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MAXIMAL AND MINIMAL CLOSED CLASSES

IN MULTIPLE-VALUED LOGIC

TAMÁS WALDHAUSER

Abstract. We consider classes of operations in multiple-valued logic that are

closed under composition as well as under permutation of variables, identifi-
cation of variables (diagonalization) and introduction of inessential variables

(cylindrification). Such closed classes on a given finite set form a complete

lattice that includes the lattice of clones as the principal filter above the triv-
ial clone. We determine all maximal closed classes; it turns out that there

is only one family of closed classes besides Rosenberg’s six families of maxi-

mal clones. For minimal closed classes we prove an analogon of Rosenberg’s
five-type classification of minimal clones and we describe explicitly the unary

minimal closed classes.

1. Introduction

Let A be a nonempty finite set, and let C be a class of finitary operations on
A. If C is closed under composition of operations and contains the projections,
then C is called a clone on A. There are countably infinitely many clones on a
two-element base set, and all such clones were determined by Post [15]. For |A| ≥ 3
there exists a continuum of clones on A (see [11]), and it is widely accepted that
an explicit description of clones is an extremely difficult task even for |A| = 3. The
set of all clones on A is a complete lattice, and many authors have investigated
different parts of these lattices of clones. Here we focus on two special classes of
clones: maximal and minimal clones. Maximal clones (i.e., coatoms in the lattice
of clones) have been determined by Rosenberg [16] on arbitrary finite sets. The
description of minimal clones (i.e., atoms in the lattice of clones) seems to be a
considerably harder problem; a full description is available only for |A| ≤ 4 (see
[7, 19, 20, 18]). However, Rosenberg classified minimal clones into five types, and
for two of the types he found necessary and sufficient conditions for minimality over
arbitrary finite sets [17].

In this paper we generalize these two theorems of Rosenberg about maximal and
minimal clones to more general classes of operations. We consider classes that are
closed under composition but do not necessarily contain projections. However, we
assume that our classes are closed under permutation of variables, identification
of variables and introduction of inessential variables; in the case of clones, these
properties are guaranteed by the presence of projections. The set of these closed
classes on a given base set A forms a complete lattice under inclusion, in which the
lattice of clones appears as the principal filter generated by the trivial clone (i.e., the
clone that consists of projections only). We determine the coatoms in the lattice of
closed classes, thus extending Rosenberg’s theorem about maximal clones to these
more general classes of operations. We will see that the coatoms are exactly the
maximal clones and one more family of closed classes without projections. Since
the bottom element of the lattice of closed classes is the empty class, the atoms
are quite trivial to determine (one of them is the trivial clone). The true analogues
of minimal clones turn out to be the closed classes on the “second floor” of the
lattice, i.e., the covers of atoms, hence we will refer to these classes as minimal
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closed classes. These include minimal clones, hence describing them is at least
as difficult as describing minimal clones. We provide a classification of minimal
closed classes in the spirit of Rosenberg’s classification of minimal clones, and we
determine minimal closed classes for one of the five types, namely for the unary
type.

In the next section we recall the definitions and results about classes of opera-
tions, composition, clones and relations that will be used in the sequel. For more
background on these topics we refer the reader to the monographs [12] and [14].
Then in Section 3 we state and prove the above mentioned generalization of Rosen-
berg’s theorem on maximal clones, and in Section 4 we establish a generalization
of Rosenberg’s classification of minimal clones.

2. Preliminaries

Throughout this paper, A is a nonempty finite set, and OA =
⋃

n≥1A
An

denotes
the set of all finitary operations on A. For a class K ⊆ OA of operations, let
K(n) stand for the n-ary part of K, i.e., K(n) := K ∩ AAn

. For n ∈ N, let [n] =
{1, 2, . . . , n}.

2.1. Composition of operations and classes of operations. For f ∈ O(n)
A and

g1, . . . , gn ∈ O(k)
A , the composition of f by g1, . . . , gn is the operation f (g1, . . . , gn) ∈

O(k)
A defined by

(f (g1, . . . , gn)) (x) = f (g1 (x) , . . . , gn (x)) for all x ∈ Ak.

We can extend this definition to composition of classes of operations: for K,L ⊆ OA

let K ◦ L denote the set

(1)
{
f (g1, . . . , gn) : k, n ∈ N, f ∈ K(n), g1, . . . , gn ∈ L(k)

}
.

This composition is a binary operation on the power set of OA. In general, it is
not associative, but it becomes associative when restricted to so-called equational
classes (see the next subsection).

2.2. Subfunctions and equational classes. The i-th n-ary projection for 1 ≤
i ≤ n ∈ N is the operation e

(n)
i ∈ O(n)

A such that e
(n)
i (x1, . . . , xn) = xi for all

(x1, . . . , xn) ∈ An. For f, g ∈ OA, we say that g is a subfunction (or identification
minor) of f (notation: g � f) if g belongs to the class composition

{f} ◦ {e(n)i : n ∈ N, i ∈ [n]},

i.e., if g can be obtained from f by permutation of variables, identification of vari-
ables (diagonalization) and introduction of inessential variables (cylindrification).
The subfunction relation is a quasiorder on OA, and the corresponding equivalence
is defined by f ≡ g ⇐⇒ f � g and g � f . It is easy to see that two operations
are equivalent if and only if they can be obtained from each other by permutation
of variables and introduction or deletion of inessential variables. In the following
we will not make a sharp distinction between equivalent functions. In particular,
denoting the identity function on A by id, we have f ≡ id if and only if f is a
projection; therefore, we will simply write {id} for the set of projections.

A class K ⊆ OA of operations on A is called an equational class if it is an order
ideal in the subfunction quasiorder. This terminology is motivated by the fact that
definability by certain types of functional equations is equivalent to being closed
under forming subfunctions [8, 13]. Although composition of classes of operations
is not associative in general, equational classes form a semigroup under compo-
sition [4, 5]. Every clone is an idempotent element in this semigroup, and every
idempotent is a composition-closed equational class (see the formal definition in the
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next subsection, and see also Section 5). In [1] the study of the semigroup of equa-
tional classes was initiated with the intention of obtaining a better understanding
of composition of operations and composition-closed classes such as clones.

2.3. Clones and closed classes. A clone on A is a class K ⊆ OA that is closed
under composition and contains all projections:

(2) K ◦ K ⊆ K and {id} ⊆ K.
The least clone containing a given class K ⊆ OA is denoted by [K]; it consists of
those operations that can be built from members of K and from projections by
means of composition. The set of all clones on a fixed base set A constitutes a
lattice under inclusion, with the lattice operations being C1 ∧ C2 = C1 ∩ C2 and
C1 ∨ C2 = [C1 ∪ C2]. The least element of the lattice of clones over A is {id}, the
clone containing only projections, which is called the trivial clone, and the greatest
element is OA, the clone of all operations on A. Atoms and coatoms of the lattice of
clones are called minimal clones and maximal clones, respectively. As mentioned in
the introduction, maximal clones on finite sets are completely known [16], while for
minimal clones only a classification is available, with two of the five types completely
described [17].

We consider in this paper equational classes that are closed under composition,
that is, classes K ⊆ OA such that K ◦ K ⊆ K and f ∈ K, g � f =⇒ g ∈ K for all
g ∈ OA, or, more compactly,

(3) K ◦ K ⊆ K and K ◦ {id} ⊆ K.
For brevity, in the following we will simply write closed class instead of composition-
closed equational class. For K ⊆ OA, we denote by bKc the least closed class
containing K. The set of all closed classes on A forms a lattice under inclusion,
with the lattice operations being K1 ∧ K2 = K1 ∩ K2 and K1 ∨ K2 = bK1 ∪ K2c.
Note that the least element of this lattice is the empty class. For all K ⊆ OA, we
have [K] = bK ∪ {id}c, and C ⊆ OA is a clone if and only if C is a closed class
and id ∈ C. Therefore, the lattice of clones appears in the lattice of closed classes
as the principal filter generated by the trivial clone. The lattice of closed classes
over a two-element base set has already continuum cardinality; this lattice has been
described in [21].

Remark 1. Iterative algebras provide another generalization of clones. These
classes are usually defined by the five Mal’tsev operations ζ, τ , ∆, ∇, ? (see [12, 14]),
but they can also be defined by means of class composition as follows. A class
K ⊆ OA is an iterative algebra iff

(4) K ◦ (K ∪ {id}) ⊆ K.
It is clear that (2) =⇒ (4) =⇒ (3), hence every clone is an iterative algebra, and
every iterative algebra is a closed class.

2.4. Relations and constraints. For an m-ary relation R ⊆ Am and a matrix
N ∈ Am×n, we say that N is an R-matrix if each column of N belongs to R. If

f ∈ O(n)
A , then fN stands for the m-tuple that is obtained by applying f row-wise

to N , and let fR = {fN : N ∈ Am×n is an R-matrix}. If fR ⊆ R, then we say
that f preserves the relation R. For a set Q of relations, let Pol(Q) denote the set
of all operations that preserve every member of Q:

Pol(Q) = {f ∈ OA : ∀R ∈ Q fR ⊆ R} .
Preservation of relations induces a Galois connection between operations and re-
lations on A. The corresponding Galois closed sets are exactly the clones and the
so-called relational clones (see [3, 9]). Thus, C ⊆ OA is a clone if and only if there
exists a set of relations Q such that C = Pol(Q). Relational clones can also be
characterized as sets of relations closed under certain constructions; since we will
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not need this description, we do not give the details here. We will only use the
fact that the relations in the smallest relational clone (generated by the unary total
relation A) are exactly relations of the form

(5) S = {a ∈ Am : ai = aj whenever (i, j) ∈ ε} ,

where ε is an equivalence relation on [m]. In other words, a relation S ⊆ Am is
preserved by all operations on A if and only if S is of form (5).

Composition-closed equational classes can be described by relational constraints,
i.e., pairs (R,S) of relations, where R and S have the same arity. For a set Q of
relational constraints, we define Pol∗(Q) ⊆ OA as follows:

Pol∗(Q) = {f ∈ OA : ∀ (R,S) ∈ Q fR ⊆ S and fS ⊆ S} .

It was shown in [21] that a class K ⊆ OA is a closed class if and only if there exists
a set of relational constraints Q such that C = Pol∗(Q).

Remark 2. Iterative algebras (cf. Remark 1) also admit a characterization in
terms of relational constraints, as shown by Harnau in [10]. Here one uses pairs of
relations (R,S) with S ⊆ R, and an operation f is said to preserve such a pair if
fR ⊆ S.

3. Maximal closed classes

First let us recall Rosenberg’s description of maximal clones. We do not define
the types of relations appearing in the theorem, as we will not need them.

Theorem 1 (Rosenberg’s theorem [16]). A clone C ⊆ OA is a maximal clone if and
only if C = PolR for some relation R satisfying one of the following six conditions:

(i) R is a bounded partial order;
(ii) R is the graph of a permutation of prime order;
(iii) R is a nontrivial equivalence relation;
(iv) R is a prime-affine relation;
(v) R is a central relation;
(vi) R is an h-regular relation.

Proposition 1. Every composition-closed equational class of OA is contained in a
maximal composition-closed equational class.

Proof. It is well known that OA is a finitely generated clone. In fact, OA can be
generated by a single operation; such a generator is called a Sheffer operation. For
instance, the operation defined by

g (x, y) =

{
x⊕ 1, if x = y;

0, if x 6= y.

is a Sheffer operation on A = {0, 1, . . . , n− 1}, where ⊕ stands for addition modulo
n (see [22]). Thus, we have [g] = OA, hence bg, idc = OA. This shows that OA is a
finitely generated closed class, and then by Zorn’s lemma we have that each closed
class is contained in a maximal one. �

We will prove that the maximal closed subclasses of OA are exactly the maximal
clones together with the classes

Mab := {f ∈ OA : f (a, . . . , a) = f (b, . . . , b)}

for a, b ∈ A, a 6= b.
It is easy to verify directly that Mab is a closed class; alternatively, one can

observe that Mab = Pol∗ ({(a, b)} ,=).

Lemma 1. For any a, b ∈ A, a 6= b, the clone generated by Mab is OA.
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Proof. It would be sufficient to verify that Mab is not contained in any of the
maximal clones given in Theorem 1. Alternatively, sinceMab contains all constants,
one could use one of the criteria for functional completeness (e.g., the Werner-Wille
theorem). However, it seems easier to give a direct proof as follows. Let f ∈ OA

be an arbitrary operation, and let n denote the arity of f . Choose any operation
g ∈ OA of arity n+ 2 such that

(6) g (x1, . . . , xn, a, b) = f (x1, . . . , xn)

for all (x1, . . . , xn) ∈ An, and

(7) g (x, . . . , x) = a

for all x ∈ A. (Clearly, there are many such operations g; the values of g on tuples
not listed above are irrelevant.) Condition (7) guarantees that g ∈ Mab, and then
by (6) we conclude f ∈ [Mab], as the constants a and b also belong to Mab. �

Theorem 2. The maximal composition-closed equational classes on A are the max-
imal clones listed in Theorem 1 and the classes Mab with a, b ∈ A, a 6= b.

Proof. Let K be a maximal closed class that is not a clone. Since K is closed,
there exists a set Q of relational constraints such that K = Pol∗ (Q). For each
(R,S) ∈ Q we have Pol∗ (R,S) ⊇ K, hence Pol∗ (R,S) = K or Pol∗ (R,S) = OA by
the maximality of K. From K =

⋂
(R,S)∈Q Pol∗ (R,S) it follows that there exists

(R,S) ∈ Q such that Pol∗ (R,S) = K. Then we have K = Pol∗ (R,S) ⊆ Pol (S),
hence either Pol (S) = K or Pol (S) = OA, again by the maximality of K. However,
the first case is impossible, as K is not a clone. Thus Pol (S) = OA, which means
that S belongs to the smallest relational clone (generated by the unary total relation
A), thus S is of the form (5) for some m ∈ N and an equivalence relation ε on [m].

Next we show that R * S. Suppose for contradiction that R ⊆ S, and let
f ∈ OA be an arbitrary operation. Then fR ⊆ fS ⊆ S, since S is preserved by all
operations. This implies that Pol∗ (R,S) = OA, which contradicts Pol∗ (R,S) = K.

Thus R * S, and then there exists a tuple r ∈ R \ S. Taking into account that
S is given by (5), r /∈ S implies that there exist i, j ∈ [m] such that (i, j) ∈ ε but
ri 6= rj . We claim that K =Mab with a = ri, b = rj .

Let f ∈ K be an arbitrary operation, and let N be the m× n matrix such that
each column vector of N is r and n is the arity of f . Clearly, N is an R-matrix.
Since f ∈ K = Pol∗ (R,S), we have fN ∈ S. The i-th and j-th entries of the tuple
fN are f (a, . . . , a) and f (b, . . . , b), respectively. Therefore, fN ∈ S and (i, j) ∈ ε
imply that f (a, . . . , a) = f (b, . . . , b) according to (5). This shows that f ∈ Mab

for every f ∈ K, i.e., K ⊆ Mab. By the maximality of K we can conclude that
K =Mab.

We have proved that every maximal closed class is either a maximal clone or
one of the classesMab with a 6= b. It remains to prove that each of these classes is
indeed maximal. By Proposition 1, every closed class is contained in a maximal one,
hence it suffices to prove that the aforementioned classes are pairwise incomparable.
It is clear that maximal clones are pairwise incomparable as well as the classes
Mab (a, b ∈ A, a 6= b). Now let C be a maximal clone and let let a, b ∈ A, a 6= b.
There are no projections inMab, hence C *Mab, andMab * C follows immediately
from Lemma 1. �

Corollary 1. There are finitely many maximal composition-closed equational classes
on A.

Proof. It follows from Theorem 1 that there are finitely many maximal clones on
A, and it is clear that there are finitely many classes Mab. �

Example 1. All closed classes on {0, 1} have been described in [21]; in particular,
the maximal closed classes turned out to be the five maximal clones of Boolean
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functions (0-preserving functions, 1-preserving functions, monotone functions, lin-
ear functions, selfdual functions) together with the class

Ω= =
{
f ∈ O{0,1} : f (0, . . . , 0) = f (1, . . . , 1)

}
.

Theorem 2 indicates that the situation is similar over arbitrary finite sets, as the
classes Mab are immediate generalizations of Ω=.

4. Minimal closed classes

First we determine the atoms of the lattice of closed classes on A. We say

that a unary operation u ∈ O(1)
A is idempotent, if u2 = u, i.e., u (u (x)) = u (x)

holds for all x ∈ A. Observe that u is idempotent if and only if u (x) = x for all
x ∈ ranu := {u (x) : x ∈ A}. (Note that it is also customary to say that f ∈ OA

is idempotent if f (x, . . . , x) = x for all x ∈ A. We will not use this notion of
idempotence in this paper.)

Proposition 2. A class K ⊆ OA is an atom in the lattice of composition-closed
equational classes on A if and only if K = buc for some idempotent unary operation

u ∈ O(1)
A .

Proof. Let K be an atom in the lattice of closed classes, and let f ∈ K be an
arbitrary operation. Since K is an equational class, the unary operation g (x) :=
f (x, . . . , x) belongs to K. Finiteness of A implies that some power of g is idempo-
tent, i.e., there exists k ∈ N such that u := gk satisfies u2 = u. Clearly, u ∈ K, as
K is closed under composition. Therefore, ∅ $ buc ⊆ K, and then buc = K, since
K has no proper nonempty closed subclasses. �

Remark 3. If u is an idempotent unary operation, then buc = {u}; in other
words, buc contains only the operations that are equivalent to u, i.e., essentially
unary operations f of the form f (x1, . . . , xn) = u (xi). For u = id we obtain the
trivial clone bidc = [id] = {id}. In the following we will refer to the atoms described
in Proposition 2 as trivial closed classes. The proof of Proposition 2 shows that
every nontrivial nonempty closed class contains a trivial closed class.

To be in accordance with the terminology of clone theory, we shall say that a
nonempty nontrivial closed class K is a minimal closed class, if the only nonempty
nontrivial closed subclass of K is K itself. If K is a minimal closed class and buc ⊆ K
is a trivial closed class, then K covers buc in the lattice of closed classes, and we
will briefly express this fact by saying that K is a minimal closed class above buc.
Note that it may happen that K covers two trivial closed classes; see Remark 4.

Now we recall Rosenberg’s theorem on minimal clones, and then we present the
corresponding result for minimal closed classes.

Theorem 3 (Rosenberg’s theorem [17]). Let C ⊆ OA be a minimal clone, and let f
be an operation in C \ [id] of minimum arity. Then K = [f ] and one of the following
five conditions hold for f :

(I) f is a unary operation;
(II) f is a binary operation such that for all x ∈ A,

f (x, x) = x;
(III) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = x;
(IV) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = y;
(V) f is of arity n with 3 ≤ n ≤ |A|, and there exists an i ∈ [n] such that

f (x1, . . . , xn) = xi whenever |{x1, . . . , xn}| < n.

Theorem 4. Let K ⊆ OA be a minimal composition-closed equational class above

buc, where u ∈ O(1)
A is an idempotent unary operation. Let f be an operation in
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K\buc of minimum arity. Then K = bf, uc, and one of the following five conditions
hold for f :

(I) f is a unary operation;
(II) f is a binary operation such that for all x ∈ A,

f (x, x) = u (x);
(III) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = u (x);
(IV) f is a ternary operation such that for all x, y ∈ A,

f (x, x, y) = f (x, y, x) = f (y, x, x) = u (y);
(V) f is of arity n with 3 ≤ n ≤ |A|, and there exists an i ∈ [n] such that

f (x1, . . . , xn) = u (xi) whenever |{x1, . . . , xn}| < n.

Proof. Since K is minimal, it is clear that K = bf, uc for any f ∈ K \ buc. Let
f ∈ K \ buc be of minimum arity, and let us denote this minimal arity by n. If
n = 1, then f is of type (I). From now on we shall assume that n ≥ 2. If g is any
operation that is obtained from f by identifying some of its variables, then g ∈ buc
by the minimality of the arity of f , hence g ≡ u. If n = 2, then this immediately
implies that (II) holds.

If n ≥ 4, then by a generalization of Świerczkowski’s lemma (see Theorem 7 in [6])
there exists an index i ∈ [n] such that f (x1, . . . , xn) = u (xi) whenever x1, . . . , xn ∈
A are not pairwise different. If n > |A|, then this implies f (x1, . . . , xn) = u (xi) for
all x1, . . . , xn ∈ A, i.e., f ≡ u. However, this contradicts the assumption f ∈ K\buc.
Therefore, we must have n ≤ |A|, and we can conclude that f is of type (V).

It only remains to consider the case n = 3. By the above arguments, there exist
r, s, t ∈ {x, y} such that for all x, y ∈ A we have

f (x, x, y) = u (r) , f (x, y, x) = u (s) , f (y, x, x) = u (t) .

The cases (r, s, t) = (x, x, x) and (r, s, t) = (y, y, y) correspond to types (III) and
(IV), while the cases (r, s, t) ∈ {(x, x, y) , (x, y, x) , (y, x, x)} correspond to type (V).

In the remaining three cases we can assume (up to a permutation of variables)
that (r, s, t) = (y, x, y), i.e.,

(8) ∀x, y ∈ A : f (x, x, y) = u (y) , f (x, y, x) = u (x) , f (y, x, x) = u (y) .

If u is a constant operation, then f belongs to types (III) and (IV), which coincide
in this case. Thus we may assume without loss of generality that the range of u
contains two different elements, say a and b. In particular, we have

(9) f (a, a, b) = u (b) = b.

Using (8) and the idempotence of u, it is easy to see that the operation g (x, y, z) :=
f (u(x), f (x, y, z) , u(z)) ∈ K satisfies

(10) ∀x, y ∈ A : g(x, x, y) = g(x, y, x) = g(y, x, x) = u(x).

Moreover, it is also straightforward to verify (by term induction) that every ternary
operation in bg, uc\buc satisfies (10) as well. The minimality of K implies that K =
bg, uc (note that it follows from (10) that g is essentially ternary). Therefore, we
have f ∈ bg, uc\buc, hence f satisfies (10), too. In particular, we have f (a, a, b) = a,
which contradicts (9). Thus, the case (r, s, t) = (y, x, y) is impossible whenever u
is not constant, and this completes the proof. �

Corollary 2. There are finitely many minimal composition-closed equational classes
in OA, and every nonempty nontrivial composition-closed equational class contains
a minimal one.

Proof. Let us denote by T the set of all closed classes of OA that are of the form
bf, uc, where u is an idempotent unary operation and f /∈ buc is of arity at most
max (|A| , 3). (Note that we do not require here that bf, uc is a minimal closed
class.) We claim that every nontrivial closed class contains a closed subclass that
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belongs to T . To this extent, let K be a nontrivial closed subclass of OA, and let
u ∈ K(1) with u2 = u. If f ∈ K \ buc is of minimum arity, then following the
(first two paragraphs of the) proof of Theorem 4, we see that the arity of f is at
most max (|A| , 3). Thus bf, uc ∈ T is the desired closed subclass of K, and this
completes the proof of our claim.

By Theorem 4, every minimal closed class is a minimal element of the partially
ordered set (T ;⊆). Conversely, let K be a minimal element of T . If K1 is a
nontrivial closed subclass of K, then, by the claim in the previous paragraph, there
exists K2 ∈ T such that K2 ⊆ K1 ⊆ K. Since K2,K ∈ T and K is minimal in T , we
must have K2 = K1 = K. This shows that K is a minimal closed class. Thus we
have proved that the minimal closed classes coincide with the minimal elements of
T .

Now the first statement of the theorem follows immediately, as T is finite. For
the second statement, we just need to recall that every nontrivial closed class K
contains a subclass K1 ∈ T , and K1 contains a minimal element K2 of T , again by
the finiteness of T . Then K2 is a minimal closed subclass contained in K. �

Minimal clones of type (I) and type (IV) have been explicitly described by Rosen-
berg in [17]. A unary operation f generates a minimal clone if and only if either
f is idempotent (f2 = f) or f is a permutation of prime order (fp = id for some
prime p). A ternary operation f of type (IV) generates a minimal clone if and only
if there exists a binary operation + on A such that (A; +) is an Abelian group of
exponent 2 and f (x, y, z) = x+y+z. In the following theorem we describe minimal
closed classes K of type (I). In this case all operations in K are essentially unary
(and equivalent to some member of K(1)), hence it suffices to describe the unary
part K(1).

Theorem 5. Let K ⊆ OA be a minimal composition-closed equational class of type

(I) above buc, where u ∈ O(1)
A is an idempotent unary operation. Then there exists

f ∈ K(1) \ {u} such that K = bf, uc and one of the following three conditions holds:

(Ia) there exists a prime p such that fp = u, fu = uf = f ; in this case we have
that K(1) =

{
f, f2, . . . , fp

}
;

(Ib) f2 = f, fu, uf ∈ {f, u}; in this case we have that K(1) = {f, u};
(Ic) f2 = fu = uf = u; in this case we have that K(1) =

{
f, f2

}
.

Proof. Since every member of K is essentially unary, we may work with its unary

part, which constitutes a subsemigroup of the transformation semigroup O(1)
A . The

minimality of K means that K(1) has exactly two subsemigroups containing u,
namely {u} and K(1). Let f ∈ K(1) \{u} be an arbitrary operation, then K = bf, uc
and K(1) (as a semigroup) is generated by f and u. Since K(1) is a finite semigroup,
each of its elements has an idempotent power. In particular, there exists k ∈ N
such that fk is idempotent. We separate two cases on whether fk = u or not.

Case 1: fk = u. In this case K(1) is generated by f , hence it is a cyclic
semigroup. If the index of this cyclic semigroup is at least 2, then

{
f2, f3, . . .

}
is

a proper subsemigroup of K(1). By minimality, this implies
{
f2, f3, . . .

}
= {u},

hence f2 = u and f3 = fu = uf = u, and thus the conditions of (Ic) are fulfilled
(in this case K(1) is a two-element zero semigroup). If the index of K(1) is 1, then
K(1) is a group with identity element u. Then it is clear that K is minimal if and
only if K(1) is a cyclic group of prime order, hence (Ia) is satisfied.

Case 2: fk 6= u. In this case fk and u generate a subsemigroup of K(1) that
properly contains {u}. By minimality, this subsemigroup must be all ofK(1). There-
fore, K(1) is generated by two idempotents, hence we may assume without loss of
generality that f is idempotent (we replace the generating set {f, u} with

{
fk, u

}
).

It is clear that K(1) ◦{u} :=
{
gu : g ∈ K(1)

}
is a subsemigroup of K(1) that contains

{u}. Therefore, we have either K(1) ◦{u} = K(1) or K(1) ◦{u} = {u}. In the former
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case f = gu for some g ∈ K(1), hence fu = gu2 = gu = f , while in the latter
case fu = u. A similar argument, using the subsemigroup {u} ◦ K(1), shows that
uf = f or uf = u, hence the conditions of (Ib) are satisfied. (Note that we have
four possibilities for the pair (fu, uf): two of them yield a two-element semilattice,
and the other two possibilities correspond to K(1) being a two-element left or right
zero semigroup.) �

Remark 4. Note that if f belongs to types (II)–(V), then f (x, . . . , x) = u (x),
hence bf, uc = bfc. Also, if condition (Ia) or (Ic) of Theorem 5 holds, then bf, uc =
bfc. However, if f corresponds to type (Ib), then bf, uc 6= bfc, and in this case
bf, uc cannot be generated by a single operation. Observe also that in all types
except (Ib), there is only one idempotent unary operation in a minimal closed
class, hence the operation u in Theorems 4 and 5 is unique, and then our minimal
class is join-irreducible in the lattice of closed classes. A minimal class of type (Ib)
contains exactly two idempotent unary operations, hence it has two lower covers in
the lattice of closed classes, and therefore it is not join-irreducible.

Example 2. There are three atoms in the lattice of closed classes of Boolean
functions: bidc , b0c , b1c. The minimal closed classes above bidc are the seven
minimal clones: [0] (type (Ib)), [1] (type (Ib)), [¬x] (type (Ia)), [x ∧ y] (type (II)),
[x ∨ y] (type (II)), [xy ∨ xz ∨ yz] (type (III)) and [x+ y + z] (type (IV)). The results
of [21] imply that the minimal closed classes covering b0c are b0, 1c (type (Ib)),
bx+ yc (type (II)), bxy + yc (type (II)). The minimal closed classes covering b1c
are the duals of the latter classes, namely b0, 1c (type (Ib)), bx+ y + 1c (type (II)),
b→c (type (II)). As observed in Remark 4, minimal closed classes of type (Ib) cover
two atoms: [0] covers b0c and bidc, [1] covers b1c and bidc and b0, 1c covers b0c and
b1c.

5. Concluding remarks

We described explicitly the maximal composition-closed equational classes of op-
erations on finite sets, and gave a five-type classification of minimal closed classes
in analogy with Rosenberg’s theorem on minimal clones. Explicit description of
minimal closed classes remains an open problem, which involves describing min-
imal clones, a notoriously difficult problem. Nevertheless, it may be possible to
determine minimal closed classes “modulo minimal clones” in some sense, e.g., to
show that every minimal closed class can be constructed from a minimal clone by
some canonical construction.

Finally, let us point out another related problem. As mentioned in Section 2,
the set of all equational classes on A constitute a semigroup under the operation of
composition of classes of operations as defined in (1); we shall denote this semigroup
by Em if A = {0, 1, . . . ,m− 1}. A first step in exploring the structure of this
semigroup would be to determine its idempotent elements. For m = 2 (i.e., for
Boolean functions) this was done in [21], and in [2] the regular elements of E2 were
also described. Clearly, if K ∈ Em is idempotent (K ◦ K = K), then K is a closed
class (K ◦ K ⊆ K). The converse is also true if m = 2 (see [21]), but for m ≥ 3
there exist classes K ∈ Em with K ◦ K ⊂ K (see Examples 3 and 4 below). It is
also clear that every clone is an idempotent equational class, since if K is a clone
then K ◦ K ⊇ K ◦ {id} = K.

The maximal closed classes of Theorem 2 are all idempotent. We have seen
above that clones are idempotent, so it suffices to consider the classes Mab. Let ∗
be an arbitrary binary operation on A such that

b ∗ b = a and a ∗ x = x for all x ∈ A.

Then ∗ belongs to Mab, and for every f ∈ M(n)
ab we have f (x1, . . . , xn) =

a ∗ f (x1, . . . , xn) ∈ Mab ◦ Mab, since the constant function a is also a member
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Figure 1. The lattice of closed subclasses of K2 (see Example 4)

of Mab. This shows that Mab ⊇Mab ◦Mab, hence Mab is idempotent. It follows
that the maximal idempotents of Em are the same as the maximal closed classes
on A = {0, 1, . . . ,m− 1}.

Now let K = bf, uc be a minimal closed class, as in Theorem 4. Since every
element of K can be obtained from f and u by composition, K ◦ K ⊇ K \ {f, u}.
Furthermore, u2 = u implies that u ∈ K ◦ K. Therefore, K is idempotent if and
only if f ∈ K ◦ K. Unary minimal closed classes of types (Ia) and (Ib) are all
idempotent. On the other hand, if K is a minimal closed class of type (Ic), then
K is not idempotent, since K ◦ K = {u} in this case. As the next example shows,
there also exist binary minimal closed classes that are not idempotent.

Example 3. Let f (x, y) = x∗y be the binary operation on A = {0, 1, 2, 3} defined
by 1 ∗ 2 = 2 ∗ 1 = 3 and x ∗ y = 0 for all (x, y) ∈ A2 \ {(1, 2) , (2, 1)}. Then (A; ∗)
is a semigroup, and x ∗ y ∗ z = 0 for every x, y, z ∈ A. Thus, K := bfc = {f, 0} is
a minimal closed class of type (II) covering the trivial class b0c. However, K is not
idempotent: we have K ◦ K = {0}.

Our last example illustrates that, in some sense, idempotents of Em behave “less
nicely” than closed classes.

Example 4. We consider some unary closed classes on A = {0, 1, 2}. Let fabc
denote the unary operation on A that is defined by fabc (0) = a, fabc (1) =
b, fabc (2) = c. In particular, f012 = id and f000 is the constant zero function.
Let K = {f000, f001}, then K ◦ K = {f000}, therefore K is closed but not idem-
potent. The classes K1 := {f000, f001, f012} and K2 := {f000, f001, f112, f111} are
both idempotents containing K, and we have K = K1 ∩ K2. Thus, the intersection
of idempotents is not always idempotent, and there may be no least idempotent
containing a given closed class K. The lattice of closed subclasses of K2 is shown
in Figure 1, where idempotent classes are marked by filled circles, whereas non-
idempotent classes are marked by empty circles. We can see from Figure 1 that
although K2 is minimal among idempotent classes that contain the minimal closed
class K, the class K2 is not a minimal idempotent subclass of OA.
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[14] R. Pöschel, L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monogra-
phien, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979. (German)

[15] E. L. Post, The two-valued iterative systems of mathematical logic, Annals of Mathematics

Studies no. 5, Princeton University Press, Princeton, N. J., 1941.
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