see that these conditions are also sufficient, suppose that f is order-preserving
and satisfies . Then, for every k € [n], a € Xj, and every x,y € X,

Ad(f (xg) A f(xD)) <int(f(yi)V f(yr))-

Thus, for every k € [n], we have &, < @; and, by Corollary f is a Sugeno utilty
function. O O
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