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A SURVEY ON THE ARITY GAP

MIGUEL COUCEIRO, ERKKO LEHTONEN, AND TAMÁS WALDHAUSER

Abstract. The arity gap of a function of several variables is defined as the minimum
decrease in the number of essential variables when essential variables of the function

are identified. We present a brief survey on the research done on the arity gap, from
the first studies of this notion up to recent developments, and discuss some natural
extensions and related problems.

1. Introduction

Let A and B be arbitrary nonempty sets. A function of several variables from A to B
is a map f : An → B for some integer n ≥ 1 called the arity of f . If A = B, then we speak
of operations on A. Operations on the two-element set {0, 1} are called Boolean functions.
We denote the set of all finitary functions from A to B by

FAB :=
⋃

n≥1

BA
n

.

We say that the i-th variable of f : An → B (1 ≤ i ≤ n) is essential, if there exist
n-tuples

(1) (a1, . . . , ai−1, ai, ai+1, . . . , an), (a1, . . . , ai−1, a
′
i, ai+1, . . . , an) ∈ An

that only differ in the i-th position, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

We refer to the pair of n-tuples in (1) as a witness of essentiality of the i-th variable.
If the i-th variable of f is not essential, then we say that it is inessential. The number
of essential variables of f is called the essential arity of f and it is denoted by ess f . If
ess f = m, then we say that f is essentially m-ary.

For i, j ∈ {1, . . . , n}, i 6= j, the function fi←j : A
n → B given by the rule

fi←j(a1, . . . , an) = f(a1, . . . , ai−1, aj , ai+1, . . . , an),

for all a1, . . . , an ∈ A, is called a variable identification minor of f , obtained by identifying
the i-th variable with the j-th variable. Note that the i-th variable of fi←j is necessarily
inessential.

Let f : An → B be a function with at least two essential variables. The arity gap of f
is the quantity

gap f := min
i6=j

(ess f − ess fi←j),

where i and j range over the set of indices of essential variables of f . Note that, by
definition, 1 ≤ gap f ≤ ess f .

We say that f and g are equivalent if each one can be obtained from the other by
permutation of variables and addition or deletion of inessential variables. Whenever we
consider the arity gap of a function, we can assume that all of its variables are essential.
This is not a significant restriction, because every nonconstant function is equivalent to a
function with no inessential variables, and equivalent functions have the same arity gap.
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Example 1. Let F be an arbitrary field. Consider the polynomial function f : F 3 → F
induced by x1x3 − x2x3. It is clear that all variables of f are essential, i.e., ess f = 3. Let
us consider the various variable identification minors of f :

f1←2 = 0, f2←1 = 0,

f1←3 = x23 − x2x3, f3←1 = x21 − x1x2,

f2←3 = x1x3 − x23, f3←2 = x1x2 − x22.

We have that

ess f1←2 = ess f2←1 = 0,

ess f1←3 = ess f3←1 = ess f2←3 = ess f3←2 = 2.

Hence gap f = 1.

Example 2. Let f : {0, 1}n → {0, 1} be the Boolean function induced by the polynomial
x1 + x2 + · · · + xn over the two-element field. Then for each i 6= j we have that fi←j is
induced by the polynomial ∑

ℓ∈{1,...,n}\{i,j}

xℓ.

Thus ess f = n and ess fi←j = n− 2 for all i 6= j; hence gap f = 2.

Example 3. Let A be a finite set with k ≥ 2 elements, say, A = {0, 1, . . . , k − 1}. Let
f : An → A, 2 ≤ n ≤ k, be given by the rule

f(a1, . . . , an) :=

{
1 if (a1, . . . , an) = (0, 1, . . . , n− 1),

0 otherwise.

It is easy to see that all variables of f are essential, and for all i 6= j, the function fi←j is
identically 0. Hence gap f = n.

As shown by the examples above, every positive integer is the arity gap of some function
of several variables. Are all positive integers possible as the arity gaps of functions of several
variables from A to B for a fixed domain A and codomain B? Does the size of the domain
or the codomain have any influence on the set of possible arity gaps? Or even, could
one hope to classify functions according to their arity gap? These questions have been
raised and studied by several authors. In this paper, we survey the research work done
on this topic over the years. In the bibliography, we indicate literature relevant to the
topics of essential variables (see [3, 4, 15, 16, 22, 24, 27]), variable identification minors
and variants (see [2, 5, 14, 17, 18, 19, 20, 23, 28, 31]) and arity gap and its variants (see
[6, 7, 8, 9, 10, 11, 13, 24, 25, 26, 30]).

This survey is organized as follows. We start in Section 2 with basic notions and
classifications of special types of functions (namely, Boolean and pseudo-Boolean functions)
according to their arity gap; we also give a general description of arity gap, which serves
as a basis for the later sections. Section 3 reports on natural decomposition schemes
which arise from arity gap and which are then used in Section 4 to enumerate functions
with prescribed arity and arity gap. In Section 5, we make the description of arity gap
more explicit for some special classes of functions (namely, order-preserving functions and
polynomial functions over fields). Then, in Section 6, we briefly discuss the order which
naturally arises from variable identification (namely, simple minor relation) and some
parametrized variants of the arity gap. We conclude this survey by mentioning some open
problems and proposing new directions for future research in Section 7.

2. From the beginnings to a complete classification

To the best of our knowledge, the first study of arity gap appeared in print in the
1963 paper by Salomaa [24]. In that paper, he addressed the question how the number of
essential variables of a function is affected by substitution of constants for variables or by
identification of variables. Concerning identification of variables, his main result was the
following.
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Theorem 1 (Salomaa [24]). Let f : {0, 1}n → {0, 1} be a Boolean function with at least
two essential variables. Then gap f ≤ 2.

As illustrated by Example 2, this upper bound is attained. On the other hand, Exam-
ple 1 provides a Boolean function of arity gap 1. Since the arity gap is always at least 1,
there are no other possible values for the arity gap of Boolean functions. This calls for
a complete classification of Boolean functions into those with arity gap 1 and those with
arity gap 2. Such a strengthening of Salomaa’s result was obtained in [6].

Theorem 2 ([6]). Let f : {0, 1}n → {0, 1} be a Boolean function with at least two essential
variables. Then gap f = 2 if and only if f is equivalent to one of the following functions:

(1) x1 + x2 + · · ·+ xm + c for some m ≥ 2,
(2) x1x2 + x1 + c,
(3) x1x2 + x1x3 + x2x3 + c,
(4) x1x2 + x1x3 + x2x3 + x1 + x2 + c,

where c ∈ {0, 1}. Otherwise gap f = 1.

The number of n-ary Boolean functions f with ess f = n and gap f = 2 can be straight-
forwardly read off from the list of functions given in Theorem 2. Since the number of
functions f : An → B (|A| = k, |B| = ℓ) with ess f = m (0 ≤ m ≤ n) is

(2)

(
n

m

) m∑

i=0

(−1)i
(
m

i

)
ℓk

m−i

(see Wernick [29]), the number of n-ary Boolean functions with ess f = n and gap f = 1
can be easily obtained.

Theorem 2 was later reproved using different techniques by Shtrakov in [25], where he
also addressed the problem of counting the number of Boolean functions with a given arity
gap.

We call functions of several variables from {0, 1} to an arbitrary nonempty set B pseudo-
Boolean functions. Theorem 2 was extended for pseudo-Boolean functions in [7].

Theorem 3 ([7]). Let f : {0, 1}n → B (n ≥ 2) be a pseudo-Boolean function all of whose
variables are essential. Then gap f = 2 if and only if f satisfies one of the following
conditions:

(1) n = 2 and f is a nonconstant function satisfying f(0, 0) = f(1, 1),
(2) f = g ◦ h, where g : {0, 1} → B is injective and h : {0, 1}n → {0, 1} is a Boolean

function with gaph = 2, as given by Theorem 2.

Otherwise gap f = 1.

A partial function of several variables from A to B is a map f : S → B where S ⊆ An for
some integer n ≥ 1, called the arity of f . If S = An, we speak of total functions. Essential
variables are defined for partial functions in the same way as for total functions, but the
n-tuples of (1) forming a witness of essentiality are required to be in S. In this way, the
notions of essential arity and arity gap can be naturally extended to partial functions.

The following notions were introduced by Berman and Kisielewicz [1]. Denote by P(A)
the power set of A, and define the function oddsupp:

⋃
n≥1A

n → P(A) by

oddsupp(a1, . . . , an) :=
{
a ∈ A :

∣∣{j ∈ {1, . . . , n} : aj = a
}∣∣ is odd

}
.

We say that a partial function f : S → B (S ⊆ An) is determined by oddsupp if there
exists a function f∗ : P(A) → B such that

f = f∗ ◦ oddsupp|S .

Willard showed that if f : An → B, where A is finite, ess f = n > max(|A|, 3) and
gap f ≥ 2, then f is determined by oddsupp. It is easy to verify that if f is determined by
oddsupp and ess f ≥ 2, then gap f = 2.
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Theorem 4 (Willard [30]). Let A and B be finite nonempty sets, and let k := |A|. Suppose
that f : An → B depends on all of its variables. If n > k, then gap f ≤ 2. Moreover, if
n > max(k, 3), then gap f = 2 if and only if f is determined by oddsupp.

This theorem deals only with functions over finite domains with sufficiently large essen-
tial arities; if A and B are finite, then gap f ≤ 2 for almost all functions. The condition on
essential arity was removed in [7], where a full classification of finite functions according
to their arity gap was given in terms of so-called quasi-arity. As pointed out in [9], this
classification theorem holds more generally – with no change needed in its proof – for
functions with arbitrary domains. Thus, the study of arity gap culminated in Theorem 5,
which will be presented below, after introducing some terminology.

For n ≥ 2, let

An= := {(a1, . . . , an) ∈ An : ai = aj for some i 6= j}.

Let f : An → B. Any function g : An → B satisfying f |An
=
= g|An

=
is called a support of f .

The quasi-arity of f , denoted qa f , is defined as the minimum of the essential arities of all
supports of f , i.e., qa f := ming ess g where g ranges over all supports of f . If qa f = m,
then we say that f is quasi-m-ary. Note that if A is finite, then An= = An whenever
n > |A|. Hence qa f = ess f whenever n > |A|. Moreover, qa f = ess f |An

=
whenever n 6= 2.

Theorem 5 ([7, 9]). Let A and B be arbitrary sets with at least two elements. Suppose
that f : An → B, n ≥ 2, depends on all of its variables.

(1) For 3 ≤ p ≤ n, gap f = p if and only if qa f = n− p.
(2) For n 6= 3, gap f = 2 if and only if qa f = n−2 or qa f = n and f |An

=
is determined

by oddsupp.
(3) For n = 3, gap f = 2 if and only if there is a nonconstant unary function h : A→ B

and i1, i2, i3 ∈ {0, 1} such that

f(x1, x0, x0) = h(xi1),

f(x0, x1, x0) = h(xi2),

f(x0, x0, x1) = h(xi3).

(4) Otherwise gap f = 1.

Theorem 5 gives answers to the questions posed at the end of Section 1. The set of
possible arity gaps of functions of several variables from A to B is {n ∈ N \ {0} : n ≤ |A|}.
This does not depend on the cardinality of the codomain B, as long as |B| ≥ 2 (otherwise,
all functions are constant and hence have no essential variables).

3. Decompositions of functions based on the arity gap

Theorem 5 provides a complete classification of functions according to their arity gap.
Unfortunately, it is not as explicit as Theorems 2 and 3 that deal with Boolean and
pseudo-Boolean functions. The main reason for this is the fact that no special structure
was assumed on the sets A and B. By assuming that the codomain B has a group structure,
more explicit descriptions can be obtained. In this direction, two cases are distinguished.

First, functions f : An → B with arity gap p ≥ 3 are shown to be decomposable into a
sum of a quasi-nullary function and an essentially (n− p)-ary function.

Theorem 6 ([9]). Assume that (B; +) is a group with neutral element 0. Let f : An → B,
n ≥ 3, and 3 ≤ p ≤ n. Then the following two conditions are equivalent:

(1) ess f = n and gap f = p.
(2) There exist functions g, h : An → B such that f = h + g, h|An

=
≡ 0, h 6≡ 0, and

ess g = n− p.

The decomposition f = h+ g given above is unique.

Similar decompositions were presented by Shtrakov and Koppitz [26], without proving
uniqueness.

Second, we deal with functions with arity gap 2. In this case we need to further assume
that B is a Boolean group (i.e., a group satisfying x + x = 0 for all x ∈ B). We also
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need to introduce some notation. Let ϕ : An−2 → B be a function that is determined by
oddsupp, i.e., ϕ = ϕ∗ ◦ oddsupp |An−2 , for some function ϕ∗ : P(A) → B. Let ϕ̃ be the
n-ary function defined by

(3) ϕ̃(x1, . . . , xn) :=
∑

k<n
2|n−k

∑

1≤i1<···<ik≤n

ϕ∗(oddsupp(xi1 , . . . , xik)).

Observe that each summand is a variable identification minor of ϕ, namely

ϕ∗(oddsupp(xi1 , . . . , xik)) = ϕ(xi1 , . . . , xik , y, . . . , y),

where the number of y’s is n − 2 − k, which is an even number; therefore y is indeed
an inessential variable of the function on the right-hand side; moreover, the order of the
variables is irrelevant. The function ϕ̃ is obviously totally symmetric, and it can be shown
that ϕ̃|An

=
is determined by oddsupp; from these facts it follows that ϕ̃ is determined by

oddsupp as well (see [9] for details).

Theorem 7 ([9]). Assume that (B; +) is a Boolean group with neutral element 0. Let
f : An → B, n ≥ 4. Then the following two conditions are equivalent:

(1) ess f = n and gap f = 2.
(2) There exist functions g, h : An → B such that f = h+ g, h|An

=
≡ 0, and either

(a) ess g = n− 2 and h 6≡ 0, or
(b) g = ϕ̃ for some nonconstant (n − 2)-ary function ϕ that is determined by

oddsupp.

The decomposition f = h+ g given above is unique.

Theorem 2 shows that for all but finitely many Boolean functions, gap f = 2 implies
that f is a sum of unary functions. The following theorem provides an analogous result
for functions f : An → B, where A is a finite set and B is a Boolean group.

Theorem 8 ([12]). Let A be a finite set, B a Boolean group, and let f : An → B be a
function such that ess f > max(|A|, 3). Then gap f ≤ 2, and if gap f = 2, then f is a sum
of functions of essential arity at most |A| − 1.

Let f be a polynomial function over GF(q), the q-element finite field, with ess f = n >
max(q, 3) and gap f = 2. By the above theorem, if q is even, then f is a sum of functions
of arity at most q − 1. Since finite fields are functionally complete, we can represent
each summand by a polynomial. This implies that f is a sum of monomials, where each
monomial involves at most q − 1 variables. If q = 2, then we can conclude that every
Boolean function f with ess f ≥ 4 and gap f = 2 is linear, in accordance with Theorem 2.

The next example shows that Theorem 7 and Theorem 8 do not hold for arbitrary
groups B.

Example 4 ([11]). Let q be an odd prime power, and let f be the following polynomial
function over GF(q):

f(x1, . . . , xn) =
n∏

i=1

(
xq−1i −

1

2

)
,

Here 1
2 stands for the multiplicative inverse of 2 = 1 + 1 (it exists, since GF(q) is of odd

characteristic). Let us identify the first two variables of f :

f(x1, x1, x3, . . . , xn) =

(
xq−11 −

1

2

)2

·
n∏

i=3

(
xq−1i −

1

2

)

=

(
x2q−21 − xq−11 +

1

4

)
·

n∏

i=3

(
xq−1i −

1

2

)

=
1

4
·
n∏

i=3

(
xq−1i −

1

2

)
,
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since xq1 = x1 holds identically in GF(q). We see that x1 becomes an inessential variable,
and this together with the symmetry of f shows that f is determined by oddsupp, hence
gap f = 2.

If f were a sum of at most (n − 1)-ary functions, then every monomial of f would
involve at most n−1 variables. However, this is clearly not the case, as the expansion of f
involves the monomial xq−11 · · ·xq−1n , which will not be cancelled by any other monomial.
Thus f cannot be expressed as a sum of functions of arity smaller than the arity of f . If
n > q, then the only support of f is itself, thus a support g satisfying condition 2a) or 2b)
of Theorem 7 cannot exist.

Theorem 8 and Example 4 ask for a characterization of those groups B for which
Theorem 8 still holds. This question was partially answered in [12], where abelian groups
B were classified according to whether every function f : An → B with gap f = 2 can be
decomposed into a sum of functions with a smaller number of essential variables. This
result followed from a study of a hierarchy of function classes based on decomposability,
which we now describe.

Let (B; +) be an abelian group with neutral element 0. Recall that the order of a group
element b ∈ B is the smallest positive integer n such that b+ · · ·+ b︸ ︷︷ ︸

n times

= 0. If such a number

does not exist, the order of b is ∞. If the orders of the elements of B have a finite common
upper bound, then the exponent of B is defined as the least upper bound (or, equivalently,
the least common multiple) of the orders of its members; otherwise the exponent of B is
∞. For example, the exponent of a Boolean group is 2.

A function f : An → B is said to be k-decomposable, if it has an additive decomposition
f = f1 + · · ·+ fs, where each fi : A

n → B (1 ≤ i ≤ s) has essential arity at most k. If f is
(n− 1)-decomposable, we simply say that it is decomposable.

The following result provides a characterization of k-decomposable functions. For I ⊆
[n] and a = (a1, . . . , an) ∈ An, let xa

I denote the n-tuple which is obtained from x =
(x1, . . . , xn) ∈ An by replacing its i-th component by ai, for each i ∈ I.

Proposition 1 ([12]). Let (B; +) be an abelian group, and let c ∈ A. A function f : An →
B is k-decomposable if and only if for all a ∈ An and I ⊆ [n] with |I| > k, we have

∑

J⊆I

(−1)|I\J|f(caJ ) = 0,

where c := (c, . . . , c).

Proposition 1 gave rise to the following result which reveals a dichotomy of abelian
groups with respect the decomposability of functions determined by oddsupp.

Theorem 9 ([12]). Let A be an arbitrary set with at least two elements, and let B be
an abelian group. Then every function f : An → B that is determined by oddsupp is
decomposable if and only if A is finite and the exponent of B is a power of 2. Moreover,
if A is finite and the exponent of B is 2e, then every function determined by oddsupp is
(|A|+ e− 2)-decomposable.

The following example shows that the bound (|A| + e − 2) in Theorem 9 cannot be
improved.

Example 5. Let A = {0, 1, . . . , k−1}, and let B be an arbitrary abelian group of exponent
2e. Fix an element b ∈ B of order 2e. Let ϕ : P(A) → B be defined by

ϕ(T ) =

{
b, if T ⊇ A \ {0},

0, otherwise,

let n ≥ k + e − 2, and let f : An → B be given by f(x) = ϕ(oddsupp(x)). Theorem 9
asserts that f is (k+e−2)-decomposable; however, it can be shown that f is not (k+e−3)-
decomposable (see [12]).
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4. The number of functions with a given arity gap

The unique decompositions provided by Theorems 6 and 7 enable us to actually count
the number of functions f : An → B with ess f = n ≥ 2 and gap f = p for every 1 ≤ p ≤ n.
The problem of determining these numbers for operations on finite sets was raised by
Shtrakov and Koppitz in [26], where upper bounds were provided. An answer to the
counting problem with exact numbers was given in [9].

Let A and B be finite sets with |A| = k, |B| = ℓ. Let us denote by Gkℓnp the number of
functions f : An → B with ess f = n and gap f = p. It is well known (see Wernick [29])
that the number of functions g : An → B that depend on exactly r variables (0 ≤ r ≤ n)
is

Ukℓnr :=

(
n

r

) r∑

i=0

(−1)i
(
r

i

)
ℓk

r−i

.

Let (m)i denote the falling factorial (m)i := m(m − 1) · · · (m − (i − 1)). The number of
functions h : An → B such that h|An

=
≡ 0, h 6≡ 0 is then given by

V kℓn := ℓ(k)n − 1.

Let us denote by Okℓn the number of functions f : An → B such that ess f = n, qa f = n
and f |An

=
is determined by oddsupp. It can be shown (see [9]) that for k ≥ 2, ℓ ≥ 2, n ≥ 2,

Okℓn =

{
ℓ2

k−1

− ℓ, if n > k,

ℓ(k)n(ℓS
k

n − ℓ), if n ≤ k,

where

Skn =

{∑n

2
−1

i=0

(
k
2i

)
, if n is even,

∑n−1

2
−1

i=0

(
k

2i+1

)
, if n is odd.

With the notation and facts given above, we can now provide the number Gkℓnp of func-
tions f : An → B with ess f = n and gap f = p.

Theorem 10 ([9]). Let k ≥ 2, ℓ ≥ 2, n ≥ 2.

(1) If n > k and 3 ≤ p ≤ n, then Gkℓnp = 0.
(2) If n > k and n ≥ 4, then

Gkℓn2 = Okℓn = ℓ2
k−1

− ℓ, Gkℓn1 = Ukℓnn −Gkℓn2.

(3) If 3 ≤ n ≤ k and 3 ≤ p ≤ n, then Gkℓnp = Ukℓn(n−p)V
kℓ
n .

(4) If 4 ≤ n ≤ k, then

Gkℓn2 = Ukℓn(n−2)V
kℓ
n +Okℓn , Gkℓn1 = Ukℓn(n−1)V

kℓ
n + Ukℓnnℓ

(k)n − V kℓn ℓk
n

−Okℓn

(5) Gkℓ32 = (8ℓ(k)3 − 3)(ℓk − ℓ), Gkℓ31 = Ukℓ33 −Gkℓ33 −Gkℓ32.
(6) Gkℓ22 = ℓ(k)2+1 − ℓ, Gkℓ21 = Ukℓ22 −Gkℓ22.

5. Special classes of functions

Theorems 5, 6 and 7 lack the explicitness that is enjoyed by Theorems 2 and 3 in the
sense that in the former ones the arity gap of each function is described in terms of the
essential arity of some related function. However, for some special classes of functions,
our results become explicit. Examples include pseudo-Boolean functions (see Theorem 3),
Lovász extensions (in particular, the so-called Choquet integrals), multilinear polynomial
functions and lattice polynomial functions (in particular, the so-called Sugeno integrals). In
this section we extend these results to other classes of functions, namely of order-preserving
functions (Subsection 5.1) and of polynomial functions over fields (Subsection 5.2), and
provide rather explicit descriptions of arity gap within these classes.
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5.1. Order-preserving functions. Let (A;≤A) and (B;≤B) be partially ordered sets.
A function f : An → B is said to be order-preserving (with respect to the partial orders ≤A
and ≤B) if for all a,b ∈ An, f(a) ≤B f(b) whenever a ≤A b, where a ≤A b denotes the
componentwise ordering of tuples, i.e., a ≤A b if and only if ai ≤A bi for all i ∈ {1, . . . , n}.
We say that (A;≤A) is bidirected if every pair of elements of A has both an upper bound
and a lower bound.

Theorem 11 ([10]). Let (A;≤A) be a bidirected poset, let (B;≤B) be any poset, and let
f : An → B (n ≥ 2) be an order-preserving function such that ess f = n. Then gap f = 2
if and only if n = 3 and there is a nonconstant order-preserving unary function h : A→ B
such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

Otherwise, gap f = 1.

By imposing stronger assumptions on the underlying posets, we obtain more stringent
descriptions of order-preserving functions with arity gap 2. For example, if (A;≤A) and
(B;≤B) are lattices and the function h occurring in Theorem 11 is a lattice homomorphism
whose image is a distributive sublattice of B, then it can be shown that

f = med
(
h(x1), h(x2), h(x3)

)
,

where med denotes the ternary median function on Imh, given by

med(a, b, c) := (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c)

= (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c).

From this observation and Theorem 11, we obtain the following explicit classification of
order-preserving functions defined on chains.

Corollary 1 ([10]). Let (A;≤A) be a chain and let (B;≤B) be any lattice. Let f : An →
B be an order-preserving function. Then gap f = 2 if and only if n = 3 and f =
med

(
h(x1), h(x2), h(x3)

)
for some nonconstant order-preserving unary function h : A→ B

(here med denotes the median function on Imh). Otherwise gap f = 1.

5.2. Polynomial functions over fields. As in the case of order-preserving functions,
Theorem 5 can be refined for polynomial functions over fields. We summarize in this
section the results obtained in [11] in this direction.

Polynomials over infinite fields are in one-to-one correspondence with polynomial func-
tions. It is well known that every function over a finite field is a polynomial function, but
the correspondence between polynomials and functions is not injective. This correspon-
dence can be made bijective by assuming that, for a finite field GF(q), we only consider
polynomials in which the exponent of each variable in every monomial is at most q−1; we
call such polynomials canonical. Every polynomial over an infinite field is canonical.

Given a polynomial function f : Fn → F , we denote by Pf the unique canonical poly-
nomial which induces f , and given a polynomial p ∈ F [x1, . . . , xn], we denote by p the
function f : Fn → F induced by p. Note that p+ q = p+ q for all p, q ∈ F [x1, . . . , xn].

Lemma 1 ([11]). If f is a polynomial function over a field F , then the functions g and h
in the decomposition f = h+ g given in Theorem 6 are also polynomial functions.

Lemma 2 ([11]). If h is an n-ary polynomial function over a field F , then h|Fn
=

≡ 0 if
and only if h is induced by a multiple of the polynomial

∆n =
∏

1≤i<j≤n

(xi − xj) ∈ F [x1, . . . , xn].

With an application of the two lemmas above, Theorem 6 about functions with arity
gap at least 3 particularizes for polynomial functions as follows.

Theorem 12 ([11]). Let F be a field and let f : Fn → F be a polynomial function of arity
at least 4. Then gap f = p ≥ 3 if and only if there exist polynomials P,Q ∈ F [x1, . . . , xn]
such that f = P+Q, P is canonical, exactly n−p variables occur in P , and Q is a multiple
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of the polynomial ∆n such that Q is not identically 0. Moreover, if f = P ′+Q′, where P ′

is canonical, n − p variables occur in P ′ and Q′ is a multiple of ∆n such that Q′ is not
identically 0, then P ′ = P and Q′ = Q.

Theorem 12 only deals with polynomial functions with arity gap at least 3, which thus
asks for the study of the polynomial functions with arity gap at most 2. In particular, we
consider polynomial functions determined by oddsupp, and we will see that the charac-
teristic of the underlying field plays a crucial role here. We first introduce some notation
that will be needed to state the subsequent results. Let F be an arbitrary field.

• If F is infinite, then NF denotes the set of nonnegative integers, and ⊕F denotes
the usual addition of nonnegative integers.

• If F has finite order q, then NF denotes the set {0, 1, . . . , q − 1}, and ⊕F is the
operation on NF given by the following rules:

– 0⊕F 0 = 0.
– If a 6= 0 or b 6= 0, then a⊕F b = c, where c is the unique number in {1, . . . , q−1}

such that c ≡ a+ b (mod q − 1).

Proposition 2 ([11]). Let F be a field, and let f : Fn → F be a polynomial function with

Pf =
∑

k=(k1,...,kn)∈Nn

F

ckx
k1
1 x

k2
2 · · ·xknn .

Then f is determined by oddsupp if and only if

(A) f is symmetric, i.e., c(k1,...,kn) = c(l1,...,ln) whenever there exists a permutation
π ∈ Sn such that ki = lπ(i) for all i ∈ [n], and

(B) for all (k, k3, . . . , kn) ∈ Nn−1
F with k 6= 0,
∑

(a1,a2)∈N
2

F

a1⊕F a2=k

c(a1,a2,k3,...,kn) = 0.

In particular, if the characteristic of F is 2, then f is determined by oddsupp if and only
if condition (A) above holds together with

(B2) c(k,k,k3,...,kn) = 0 for all (k, k, k3, . . . , kn) ∈ Nn
F with k 6= 0.

In order to obtain more explicit descriptions of polynomial functions determined by
oddsupp, we need to take into account the characteristic of the underlying field. We start
with finite fields and fields of characteristic 2.

Proposition 3 ([11]). Let F be a field, and let f : Fn → F be a polynomial function. If
F is finite or the characteristic of F is 2, then f |Fn

=
is determined by oddsupp if and only

if there exist polynomials P,Q ∈ F [x1, . . . , xn] such that f = P + Q, P is determined by
oddsupp, and Q is a multiple of the polynomial ∆n.

Theorem 13 ([11]). Let F be a field of characteristic 2, possibly infinite, and let f : Fn →
F be a polynomial function of arity at least 4 which depends on all of its variables. Then
gap f = p ≥ 2 if and only if there exist polynomials P,Q ∈ F [x1, . . . , xn] such that f =
P +Q, P is canonical, Q is a multiple of the polynomial ∆n, and either

(1) exactly n− p variables occur in P and Q 6= 0, or
(2) P is not a constant polynomial and P satisfies conditions (A) and (B2) of Propo-

sition 2.

Otherwise gap f = 1.

Corollary 2 ([11]). Let F = GF(q), where q is a power of 2, and let f : Fn → F be
a polynomial function of essential arity n > max(q, 3). If gap f = 2, then f can be
decomposed into a sum of functions of essential arity at most q − 1.

We now consider the case of fields of characteristic 0.

Lemma 3 ([11]). Let F be a field of characteristic 0, let n ≥ 2, and let f : Fn → F
be a polynomial function. If f |Fn

=
is determined by oddsupp, then f |Fn

=
is constant, i.e.,

qa f = 0.
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Theorem 14 ([11]). Let F be a field of characteristic 0, let n ≥ 2, and let P ∈ F [x1, . . . , xn]
be a polynomial such that all n variables occur in P . Then gapP = p ≥ 2 if and only if
there exist polynomials Q,R ∈ F [x1, . . . , xn] such that P = Q+R, exactly n− p variables
occur in Q, and R is a nonzero multiple of the polynomial ∆n. Otherwise gapP = 1.
Moreover, the decomposition P = Q+R, when it exists, is unique.

As the following example illustrates, Proposition 3 and Lemma 3 do not extend to
(infinite) fields of odd characteristic.

Example 6. Let F be an arbitrary field of characteristic 3, and let f : F 3 → F be the
polynomial function induced by

(4) 2x3 + 2y3 + 2z3 + yz2 − xy2 − xz2 + y2z + 2xyz.

It is straightforward to verify that

f(x, x, y) = f(x, y, x) = f(y, x, x) = 2y3.

Hence f |F 3
=
is determined by oddsupp but f |F 3

=
is not constant. This shows that Lemma 3

does not hold if F has characteristic 3.
Next we show that Proposition 3 does not hold for infinite fields of characteristic 3.

Assume now that F is infinite, and let f be induced by (4). Suppose that g : F 3 → F is a
polynomial function determined by oddsupp induced by the canonical polynomial

∑

(k1,k2,k3)∈N3

c(k1,k2,k3)x
k1
1 x

k2
2 x

k3
3 .

Condition (B) of Proposition 2 yields the following equalities:

c(3,0,0) + c(2,1,0) + c(1,2,0) + c(0,3,0) = 0,

c(2,0,1) + c(1,1,1) + c(0,2,1) = 0,

c(1,0,2) + c(0,1,2) = 0.

Taking into account the total symmetry of g (condition (A)) and the fact that the charac-
teristic of F is not 2, the only solution to this system of equations is c(k1,k2,k3) = 0 for all

(k1, k2, k3) ∈ N
3 such that k1 + k2 + k3 = 3. Thus, the canonical polynomial of g(x, x, x)

does not contain any cubic term; therefore it cannot coincide with f(x, x, x) = 2x3, and
we conclude that f |F 3

=
6= g|F 3

=
.

6. Further directions

In this section, we briefly discuss two further research directions: the study of an order
which naturally arises from variable identification (Subsection 6.1) and the consideration
of extensions to the notion of arity gap (Subsection 6.2).

6.1. The simple minor order and its respective covering relation. Let f : Am → B
and g : An → B. We say that f is a simple minor of g and we write f ≤ g, if there exists
a function σ : {1, . . . , n} → {1, . . . ,m} such that

f(a1, . . . , am) = g(aσ(1), . . . , aσ(n)),

for all a1, . . . , am ∈ A. Loosely speaking, f is a simple minor of g, if f can be obtained
from g by permutation of variables, identification of variables, and addition and deletion
of inessential variables.

The simple minor relation ≤ on FAB is both reflexive and transitive, and thus it con-
stitutes a quasiordering of FAB . As for quasiorders, ≤ induces an equivalence relation ≡
on FAB : for f, g ∈ FAB , we set f ≡ g if f ≤ g and g ≤ f , and in this case we say that f
and g are equivalent. As observed in the introduction, f and g are equivalent if each of f
and g can be obtained from the other by permutation of variables, addition of inessential
variables, and deletion of inessential variables. Note that ess f = ess g whenever f ≡ g,
and that every nonconstant function is equivalent to a function that depends on all of its
variables.
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q3 q4

q5 q6

0

Figure 1. The simple minors of the function f given in Example 7.

Remark 1. These and other observations were made for the case A = B = {0, 1} in
the paper [14], in which it was shown that the poset of equivalence classes of functions
induced by simple minor order is equimorphic (i.e., equivalent w.r.t. embeddings) to the
poset made of finite subsets of positive integers ordered by inclusion. This result was later
extended in various ways in [21], in particular to arbitrary sets A and B.

We say that g is a strict minor of f , denoted by g < f , if g ≤ f but f 6≡ g. If g < f
but there is no h such that g < h < f , then we say that g is a lower cover of f and we
denote this fact by g ≺ f .

Remark 2. It was shown in [2] that the lower covers of any function f : An → B have
the same essential arity when A = B = {0, 1}. The proof of this fact given in [2] actually
shows that this claim is true whenever |A| = 2 and |B| ≥ 2. However, as the following
example shows, this is not the case when |A| > 2.

Example 7. Let A be the 5-element field and consider the polynomial function f : A6 → A
defined by:

f(x1, x2, x3, x4, x5, x6) := (x1 − x2)(x5 − x6) +
∏

1≤i<j≤6
(i,j) 6=(5,6)

(xi − xj).

It is easy to verify that ess f = 6, f1←2 ≡ 0, and that f has, up to equivalence, two lower
covers, namely,

f1←3 = (x1 − x2) · (x5 − x6),

f5←6 =
∏

1≤i<j≤4

(xi − xj) ·
∏

1≤i≤4

(xi − x5)
2.

Figure 1 presents the Hasse diagram of the principal ideal generated by the equivalence
class of f in the simple minor poset. The label of each edge g ≺ h is the number essh−ess g.
We use the following notation for simple minors of f :

q1 =
∏

1≤i<j≤4

(xi − xj) ·
∏

1≤i≤4

(xi − x5)
2, q2 = (x1 − x2) · (x3 − x4),

q3 = (x1 − x2) · (x1 − x3), q4 = (x1 − x2) · (x2 − x3),

q5 = (x1 − x2)
2, q6 = −(x1 − x2)

2.

Remark 3. Even though not every identification minor fi←j is a lower cover of f , every
lower cover of f is of the form fi←j . Therefore, we can alternatively define the arity gap
of f as

gap f := min
g≺f

(ess f − ess g).
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We say that f is totally symmetric, if for all permutations π of [n] the identity
f(a1, . . . , an) = f(aπ(1), . . . , aπ(n)) holds for all a1, . . . , an ∈ A. Observe that a totally
symmetric function depends either on all of its variables or on none of them.

Fact 1. If f : An → B is totally symmetric, then for all i, j, i′, j′ ∈ [n] (i 6= j, i′ 6= j′),
fi←j ≡ fi′←j′ . Therefore, if f is nonconstant, then for all distinct i, j ∈ [n], fi←j is, up
to equivalence, the unique lower cover of f .

Berman and Kisielewicz [1] also introduced the following analogue of oddsupp. Let
supp:

⋃
n≥1A

n → P(A) be the mapping defined by

supp(a1, . . . , an) := {a1, . . . , an}.

A function f : An → B is determined by supp, if there exists a function ϕ : P(A) → B
such that f = ϕ ◦ supp |An . As for oddsupp, every function determined by supp is totally
symmetric, and such a function either depends on all of its variables or on none of them.

In [13] it was observed that there exist functions that are determined both by supp and
oddsupp. For instance, every constant function and every unary function is determined
by both supp and oddsupp. In fact, for each 2 ≤ n ≤ |A| we can construct functions
f : An → B determined by both supp and oddsupp; see [13]. However, such nontrivial
examples cannot be found when n > |A|.

Proposition 4 ([13]). If n > |A|, then f : An → B is determined by both supp and
oddsupp if and only if f is a constant function.

Now it is natural to ask how the properties of being determined by supp and oddsupp
are affected when taking strict minors. The answer is given by the following result.

Proposition 5 ([13]). Let A and B be finite nonempty sets, let k := |A|, and let f : An →
B be a nonconstant function.

(1) If f is determined by oddsupp, then the simple minors of f form a chain

f = fn ≻ fn−2 ≻ · · · ≻ fn−2t−2 ≻ fn−2t

of length t such that ess fn−2i = n − 2i for all i < t; in this case, we either have
ess fn−2t = 1 and t = n−1

2 or ess fn−2t = 0 and
⌈
n−k
2

⌉
< t ≤

⌊
n
2

⌋
.

(2) If f is determined by supp, then the simple minors of f form a chain

f = fn ≻ fn−1 ≻ · · · ≻ fn−t+1 ≻ fn−t

of length t such that ess fn−i = n − i for all i < t; in this case, we either have
ess fn−t = 1 and t = n− 1, or ess fn−t = 0 and n− k < t < n.

As made apparent by Willard [30], the notion of arity gap is tightly related to deter-
minability by supp and oddsupp. The following corollary is an immediate consequence of
Proposition 5.

Corollary 3. Let A and B be finite nonempty sets, let k := |A|, and let f : An → B be a
nonconstant function.

(1) If f is determined by oddsupp with n > k, then gap f = 2.
(2) If f is determined by supp with n > k, then gap f = 1.

We now recall a noteworthy result about the arity gap.

Lemma 4 (Willard [30]). Let A and B be finite nonempty sets, and let k := |A|. Suppose
that f : An → B depends on all of its variables.

(1) If n > 2, gap f = 1, f is totally symmetric, and for any distinct i, j ∈ [n], fi←j is
equivalent to a totally symmetric function, then f is determined by supp.

(2) If f is determined by supp, then fi←j is equivalent to a function determined by
supp for any distinct i, j ∈ [n]. Moreover, if n > k, then fi←j is nonconstant.

(3) If n ≥ max(k, 3) + 2 and f is not totally symmetric, then there exist distinct
i, j ∈ [n] such that fi←j depends on n − 1 variables and is not equivalent to a
totally symmetric function.
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From Proposition 5, Theorem 4 and Lemma 4, we can obtain the following theorem
whose importance is made apparent in the next subsection.

Theorem 15 ([13]). Let A and B be finite nonempty sets, and let k := |A|. Suppose that
f : An → B depends on all of its variables.

(1) If n ≥ max(k, 3) + 1 and gap f = 2, then for all g < f with ess g > k, it holds that
gap g = 2.

(2) If n ≥ max(k, 3) + 2 and gap f = 1, then there exists a g ≺ f such that gap g = 1
and ess g = n− 1.

6.2. Parametrized variants of arity gap. So far we have considered the effect that
the identification of two essential variables has on the essential arity of functions. Indeed,
the arity gap of a function measures the minimum decrease in the essential arity when
two essential variables are identified. We shall now discuss the minimum decrease in the
essential arity when we identify an arbitrarily large number of essential variables. There
are two ways of formalizing such a measure: by sequentially identifying pairs of variables
or by simultaneously identifying “blocks” of variables. Despite being related, as we will
see these two approaches are rather different.

6.2.1. Sequential identification. One approach to formalizing the minimum decrease in the
essential arity when several essential variables are identified is to consider the following
parametrized version of arity gap which measures the minimum decrease in the essential
arity when we take ℓ ≥ 0 steps downwards in the simple minor quasiorder:

(5) gap(f, ℓ) := min
g∈↓ℓf

(ess f − ess g),

where
↓ℓf := {g ∈ FAB | ∃f1, . . . , fℓ−1 : f ≻ f1 ≻ · · · ≻ fℓ−1 ≻ g}.

Note that gap(f, ℓ) is defined only if there exists a chain of length ℓ below f , and in this
case ℓ ≤ gap(f, ℓ) ≤ ess f . In fact, it is not difficult to verify that:

(6) gap(f, ℓ) = min
g≺f

(ess f − ess g + gap(g, ℓ− 1)).

Thus for every function f , we have gap(f, 1) = gap f and gap(f, 0) = 0.

Remark 4. We saw in the previous subsection that taking a strict minor of a function
f requires the identification of at least one pair of essential variables of f ; otherwise, the
minors we obtain are equivalent to f . This means that gap(f, ℓ) can be computed by
sequentially identifying a pair of essential variables ℓ times in all possible ways, starting
from f , and then determining the sequence of ℓ identifications which results in the minimum
loss of essential variables.

It is worth stressing the fact that the identification of variables is performed sequentially,
and at each step only one pair of essential variables is identified; otherwise, ambiguities
could occur since a priori we do not know which essential variables become inessential after
a pair is identified.

We have also observed in Remark 3 that not every identification minor fi←j is a lower
cover of f and, by the alternative definition of arity gap, if fi←j is not a lower cover of f ,
then gap f < ess f − ess fi←j . Moreover, as observed in Remark 2 it can be the case that
f has two lower covers f1 and f2 such that ess f1 < ess f2, and again we would conclude
that gap f < ess f − ess f1. Hence, one might be led to thinking that in order to compute
gap(f, ℓ) it suffices to choose at each recursion step an identification which results in the
minimum loss of essential variables. However, this is not true.

Example 8. Consider function f in Example 7. If we choose as our first identification
the pair {5, 6}, then any other identification of essential variables results in the loss of all
the remaining essential variables. In other words, any downward path in Figure 1 which
starts from f and passes through q1 has length 2, and along it we first lose 1 and then 5
essential variables. However, the downward paths that start from f and pass through q2
have length 4, and along them we lose 2, 1, 1, and then 2 essential variables. This shows
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that, in order to compute gap(f, 1) as in (5), the minimum value is attained at the lower
cover q1, whereas, for 2 ≤ ℓ ≤ 4, we need to pass through q2 for computing gap(f, ℓ).
Hence, gap(f, 0) = 0, gap(f, 1) = 1, gap(f, 2) = 3, gap(f, 3) = 4, and gap(f, 4) = 6.

The following result can be obtained inductively by making use of equation (6) and
Theorem 15. Essentially, it asserts that, if ℓ is not too large, then we can walk from f
down ℓ steps in the simple minor quasiorder in such a way that in each step we lose only
one essential variable (resp. only two essential variables) if gap f = 1 (resp. gap f = 2).

Theorem 16 ([13]). Let A and B be finite nonempty sets, and let k := |A|. Let f : An →
B, ess f = n.

(1) If gap f = 1 and 1 ≤ ℓ ≤ n−max(k, 3), then gap(f, ℓ) = ℓ.
(2) If gap f = 2 and 1 ≤ ℓ ≤

⌈
n−k
2

⌉
, then gap(f, ℓ) = 2ℓ.

Surprisingly, it turns out that for almost every integer sequence 0 = n0 < n1 < n2 <
· · · < nr ≤ n, we can construct a function f : An → B whose parametrized arity gap meets
every member of the sequence. This statement is made precise in the following theorem.

Theorem 17 ([13]). Let A be a finite set with k elements and let B be a set with at least
two elements. Let 2 ≤ n ≤ k, 1 ≤ r ≤ n − 1, 0 = n0 < n1 < n2 < · · · < nr ≤ n such
that n− 1 ≤ nr ≤ n and nr−1 6= n− 1. Then there exists a function f : An → B such that
gap(f, ℓ) = nℓ for every 0 ≤ ℓ ≤ r.

This parametrized version of arity gap constitutes a tool for tackling yet another nat-
ural problem pertaining to the effect of variable identification on the number of essential
variables of a function. Given a function f : An → B and an integer p ≥ 1, what is the
smallest number m such that any m successive identifications of essential variables result
in the loss of at least p essential variables? Denoting this smallest number by pag(f, p),
we can easily see that pag(f, p) is the smallest ℓ for which gap(f, ℓ) ≥ p.

Example 9. Consider the 6-ary function f of Example 7. We can read off of Figure 1
that

pag(f, 1) = 1, pag(f, 2) = 2, pag(f, 3) = 2,

pag(f, 4) = 3, pag(f, 5) = 4, pag(f, 6) = 4.

6.2.2. Block identification. Instead of taking successive identifications of pairs of variables,
another approach to measuring the minimum decrease in the essential arity when several
essential variables are identified is to consider simultaneous identifications of “blocks” of
variables. To formalize this measure we follow Willard’s [30] framework and view functions
of several variables as maps f : AV → B, where V ⊆ {xi : i ∈ N}. The cardinality of V
is called the arity of f . In this framework, a function g : AW → B is a simple minor of
f : AV → B, if there exists a map α : V →W such that g(a) = f(a ◦ α) for all a ∈ AW .

Let Eq(V ) denote the set of all equivalence relations on V . Given an equivalence relation
θ ∈ Eq(V ), denote the canonical surjection by vθ : V → V/θ. For a function f : AV → B,
we define the function fθ : AV/θ → B by fθ(a) = f(a ◦ vθ), and we say that fθ is obtained
from f by block identification of variables through θ. We informally identify V/θ with
any one of its distinct representatives so that fθ becomes a simple minor of f , and every
simple minor of f is then equivalent to fψ for some ψ ∈ Eq(V ). The number of variables
identified through θ is

e(θ) :=
∑

X∈V/θ

(|X| − 1) = |V | − |V/θ|.

Assuming that f depends on all of its variables, i.e., ess f = |V |, we have that ess fθ ≤
|V/θ| = |V | − e(θ) = ess f − e(θ).

Now we can define the analogue of the parametrized arity gap for block identification
of variables. For a function f : AV → B with ess f = |V | = n and for an integer ℓ such
that 0 ≤ ℓ ≤ n− 1, we define

b-gap(f, ℓ) := min
θ∈Eq(V )
e(θ)=ℓ

(ess f − ess fθ).
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Note that b-gap(f, 0) = 0 and b-gap(f, 1) = gap f for every function f . It is also clear
that ℓ ≤ b-gap(f, ℓ) ≤ n for every 0 ≤ ℓ ≤ n − 1, and b-gap(f, ℓ) ≤ gap(f, ℓ) for every ℓ
for which gap(f, ℓ) is defined.

Let H(f) := {ess f − ess g : g ≤ f}. It is clear that

{b-gap(f, ℓ) : 0 ≤ ℓ ≤ n− 1} ⊆ H(f).

Proposition 6 ([13]). Let f : AV → B be a function such that ess f = |V | = n. Then
b-gap(f, ℓ) = min{m ∈ H(f) : m ≥ ℓ}, for all 0 ≤ ℓ ≤ n− 1.

Example 10. Consider the 6-ary function f of Example 7. We can read off of Figure 1
that H(f) = {0, 1, 2, 3, 4, 6} and

b-gap(f, 1) = 1, b-gap(f, 2) = 2, b-gap(f, 3) = 3,

b-gap(f, 4) = 4, b-gap(f, 5) = 6.

Following the same steps as in the sequential approach, we ended up considering the
following problem: Given a function f : AV → B that depends on all of its variables and
an integer p ≥ 1, what is the smallest number m such that block identification of variables
of f through every equivalence relation θ on V with e(θ) = m results in the loss of at least
p essential variables? Let us denote this smallest number by b-pag(f, p). It is again clear
that b-pag(f, p) is the smallest ℓ for which b-gap(f, ℓ) ≥ p. In other words, b-pag(f, 0) = 0
and b-pag(f, p) = max{m ∈ H(f) : m < p}+ 1 for 1 ≤ p ≤ n.

Example 11. Consider the 6-ary function f of Example 7. We can determine from the
values of b-gap(f, ℓ) listed in Example 10, or we can easily read off of Figure 1 that

b-pag(f, 1) = 1, b-pag(f, 2) = 2, b-pag(f, 3) = 3,

b-pag(f, 4) = 4, b-pag(f, 5) = 5, b-pag(f, 6) = 5.

7. Open problems and future work

Looking ahead to possible future research topics related to arity gap, we are naturally
drawn to two rather distinct problems. On the one hand, the work mentioned in Section 3
and Subsection 5.2 inevitably brings up the question on whether a general classification
of algebras can be attained in terms of decomposability as in the case of abelian groups
or fields of prescribed characterictic. On the other hand, the work surveyed in Section 4
naturally asks for similar enumeration results for the parametrized versions of arity gap
discussed in Subsection 6.2.

Acknowledgment

The first named author is supported by the internal research project F1R-MTH-PUL-
12RDO2 of the University of Luxembourg. The third named author acknowledges that
the present project is supported by the TÁMOP-4.2.1/B-09/1/KONV-2010-0005 program
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