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ON EQUATIONAL DEFINABILITY OF FUNCTION CLASSES

MIGUEL COUCEIRO, ERKKO LEHTONEN, AND TAMÁS WALDHAUSER

Abstract. We propose a notion of functional equation for functions of a fixed
arity, which is based on a pair of clones. We present necessary conditions for a

class of functions to be definable by such equations, and show that for certain

choices of clones these conditions are also sufficient.

1. Introduction and motivations

This paper is a study of definability of properties of functions by functional
equations. We propose an equational framework which differs from those presented
in [5, 7, 12, 13, 14, 23] in that here the properties to be defined concern functions of a
given fixed arity rather than functions of different arities. (This distinction is made
clear in Subsection 1.2.) The current approach is thus rooted in the classical theory
of functional equations, and it provides a means to express natural properties of
functions that are not definable in those other equational frameworks. A classical
example of such a property is symmetry. A preliminary version of the current
paper was presented at the 41st International Symposium on Multiple-Valued Logic
(ISMVL 2011), see [9].

1.1. Basic notions. Throughout the paper let A,B and C be finite sets, and for
each integer n ≥ 1 let [n] := {1, . . . , n}. We denote tuples by bold letters and their
components by corresponding indexed italic letters, e.g., a = (a1, . . . , an) ∈ An.
By a function of several variables from A to B (or simply function, when the sets
A and B are clear from the context) we mean a map f : An → B, where n ≥ 0 is
called the arity of f . The set of all n-ary functions from A to B is denoted by BA

n

.
For a class K ⊆

⋃
n≥0B

An

, we set K(m) = K∩BAm

. Functions of several variables

from the two-element set {0, 1} to {0, 1} are usually called Boolean functions. The
set of all functions of several variables from A to A is denoted by OA. The kernel
of a function f ∈ BA

n

is the equivalence relation ker f ⊆ An × An defined by
(a,a′) ∈ ker f ⇐⇒ f (a) = f (a′).

The composition of f : Bn → C by g1, . . . , gn : Am → B, denoted by f(g1, . . . , gn),
is defined as the m-ary function from A to C given by

f(g1, . . . , gn)(a) = f(g1(a), . . . , gn(a)), for every a ∈ Am.

We say that f is the outer function of the composition, and g1, . . . , gn are the inner
functions.

A clone on A is a class C ⊆ OA of finitary functions on A that is closed under
composition and contains the projections

x
(n)
i : An → A, (x1, . . . , xn) 7→ xi (n ∈ N, 1 ≤ i ≤ n) .

We will omit the upper index, when there is no risk of ambiguity. It is noteworthy
that the class IA of all projections is the smallest clone on A, whereas OA is the
largest clone on A. Also, it is well known that the intersection of any family of
clones is itself a clone. Hence, for F ⊆ OA, there is a smallest clone on A which
contains F , namely, 〈F 〉A :=

⋂
C∈F C, where F is the set of all clones on A which

contain F ; we may write simply 〈F 〉 whenever the underlying set A is clear from
the context. We will denote the clone of all constant functions and projections on
A by CA. For further background in clone theory see, e.g., [19, 24].
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1.2. Functional equations. In [7], the authors worked on an equational frame-
work for defining properties of functions f : An → B, n ≥ 1, rooted in universal
algebra and originally proposed in [12] for the study of Boolean functions. Essen-
tially, a functional equation (for functions f : An → B) was defined as a formal
expression

(1) u(f(g1(x1, . . . ,xm)), . . . , f(gr(x1, . . . ,xm)))

= v(f(h1(x1, . . . ,xm)), . . . , f(hs(x1, . . . ,xm))),

where r, s,m ≥ 1, u : Br → C, v : Bs → C, each gi and hj is a map Am → A,
the symbols x1, . . . ,xm are m distinct vector variable symbols, and f is a distinct
function symbol. A function f : An → B is said to satisfy (1) if, for all a1, . . . ,am ∈
An,

u(f(g1(a1, . . . ,am)), . . . , f(gr(a1, . . . ,am)))

= v(f(h1(a1, . . . ,am)), . . . , f(hs(a1, . . . ,am))).

In this way, a class of functions is defined by a set of such functional equations if it
comprises exactly those functions which satisfy every equation in the set.

This framework has been advantageously used to specify noteworthy properties
of functions in terms of functional equations. Classical examples include

• linearity of functions f : Fn → F, n ≥ 1, on a field F, which is defined by

f(x + y) = f(x) + f(y),

• nondecreasing and nonincreasing monotonicity of functions f : Ln → L,
n ≥ 1, on a lattice L, which are defined by

f(x) = f(x) ∨ f(x ∧ y) and f(x) = f(x) ∨ f(x ∨ y),

respectively.

More contemporary examples, which have strong consequences in combinatorial
optimization, include

• submodularity of functions f : In → R, where I is a chain, usually expressed
by the functional inequality

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y)

or, equivalently, by the functional equation

f(x) + f(y) = max
(
f(x ∧ y) + f(x ∨ y), f(x) + f(y)

)
,

• supermodularity of functions f : In → R, where I is a chain, usually ex-
pressed by the functional inequality

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y)

or, equivalently, by the functional equation

f(x) + f(y) = min
(
f(x ∧ y) + f(x ∨ y), f(x) + f(y)

)
,

• modularity of functions f : In → R, where I is a chain, which is defined by
the functional equation

f(x) + f(y) = f(x ∧ y) + f(x ∨ y).

Using this functional equation, it can be shown [26] that modular functions are
exactly those which are separable, i.e., of the form

∑
fi(xi) + c, where fi : I → R

for each i ∈ [n] and c ∈ R. For background on sub- and supermodularity and their
applications in combinatorial optimization, see, e.g., [20, 27].

Pippenger [23] considered somewhat different defining objects, so-called rela-
tional constraints. An m-ary relational constraint from A to B is a pair (R,S),
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where R is an m-ary relation on A and S is an m-ary relation on B. A func-
tion f : An → B preserves a relational constraint (R,S), if for all m-by-n matrices
A = [aij ]m×n with entries from A, it holds that(

f(a11, . . . , a1n), f(a21, . . . , a2n), . . . , f(am1, . . . , amn)
)
∈ S

whenever (a1j , . . . , amj) ∈ R for all j ∈ [n] (in other words, if all columns of A are
tuples in the relation R, then application of f to the rows of A results in a tuple
in S). A class C of functions is defined by a set K of relational constraints if C is
the set of all functions that preserve all relational constraints in K.

As it turned out, relational constraints have the same expressive power as func-
tional equations in the sense that they define exactly the same function classes. For
example, let I be a chain and let

R = {(a, b, c, d) ∈ I4 : c = a ∧ b, d = a ∨ b},
S≥ = {(p, q, r, s) ∈ R4 : p+ q ≥ r + s},
S≤ = {(p, q, r, s) ∈ R4 : p+ q ≤ r + s},
S= = {(p, q, r, s) ∈ R4 : p+ q = r + s}.

It is not difficult to see that (R,S≥), (R,S≤), and (R,S=) define the classes of
submodular, supermodular, and modular functions, respectively.

Observe that a function f : An → A preserves a relation R if and only if f
preserves the relational constraint (R,R). Since clones (on a finite set) are exactly
those classes which are defined by relations [3, 15, 19, 24], every clone is definable
by relational constraints or, equivalently, by functional equations. For variants and
extensions see, e.g., [5, 8, 13, 14, 22, 23].

Classes definable by functional equations of the form (1), or, equivalently, by
relational constraints, were completely characterized in terms of a quasi-ordering
of functions, the so-called simple minor relation. For a finite set A, the equational
classes of B-valued functions on A were shown to coincide with the initial segments
of this quasi-ordering [4, 11, 12, 23]. In the case when A is arbitrary, possibly
infinite, one additional “local closure” condition is also required [6, 7].

Despite the fact that a wide variety of function classes can be defined within this
framework, it cannot express certain classical properties of functions f : An → B
such as symmetry:

f(a1, . . . , an) = f(aσ(1), . . . , aσ(n))

for all a1, . . . , an ∈ A and any permutation σ on [n]. This limitation may be due
to the fact that functional equations of the form (1) do not refer to the arity of
functions. This fact leads to the following notion of functional equation, that is
rooted in classical theory of functional equations.

LetA and B be clones on A and B, respectively. A (B,A)-equation is a functional
equation of the form

(2) u (f (g11, . . . , g1n) , . . . , f (gr1, . . . , grn))

= v (f (h11, . . . , h1n) , . . . , f (hs1, . . . , hsn)) ,

where r, s, n ≥ 0, u ∈ B(r), v ∈ B(s), each gij and hij is a function in A(m), m ≥ 0,
and f is an n-ary function symbol. Observe that if we interpret the function symbol
f by a function f : An → B, then each side of (2) becomes an m-ary function from
A to B. For this reason we will sometimes refer to (2) as an m-ary (B,A)-equation.

We say that f : An → B satisfies (2) if for every a ∈ Am

u (f (g11, . . . , g1n) , . . . , f (gr1, . . . , grn)) (a)

= v (f (h11, . . . , h1n) , . . . , f (hs1, . . . , hsn)) (a) .

A set E of (B,A)-equations defines a class K of n-ary functions from A to B if
f ∈ K if and only if f satisfies all members of E . A class K of n-ary functions
from A to B is (finitely) definable by (B,A)-equations if there is a (finite) set E of
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(B,A)-equations that defines K. In the sequel, unless otherwise specified, B and A
always denote arbitrary clones on B and A.

Example 1. The class of n-ary symmetric functions is definable by (IA, IA)-

equations. Indeed, f ∈ O(n)
A is symmetric if and only if it satisfies the (IA, IA)-

equation
f (x1, . . . , xn) = f

(
xσ(1), . . . , xσ(n)

)
,

for every permutation σ on [n]. In fact, two of these n! equations suffice, since the
symmetric group Sn can be generated by two permutations (e.g., an n-cycle and a
transposition).

Example 2. Let (A;∧A,∨A) and (B;∧B ,∨B) be lattices. The class of n-ary order-
preserving functions from A to B is defined by the (〈∧B〉, 〈∧A〉)-equation

f (x1 ∧A y1, . . . , xn ∧A yn) ∧B f (x1, . . . , xn) = f (x1 ∧A y1, . . . , xn ∧A yn) ,

while the class of n-ary order-reversing functions from A to B is defined by the
(〈∧B〉, 〈∧A〉)-equation

f (x1 ∧A y1, . . . , xn ∧A yn) ∧B f (x1, . . . , xn) = f (x1, . . . , xn) .

Similarly, these classes are definable by (B,A)-equations for any choice of clones B ∈
{〈∧B〉, 〈∨B〉} and A ∈ {〈∧A〉, 〈∨A〉}. Clearly, all of these equations are (MB ,MA)-
equations, where MA and MB denote the clones of monotone (order-preserving)
functions on A and B, respectively. In general, the larger the clones B and A are,
the larger the expressive power of (B,A)-equations is: if B ⊆ B′ and A ⊆ A′, then
every class definable by (B,A)-equations is definable by (B′,A′)-equations.

Example 3. If (A; ·) and (B; ∗) are groupoids, with clones of term functions A
and B, respectively, then the set of homomorphisms from An to B is defined by the
(B,A)-equation

(3) f (x1 · y1, . . . , xn · yn) = f (x1, . . . , xn) ∗ f (y1, . . . , yn) .

This is a generalization of the classical Cauchy equation f (x+ y) = f (x) + f (y)
(see, e.g., [2]) whose solutions f : I → R, for I ⊆ R containing the origin 0, are
of the form f(x) = cx, for some c ∈ R, or the graph of f is everywhere dense in
I × R (for a recent reference, see also [10]). Another particular instance of (3) is

the so-called Jensen’s equation f(x+y2 ) = f(x)+f(y)
2 whose most general solutions

are of the form f(x) = f0(x) + a for an arbitrary a ∈ R and an arbitrary function
f0 satisfying Cauchy’s equation (see, e.g., [1]).

Example 4. Several other examples of functional equations, involving not only
unary functions, can be found in classical theory of functional equations. A note-
worthy example is the so-called Sincov’s functional equation f(x1, x2)+f(x2, x3) =
f(x1, x3). The general solutions for this (L0, IR)-equation are known to be of the
form f(x1, x2) = g(x2) − g(x1). (Here L0 denotes the clone of 0-preserving lin-
ear functions over the field R.) For general background and further examples in
classical theory of functional equations see, e.g., [1, 2, 17].

Example 5. For any f ∈ BA
n

, the singleton {f} can be defined by (CB , CA)-
equations as follows. Let a be an arbitrary element of An, and let b = f (a). The
functional equation f (a1, . . . , an) = b is a (CB , CA)-equation: on the left side the
outer function is the identity function, and the inner functions are the constants
a1, . . . , an, while on the right side we have only the constant function b as outer
function. These equations, for all a ∈ An, constitute a system of equations that is
satisfied only by f , since these equations specify the value of the function at every
a ∈ An.

Example 6. Let A be a finite field, and let L0 be the clone of 0-preserving linear
functions on A, i.e., functions of the form u (x1, . . . , xr) = a1x1+· · ·+arxr (ai ∈ A).

Let us examine which classes K ⊆ O(n)
A are definable by (L0, CA)-equations. Let
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N = |A|n, and let {a1, . . . ,aN} = An. We will regard a function f ∈ O(n)
A as a

vector
−→
f in the N -dimensional vector space AN whose i-th coordinate is f (ai).

Any (L0, CA)-equation (for f = f) translates into a system of homogeneous linear

equations involving the components of
−→
f (namely, one equation corresponding

to each assignment of values to the variables). Conversely, every homogeneous

linear equation involving the components of
−→
f is equivalent to an (L0, CA)-equation.

Therefore, a function class K is definable by (L0, CA)-equations if and only if the

corresponding set
−→
K =

{−→
f : f ∈ K

}
of vectors is the solution set of a system of

homogeneous linear equations. It is a well-known fact from linear algebra that such
sets can be characterized as subspaces of the vector space AN . Thus, a class K of
functions is definable by (L0, CA)-equations if and only if it is closed under linear
combinations.

In the next section we make some general observations about equational de-
finability, and in the last two sections we consider the problem of characterizing
function classes definable by (B,A)-equations by means of closure conditions, much
in the spirit of Example 6. We present a necessary condition in Section 3, and we
prove in Section 4 that this necessary condition is also sufficient in the four cases
when B and A contain either only projections or all functions.

2. Preliminary results

From the fact that A and B are finite it follows that definability by (B,A)-
equations can be always achieved by means of finite sets of (B,A)-equations.

Proposition 1. A class K ⊆ BAn

is definable by (B,A)-equations if and only if it
is finitely definable by (B,A)-equations.

Proof. Clearly, the condition is sufficient. To show that it is also necessary, suppose
that K is defined by a (possibly infinite) set E of (B,A)-equations. For every
f ∈ BAn \ K we can find an equation in E that is not satisfied by f . Choosing one
such equation for each f ∈ BAn \K, we get a finite subset of E that defines K, since
BA

n \ K is finite. �

This result can be strengthened for sufficiently large clones B. Indeed, as our
next result indicates, if the clone B contains certain functions, then a single (B,A)-
equation suffices. To this extent, let 0 and 1 be two arbitrary distinct elements of
B, and consider analogues of the Boolean conjunction ∧ and equivalence↔, defined
as follows: for a, b ∈ A let

a ∧ b =

{
1, if a = 1 and b = 1;
0, otherwise;

a↔ b =

{
1, if a = b;
0, otherwise.

Proposition 2. If clone B contains the operations ∧ and↔, then a class K ⊆ BAn

is definable by (B,A)-equations if and only if it can be defined by a single (B,A)-
equation.

Proof. The sufficiency is obvious; for the necessity let us suppose that K is definable
by (B,A)-equations. By Proposition 1, we may assume that K is defined by a finite
set {E1, . . . , Et} of (B,A)-equations, say, each Ei being of the form Ti1 = Ti2.
Consider the (B,A)-equation ∧

i∈[t]

(Ti1 ↔ Ti2) = 1.

(Note that since clone B contains ↔, it also contains the operation 1 = x1 ↔ x1
occurring on the right side of the above equation.) Obviously, this equation alone
defines K. �
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The next proposition shows that the set of classes K ⊆ BAn

definable by (B,A)-
equations constitutes a lattice under union and intersection, provided that the clone
B is sufficiently large.

Proposition 3. If clone B contains the operations ∧ and ↔, and K,K′ ⊆ BAn

are
definable by (B,A)-equations, then so are K ∩ K′ and K ∪ K′.

Proof. Clearly, K ∩ K′ is definable by (B,A)-equations, whenever both K and K′
are definable by (B,A)-equations.

For the second claim, observe that by Proposition 2 there are two (B,A)-equations
T1 = T2 and T ′1 = T ′2 defining K and K′, respectively. Let us define a binary op-
eration ∨ on B by the formula x ∨ y = (x ∧ y) ↔ (x↔ y). It is easy to see that
the restriction of this operation to {0, 1} coincides with the Boolean disjunction
operation, moreover ∨ ∈ B by our assumption on B. Consider the (B,A)-equation

(T1 ↔ T2) ∨ (T ′1 ↔ T ′2) = 1.

(Note that since clone B contains ↔, it also contains the operation 1 = x1 ↔ x1
occurring on the right side of the above equation.) It is straightforward to verify
that a function f satisfies this equation if and only if f ∈ K ∪ K′. �

Remark 1. Let us note that in Propositions 2 and 3, the operation ∧ can be
replaced by any binary operation whose restriction to {0, 1} coincides with the
Boolean conjunction.

Proposition 4. A class K ⊆ BA
n

is definable by (B,OA)-equations if and only if
it is definable by (B, CA)-equations.

Proof. Sufficiency is obvious. To show necessity, let us assume that K is defined
by a set E of (B,OA)-equations. For any m-ary equation E ∈ E , let us evaluate
E at every tuple a ∈ Am. This way we get |A|m equalities, each of which can be
regarded as a (B, CA)-equation (the inner functions are the constants obtained by
evaluating the inner functions of E at a). A function f satisfies these equations if
and only if it satisfies the original equation E. Unfolding each equation of E in this
manner, we end up with a (large) set of (B, CA)-equations that defines K. �

Remark 2. In equation (2), only the arity of f is fixed; the arities of the inner
and outer functions are arbitrary. However, by making use of the fact that the
underlying set A is finite, we can actually restrict these arities. To see this, let us
consider a functional equation E of the form (2). Let us choose a map ρ : [m]→ A,
and let us replace the variables xi in E by new variables yρ(i) for all i ∈ [m]. We
denote the resulting |A|-ary equation by Eρ. If a function f satisfies E, then it also
satisfies Eρ, since every evaluation of Eρ is also an evaluation of E. Conversely, if
f satisfies Eρ for all ρ ∈ A[m], then it also satisfies E, since every evaluation of E
is an evaluation of some Eρ. Thus every equation E can be translated to a set of
|A|-ary equations, i.e., we can always assume m = |A| in (2). As an illustration, let
E be the ternary equation

u (f (g1 (x1, x2, x3)) , f (g2 (x1, x2, x3))) = v (f (h (x1, x2, x3)))

with A = {0, 1}. The above procedure would translate E to a set of 8 equations,
but actually the three equations

u (f (g1 (y0, y0, y1)) , f (g2 (y0, y0, y1))) = v (f (h (y0, y0, y1))) ,

u (f (g1 (y1, y0, y0)) , f (g2 (y1, y0, y0))) = v (f (h (y1, y0, y0))) ,

u (f (g1 (y0, y1, y0)) , f (g2 (y0, y1, y0))) = v (f (h (y0, y1, y0)))

are sufficient, since for any a ∈ A3 at least one of a1 = a2, a2 = a3 or a1 = a3
holds.

In a similar manner, we can also restrict the arities of the outer functions. Indeed,
once we have fixed the arities of the inner functions to be m = |A| as above, we

have only
(
|A||A|

m)n
possibilities for the n-tuples of inner functions (gi1, . . . , gin)
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appearing in E, and we can identify those variables of u that carry the same n-tuple
of inner functions. This way we can replace u (and similarly v) by a function of

arity at most
(
|A||A|

m)n
= |A|n|A|

|A|
, and by adding fictitious variables if necessary,

we can actually assume that the arity of u and v is exactly |A|n|A|
|A|

. Observe
that clones are closed under forming substitution instances of its members where
variables are substituted for variables; hence the equations we obtain by performing
the replacements of inner and outer functions as described above are still (B,A)-
equations. Thus, a class is definable by arbitrary (B,A)-equations if and only if it is

definable by (B,A)-equations of the form (2) with m = |A| and r = s = |A|n|A|
|A|

.

3. A necessary condition for equational definability

In this section we address the question: Which classes of functions are definable
by (B,A)-equations? In other words, we consider the following problem:

Problem 1. Given two clones A and B, determine necessary and sufficient closure
conditions on a class K which guarantee the existence of a defining set of (B,A)-
equations.

The general solution to this problem eludes us. However, we provide partial
results towards a general solution of this problem. To this extent we need to recall
some notions concerning certain special clones.

Two functions f : An → A and g : Am → A are said to commute, denoted by
f ⊥ g, if for all aij ∈ A (i ∈ [n], j ∈ [m]), we have

f
(
g(a11, a12, . . . , a1m), . . . , g(an1, an2, . . . , anm)

)
= g
(
f(a11, a21, . . . , an1), . . . , f(a1m, a2m, . . . , anm)

)
.

The above definition of commutation is illustrated as follows: given any n × m
matrix

M =

a11 · · · a1m
...

...
an1 · · · anm


over A, first applying g to the rows of M and then applying f to the resulting
column vector yields the same result as first applying f to the columns of M and
then applying g to the resulting row vector.

Let A ⊆ OA be a class of functions on A. The centralizer of A, denoted by A∗,
is defined as the set of all functions which commute with every member of A, i.e.,

A∗ = {g ∈ OA : g ⊥ f for every f ∈ A}.

It is not difficult to verify that A∗ is a clone for any class A (see, e.g., [16, 18, 25]).
The clones OA and IA are centralizers of each other: O∗A = IA and I∗A = OA.

The following proposition establishes necessary conditions for a class K to be
definable by (B,A)-equations.

Proposition 5. If a class K ⊆ BAn

is definable by (B,A)-equations, then

(A) for every f ∈ K and ϕ ∈ (A∗)(1) we have f (ϕ (x1) , . . . , ϕ (xn)) ∈ K, and

(B) for every ` ≥ 0, f1, . . . , f` ∈ K and Φ ∈ (B∗)(`) we have Φ (f1, . . . , f`) ∈ K.

Proof. Assume that K is definable by (B,A)-equations, and let E be one of the
defining equations of K, given in the form (2). For any function f : An → B and
any tuple a ∈ Am, let LHS(f,a) and RHS(f,a) denote the left-hand side and the
right-hand side of E, respectively, when evaluated for f = f at a.

For the first claim, let f ∈ K, ϕ ∈ (A∗)(1), and let f ′ : An → B be defined by

f ′(x1, . . . , xn) = f(ϕ(x1), . . . , ϕ(xn)).



8 M. COUCEIRO, E. LEHTONEN, AND T. WALDHAUSER

For a ∈ Am let ϕ(a) := (ϕ(a1), . . . , ϕ(am)). Since ϕ ⊥ gij , it holds that gij(ϕ(a)) =
ϕ(gij(a)) (i ∈ [r], j ∈ [n]). Therefore, LHS(f, ϕ(a)) = LHS(f ′,a). A simi-
lar argument shows that RHS(f, ϕ(a)) = RHS(f ′,a). Since f ∈ K, the equality
LHS(f, ϕ(a)) = RHS(f, ϕ(a)) holds for all a ∈ Am. From this it follows that
LHS(f ′,a) = RHS(f ′,a) for all a ∈ Am. This means that f ′ satisfies E, and we
conclude that f ′ ∈ K.

For the second claim, let Φ ∈ (B∗)(`), f1, . . . , f` ∈ K. We need to prove that
f ′ := Φ (f1, . . . , f`) satisfies E, i.e., that LHS(f ′,a) = RHS(f ′,a) for all a ∈ Am.
Since f1, . . . , f` ∈ K, we have LHS(fi,a) = RHS(fi,a) for i = 1, . . . , `; therefore

(4) Φ(LHS(f1,a), . . . ,LHS(f`,a)) = Φ(RHS(f1,a), . . . ,RHS(f`,a))

for all a ∈ Am. Let us consider the following `× r matrix over B:f1(g11, . . . , g1n)(a) · · · f1(gr1, . . . , grn)(a)
...

...
f`(g11, . . . , g1n)(a) · · · f`(gr1, . . . , grn)(a)

 .

Applying Φ to the columns and u to the resulting row vector, we obtain LHS(f ′,a),
whereas applying u to the rows and Φ to the resulting column vector, we obtain
Φ(LHS(f1,a), . . . ,LHS(f`,a)). Since Φ ⊥ u, we have

(5) LHS(f ′,a) = Φ(LHS(f1,a), . . . ,LHS(f`,a)).

A similar argument shows that

(6) RHS(f ′,a) = Φ(RHS(f1,a), . . . ,RHS(f`,a)).

From (4), (5), (6) it follows that LHS(f ′,a) = RHS(f ′,a) for all a ∈ Am. Thus f ′

satisfies E. �

Let us note that Example 6 illustrates that the above conditions are also sufficient
when B = A is a finite field, and B = L0,A = CA. Indeed, in this case A∗ is

the clone of idempotent functions on A, thus (A∗)(1) contains only the identity
function, hence f(ϕ(x1), . . . , ϕ(xn)) = f in condition (A) of Proposition 5; this
condition holds trivially for any class K. The `-ary elements of B∗ are just the
linear functionals on the vector space A`, and these are all of the form a1x1 +
· · · + a`x` (ai ∈ A), hence B∗ = B = L0. Therefore, condition (B) of the above
proposition expresses the fact that K is closed under linear combinations. As we
have seen in Example 6, this condition is necessary and sufficient for definability
by (L0, CA)-equations.

The next example shows that the two necessary conditions given in Proposition 5
are not always sufficient.

Example 7. Let B = A = {0, 1, 2, 3}, and let υ be the unary function on A defined
by υ (0) = υ (1) = υ (2) = 0, υ (3) = 1. Let B be the clone generated by υ, let A be

any clone on A, and let K ⊆ O(0)
A consist of the constants 0 and 1. We claim that K

satisfies the two conditions of Proposition 5. Indeed, Condition (A) is trivial, as K
contains only constants. Condition (B) states that every function Φ ∈ B∗ preserves
the set {0, 1} ⊆ B. This is clear, since {0, 1} is exactly the range of υ.

Now let us suppose that K is defined by a set E of (B,A)-equations. Since
υ (υ (x)) is constant 0, every function u ∈ B is of the form u (x) = xi, u (x) =
υ (xi) or u (x) = 0. As K contains only nullary functions, inner functions do not
appear at all in our (B,A)-equations, therefore, E consists of some of the equations
υ (f) = f , f = 0 and υ (f) = 0. However, the equations υ (f) = f and f = 0 both
define the set {0}, while υ (f) = 0 defines the set {0, 1, 2}, hence no combination
of these equations can define K = {0, 1}. This shows that K is not definable by
(B,A)-equations.

In order to construct an example where the inner functions play a crucial role,
let us consider classes K ⊆ BA of unary functions definable by (IB ,A)-equations,
where A is the clone generated by a given permutation group G ≤ SA. Such an
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equation is of the form f (g (x)) = f (h (x)) or f (g (x)) = f (h (y)), where g, h ∈ G.
Clearly, the latter equation is satisfied only by constant functions. The solutions of
f (g (x)) = f (h (x)) are described in the next lemma, for which we need to introduce
the following notation. For any permutation g ∈ SA, let πg be the equivalence
relation on A whose blocks are the cycles of g (in other words: the orbits of the
group generated by g).

Lemma 1. A function f : A → B satisfies the equation f (g (x)) = f (h (x)) for
given g, h ∈ SA if and only if

πhg−1 ⊆ ker f.

Proof. Let us assume that f satisfies f (g (x)) = f (h (x)), and let q = hg−1. Evalu-
ating the equation at x = g−1 (a) for an arbitrary a ∈ A, we obtain f (a) = f (q (a)).
By iteration, we get f (a) = f

(
qk (a)

)
for any a ∈ A and k ∈ N. If (a, a′) ∈ πhg−1 =

πq, then there exists k ∈ N such that a′ = qk (a), hence we have f (a) = f (a′), i.e.,
(a, a′) ∈ ker f .

Assume now that πq ⊆ ker f , and let a ∈ A. Since q (g (a)) = h (a) , we have
(g (a) , h (a)) ∈ πq, hence (g (a) , h (a)) ∈ ker f , and this means that f (g (a)) =
f (h (a)) holds for all a ∈ A. Therefore f satisfies the equation f (g (x)) = f (h (x)).

�

If a classK ⊆ BA is defined by a system of equations f (gi (x)) = f (hi (x)) (i ∈ [t]),
then, according to the above lemma, the members of K are exactly those functions f
that satisfy each of the conditions πhig

−1
i
⊆ ker f (i ∈ [t]). These can be translated

into a single condition
∨
i∈[t] πhig

−1
i
⊆ ker f , where ∨ denotes the join operation in

the lattice of equivalence relations (transitive closure of the union). Also, taking
into account equations of the form f (g (x)) = f (h (y)), we obtain the following
description of classes of unary functions definable by (IB ,A)-equations.

Proposition 6. Let A be the clone generated by a given permutation group G ≤ SA.
Then a class K ⊆ BA is definable by (IB ,A)-equations if and only if either K is
the class of all constant functions or there exists a subset Q ⊆ G such that

K =
{
f ∈ BA :

∨
q∈Q

πq ⊆ ker f
}
.

With the help of Proposition 6, we can give another example showing that
the conditions of Proposition 5 do not always guarantee definability by (B,A)-
equations. In contrast to Example 7, here the key role is played by the inner
functions.

Example 8. Let A be the clone generated by the alternating group on A =
{0, 1, 2, 3}, and let B = IB , where B is an arbitrary set with at least two ele-
ments. Then the class K =

{
f ∈ BA : f (0) = f (1)

}
satisfies the two conditions

of Proposition 5, but it is not definable by (B,A)-equations. To see this, let us
observe that K =

{
f ∈ BA : ϑ ⊆ ker f

}
, where ϑ denotes the equivalence relation

on A whose blocks are {0, 1} , {2} , {3}. From Proposition 6 it follows that K is
definable by (B,A)-equations if and only if ϑ is the join of some equivalences πq
with each q being an even permutation. However, ϑ is an atom in the lattice of
equivalence relations on A, hence it is join irreducible. Therefore, if K was defin-
able by (B,A)-equations, then ϑ would be equal to πq for some even permutation
q. This is clearly not the case, as the only permutation q with πq = ϑ is the trans-
position (01), which is an odd permutation. This shows that K is not definable by
(B,A)-equations.

To verify that K satisfies the conditions of Proposition 5, let us observe that

(A∗)(1) contains only the identity function1, hence condition (A) is trivially satisfied.

1It is straightforward to check that the only unary function commuting with all even permu-

tations is the identity, whenever the underlying set has at least 4 elements. Alternatively, one can

use the description of the centralizers of alternating groups given by Machida and Rosenberg [21].
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As I∗B = OB , condition (B) is equivalent to condition (7) below, and we will see in
Remark 4 that it is satisfied if and only if K is of the form K =

{
f ∈ BA : ϑ ⊆ ker f

}
for some equivalence relation ϑ, which is indeed the case in our example.

Remark 3. In light of Remark 2, the conditions of Proposition 5 can be slightly
strengthened. Namely, condition (A) must hold for every unary function ϕ that
commutes with all |A|-ary members ofA, and similarly, in condition (B) it suffices to

require that Φ commutes with the |A|n|A|
|A|

-ary part of B. However, as Examples 7
and 8 show, these stronger necessary conditions are still not sufficient for definability
by (B,A)-equations.

4. Characterizations of classes definable by equations induced by
the smallest and largest clones

In the rest of the paper we show that the necessary conditions presented in
Proposition 5 are sufficient when B ∈ {IB ,OB} and A ∈ {IA,OA}. As O∗B = IB ,
in the case B = OB condition (B) is satisfied by every class, while for B = IB it
takes the form

(7) ∀ f1, . . . , f` ∈ K ∀Φ ∈ O(`)
B : Φ (f1, . . . , f`) ∈ K,

since I∗B = OB . Similarly, condition (A) is trivial for A = OA, and for A = IA it
reads as

(8) ∀f ∈ K ∀ϕ ∈ O(1)
A : f (ϕ (x1) , . . . , ϕ (xn)) ∈ K.

Lemma 2. A class K ⊆ BA
n

is definable by (B, IA)-equations if and only if it is
definable by (B,OA)-equations and satisfies condition (8).

Proof. The necessity of the conditions follows from Proposition 5. To prove the
sufficiency, let us suppose that K ⊆ BA

n

is definable by (B,OA)-equations and
satisfies (8). By Proposition 4, there exists a system E of (B, CA)-equations that
defines K, moreover, we may assume that only constant functions appear as inner
functions in every equation of E . To simplify notation, in the following we will
assume that A = {1, 2, . . . , k}. Let us replace every occurrence of every constant

i ∈ A by the i-th k-ary projection x
(k)
i in every equation of E . This way we obtain

a system E ′ of k-ary (B, IA)-equations. We will prove that E ′ defines K.
Assume first that a function f satisfies E ′. Then the two sides of each equation of

E ′ evaluate to the same value for f = f at every a ∈ Ak. Choosing a = (1, 2, . . . , k),
we get exactly the original equations in E . Therefore f satisfies E , and this implies
that f ∈ K.

Now let us assume that f ∈ K, and let us evaluate the two sides of an equation
in E ′ for f = f at an arbitrary tuple a ∈ Ak. Then we obtain the same values as
if we evaluated the two sides of the corresponding equation of E for the function
f = f (ϕ (x1) , . . . , ϕ (xn)), where ϕ is the unary map defined by ϕ (i) = ai for every
i ∈ A. Since K has property (8), f (ϕ (x1) , . . . , ϕ (xn)) ∈ K, hence it satisfies every
equation of E . This shows that f satisfies every equation of E ′. �

Theorem 1. Every class K ⊆ BAn

is definable by (OB ,OA)-equations.

Proof. We have seen in Example 5 that {f} is definable for any given f ∈ BAn

.
Since A and B are finite sets, any class K ⊆ BA

n

is a finite union of singletons,
hence the theorem follows by Proposition 3. �

Theorem 2. A class K ⊆ BAn

is definable by (OB , IA)-equations if and only if it
satisfies condition (8).

Proof. Follows from Lemma 2 and Theorem 1. �

Theorem 3. A class K ⊆ BAn

is definable by (IB ,OA)-equations if and only if it
satisfies condition (7).
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Proof. The necessity of the condition follows from Proposition 5. For the sufficiency,
let us assume that K ⊆ BAn

satisfies (7), and let f ∈ BAn

be an arbitrary function
that satisfies every (IB ,OA)-equation that is satisfied by all members of K. We
will prove that f ∈ K.

Let us choose ` = |K|, let K = {f1, . . . , f`}, and for any a ∈ An let us write F (a)
for the `-tuple (f1 (a) , . . . , f` (a)). Let 0 be an arbitrary element of A, and for any
b ∈ B` let

Φ (b) =

{
f (a) , if b = F (a) ;
0, if @a ∈ An : b = F (a) .

We claim that this formula gives rise to a well-defined function Φ ∈ O(`)
B . Suppose

that b =F (a) = F (a′) for some tuples a,a′ ∈ An. Let us consider the functional
equation

(9) f (a1, . . . , an) = f (a′1, . . . , a
′
n) .

This is an (IB ,OA)-equation, since the outer function on both sides is the identity
function (i.e., the first unary projection), and the inner functions are constants.
The equality F (a) = F (a′) implies that every element of K satisfies (9). Therefore,
according to our assumption, f satisfies (9) as well. This means that f (a) = f (a′),
hence Φ (b) = f (a) = f (a′) is well defined.

Since K satisfies condition (7), in order to prove that f ∈ K, it suffices to verify
that f = Φ (f1, . . . , f`). Indeed, for all a ∈ An we have

Φ (f1, . . . , f`) (a) = Φ (F (a)) = f (a)

by the definition of Φ. �

Remark 4. As the proof of Theorem 3 shows, a class K ⊆ BAn

satisfies condition
(7) if and only if it can be defined by equations of the form (9), i.e., by equations
that involve only constants as inner functions (cf. also Proposition 4). A function
f satisfies equation (9) if and only if f (a) = f (a′), which is equivalent to (a,a′) ∈
ker f . Therefore, the assertion that a given set E of equations of this form is satisfied
by a function f is equivalent to the condition R ⊆ ker f , where R is a binary relation
on An (consisting of all pairs (a,a′) that appear in E). If ϑ is the least equivalence
relation containing R, then clearly R ⊆ ker f if and only if ϑ ⊆ ker f . Thus a class
K ⊆ BA

n

satisfies (7) if and only if there exists an equivalence relation ϑ on An

such that

K =
{
f ∈ BA

n

: ϑ ⊆ ker f
}
.

Theorem 4. A class K ⊆ BA
n

is definable by (IB , IA)-equations if and only if
conditions (7) and (8) hold.

Proof. Follows from Lemma 2 and Theorem 3. �
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[3] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov and B. A. Romov, Galois theory for Post
algebras. I, II Kibernetika 3 (1969) 1–10, 5 (1969) 1–9 (in Russian). English translation:

Cybernetics 5 (1969) 243–252, 531–539.

[4] M. Couceiro, On the lattice of equational classes of Boolean functions and its closed intervals,
J. Mult.-Valued Logic Soft Comput. 18 (2008) 81–104.

[5] M. Couceiro and S. Foldes, Definability of Boolean function classes by linear equations over
GF(2), Discrete Appl. Math. 142 (2004) 29–34.

[6] M. Couceiro and S. Foldes, On closed sets of relational constraints and classes of functions

closed under variable substitutions, Algebra Universalis 54 (2005) 149–165.
[7] M. Couceiro and S. Foldes, Functional equations, constraints, definability of function classes,

and functions of Boolean variables, Acta Cybernet. 18 (2007) 61–75.

[8] M. Couceiro and S. Foldes, Function classes and relational constraints stable under compo-
sitions with clones, Discuss. Math. Gen. Algebra Appl. 29 (2009) 109–121.

[9] M. Couceiro, E. Lehtonen, and T. Waldhauser, On equational definability of function classes,

41st IEEE International Symposium on Multiple-Valued Logic (ISMVL 2011), IEEE Com-
puter Society, 2011, pp. 182–186.

[10] M. Couceiro and J.-L. Marichal, Axiomatizations of Lovász extensions of pseudo-Boolean

functions, Fuzzy Sets and Systems 181 (2011) 28–38.
[11] M. Couceiro and M. Pouzet, On a quasi-ordering on Boolean functions, Theoret. Comput.

Sci. 396 (2008) 71–87.

[12] O. Ekin, S. Foldes, P. Hammer, and L. Hellerstein, Equational characterizations of Boolean
function classes, Discrete Math. 211 (2000) 27–51.

[13] S. Foldes, Equational classes of Boolean functions via the HSP theorem, Algebra Universalis
44 (2000) 309–324.

[14] S. Foldes and G. R. Pogosyan, Post classes characterized by functional terms, Discrete Appl.

Math. 142 (2004) 35–51.
[15] D. Geiger, Closed systems of functions and predicates, Pacific J. Math. 27 (1968) 95–100.

[16] M. Hermann, On Boolean primitive positive clones, Discrete Math. 308 (2008) 3151–3162.

[17] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities.
Cauchy’s Equation and Jensen’s Inequality, (2nd ed.) Birkhäuser Verlag, Basel, 2009.
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