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ADDITIVE DECOMPOSITION SCHEMES FOR

POLYNOMIAL FUNCTIONS OVER FIELDS

MIGUEL COUCEIRO, ERKKO LEHTONEN, AND TAMÁS WALDHAUSER

Abstract. The authors’ previous results on the arity gap of functions of several vari-

ables are refined by considering polynomial functions over arbitrary fields. We explicitly
describe the polynomial functions with arity gap at least 3, as well as the polynomial

functions with arity gap equal to 2 for fields of characteristic 0 or 2. These descriptions

are given in the form of decomposition schemes of polynomial functions. Similar descrip-
tions are given for arbitrary finite fields. However, we show that these descriptions do

not extend to infinite fields of odd characteristic.

1. Introduction

The arity gap of a function f : An → B is a quantity that indicates the minimum number
of variables that become inessential when a pair of essential variables is identified in f .
This notion was first studied by Salomaa [8], who showed that the arity gap of any Boolean
function is at most 2. Willard [10] showed that the same upper bound holds for any function
f : An → B with a finite domain, provided that f depends on at least max(|A|, 3) + 1
variables. A complete classification of functions in regard to the arity gap was presented in
[3] and [5]; see Theorem 2.6.

A decomposition scheme of functions based on the arity gap was proposed by Shtrakov
and Koppitz [9], and it was later refined in [5] as follows (here ess f denotes the number of
essential variables of f , and gap f denotes the arity gap of f).

Theorem 1.1. Assume that (B; +) is a group with neutral element 0. Let f : An → B,
n ≥ 3, and 3 ≤ p ≤ n. Then the following two conditions are equivalent:

(i) ess f = n and gap f = p.
(ii) There exist functions g, h : An → B such that f = g + h, h|An

=
≡ 0, h 6≡ 0, and

ess g = n− p.

The decomposition f = g + h given above is unique.

Theorem 1.1 does not extend as such into the case when p = 2. Namely, there exist
functions f : An → B with gap f = 2 that do not admit a decomposition of the form
given in item (ii). These exceptional functions are determined by oddsupp (see Section 2).
However, as shown in [5], if f is determined by oddsupp, then it can be decomposed as
f = g+h with h|An

=
≡ 0, h 6≡ 0, and g is a sum of functions of essential arity at most n− 2.

With these results as our starting point, we study in this paper polynomial functions
over arbitrary fields. Our goal is to obtain further, more explicit and simpler decomposition
schemes, especially for the case when gap f = 2 and f is determined by oddsupp.

The paper is organised as follows. In Section 2, we recall the basic notions and introduce
preliminary results which will be needed throughout the paper. In Section 3, we provide
a general decomposition scheme for polynomial functions over arbitrary fields with arity
gap at least 3. In subsequent sections we focus on functions with arity gap 2. More
precisely, in Section 4, we describe the polynomial functions determined by oddsupp, and
we obtain decomposition schemes for functions with arity gap 2 over finite fields and fields
of characteristic 2. In Section 5, we consider the case of fields of characteristic 0. In this
case, we show that if f is a polynomial function such that f |An

=
is determined by oddsupp,

then f |An
=

is constant. Hence, simpler decomposition schemes are available for polynomial
functions with arity gap 2. The question whether similar decomposition schemes exist over
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infinite fields of odd characteristic is addressed in Section 6. We answer negatively to this
question by means of an illustrative example.

2. Preliminaries

Let A and B be arbitrary sets with at least two elements. A partial function of several
variables from A to B is a mapping f : S → B, where S ⊆ An for some integer n ≥ 1, called
the arity of f . If S = An, then we speak of (total) functions of several variables. Functions
of several variables from A to A are referred to as operations on A.

For an integer n ≥ 1, let [n] := {1, . . . , n}. Let f : S → B (S ⊆ An) be an n-ary partial
function and let i ∈ [n]. We say that the i-th variable is essential in f (or f depends on xi),
if there exist tuples

(a1, . . . , ai−1, ai, ai+1, . . . , an), (a1, . . . , ai−1, a
′
i, ai+1, . . . , an) ∈ S

such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

Variables that are not essential are called inessential. Let Ess f := {i ∈ [n] : xi is essential in f}.
The cardinality of Ess f is called the essential arity of f and denoted by ess f .

Let f : An → B, g : Am → B. We say that g is a minor of f , if there is a map σ : [n]→ [m]
such that g(x1, . . . , xm) = f(xσ(1), . . . , xσ(n)). We say that f and g are equivalent if each
one is a minor of the other.

For i, j ∈ [n], i 6= j, define the identification minor of f : An → B obtained by identifying
the i-th and the j-th variable, as the minor fi←j : An → B of f corresponding to the map
σ : [n]→ [n], i 7→ j, ` 7→ ` for ` 6= i, i.e., fi←j is given by the rule

fi←j(x1, . . . , xn) := f(x1, . . . , xi−1, xj , xi+1, . . . , xn).

Remark 2.1. Note that for all f : An → B and for all i, j ∈ [n] with i 6= j, it holds that
fi←j is equivalent to fj←i.

Remark 2.2. Loosely speaking, a function g is a minor of f , if g can be obtained from f
by permutation of variables, addition of inessential variables and identification of variables.
Similarly, two functions are equivalent, if each one can be obtained from the other by
permutation of variables and addition or deletion of inessential variables.

The arity gap of f is defined as

gap f := min
i,j∈Ess f
i6=j

(ess f − ess fi←j).

Remark 2.3. Note that the definition of arity gap refers only to essential variables. Hence,
in order to determine the arity gap of a function f , we may consider, instead of f , an
equivalent function f ′ that is obtained from f by removing its inessential variables. It is
easy to see that in this case gap f = gap f ′. Therefore, whenever we consider the arity
gap of a function f , we may assume without loss of generality that f depends on all of its
variables.

The notion of arity gap has been studied by several authors [2, 3, 4, 5, 6, 7, 8, 9, 10].
In [3], a general classification of functions according to their arity gap was established. In
order to state this result, we need to recall a few notions.

For n ≥ 2, define

An= := {(a1, . . . , an) ∈ An : ai = aj for some i 6= j}.
Furthermore, define A1

= := A. Let f : An → B. Any function g : An → B satisfying
f |An

=
= g|An

=
is called a support of f . The quasi-arity of f , denoted qa f , is defined as the

minimum of the essential arities of all supports of f , i.e., qa f := ming ess g where g ranges
over the set of all supports of f . If qa f = m, then we say that f is quasi-m-ary. Note that
if A is finite and n > |A|, then An= = An; hence in this case qa f = ess f . Moreover, for an
arbitrary A and n 6= 2, we have qa f = ess f |An

=
(see Lemma 4 in [3]). The case n = 2 is

excluded, because if f : A2 → B is a function such that f(a, a) 6= f(b, b) for some a, b ∈ A,
then qa f = 1 yet ess f |An

=
= 0.



ADDITIVE DECOMPOSITION SCHEMES FOR POLYNOMIAL FUNCTIONS OVER FIELDS 3

Example 2.4. Consider the polynomial function f : R3 → R induced by the polynomial

x21x
2
2x3 − x21x2x23 − x1x32x3 + x1x2x

3
3 + x31x

2
2 − x22x33 + x32x

2
3.

Writing the above polynomial as

(x1 − x2)(x1 − x3)(x2 − x3)x2x3 + x31x
2
2,

we see easily that

f1←2(x1, x2, x3) = x52, f2←1(x1, x2, x3) = x51,

f1←3(x1, x2, x3) = x22x
3
3, f3←1(x1, x2, x3) = x31x

2
2,

f2←3(x1, x2, x3) = x31x
2
3, f3←2(x1, x2, x3) = x31x

2
2.

Note that fi←j is equivalent to fj←i for all i, j ∈ {1, 2, 3} with i 6= j, as pointed out in
Remark 2.1. The function f clearly depends on all of its variables, and the essential arities
of its identification minors are

ess f1←2 = ess f2←1 = 1,

ess f1←3 = ess f3←1 = ess f2←3 = ess f3←2 = 2.

We conclude that gap f = 1.
Let g : R3 → R be the function induced by the polynomial x31x

2
2. It is clear that g is a

support of f of the smallest possible essential arity. Thus qa f = ess g = 2.

Denote by P(A) the power set of A. Following Berman and Kisielewicz [1], we define the
function oddsupp:

⋃
n≥1A

n → P(A) by

oddsupp(a1, . . . , an) := {a ∈ A : |{j ∈ [n] : aj = a}| is odd}.
We say that a partial function f : S → B (S ⊆ An) is determined by oddsupp if there exists
a function f∗ : P(A)→ B such that

(1) f = f∗ ◦ oddsupp|S .
Observe that only the restriction of f∗ to the set

P ′n(A) :=
{
T ∈ P(A) : |T | ∈ {n, n− 2, n− 4, . . . }

}
,

is relevant in determining the values of f in (1). Moreover, the functions f : An → B
determined by oddsupp are in one-to-one correspondence with the functions f∗ : P ′n(A) →
B.

Willard showed in [10] that if f : An → B, where A is finite, ess f = n > max(|A|, 3) and
gap f ≥ 2, then f is determined by oddsupp. The following fact is easy to verify.

Fact 2.5. A function f : An → B is determined by oddsupp if and only if f is totally
symmetric and f2←1 does not depend on x1. Similarly, f |An

=
is determined by oddsupp if

and only if f |An
=

is totally symmetric and f2←1 does not depend on x1.

We can now state the general classification of functions according to the arity gap. This
result was first obtained in [3] for functions with finite domains, and in [5] it was shown to
still hold for functions with arbitrary, possibly infinite domains.

Theorem 2.6. Let A and B be arbitrary sets with at least two elements. Suppose that
f : An → B, n ≥ 2, depends on all of its variables.

(i) For 3 ≤ p ≤ n, gap f = p if and only if qa f = n− p.
(ii) For n 6= 3, gap f = 2 if and only if

• qa f = n− 2 or
• qa f = n and f |An

=
is determined by oddsupp.

(iii) For n = 3, gap f = 2 if and only if there is a nonconstant unary function h : A→ B
and i1, i2, i3 ∈ {0, 1} such that

f(x1, x0, x0) = h(xi1),

f(x0, x1, x0) = h(xi2),

f(x0, x0, x1) = h(xi3).

(iv) Otherwise gap f = 1.
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Theorem 2.6 can be refined to obtain more explicit classifications by assuming certain
structures on the domain A or the codomain B of f . Examples of such refinements include
the complete classification of Boolean functions [2], pseudo-Boolean functions [3], lattice
polynomial functions [4], or more generally, order-preserving functions [6]. Moreover, in [5],
B was assumed to be a group, and the following decomposition scheme based on the quasi-
arity was obtained.

Theorem 2.7. Assume that (B; +) is a group with neutral element 0. Let f : An → B,
n ≥ 3, and 1 ≤ p ≤ n. Then the following two conditions are equivalent:

(i) ess f = n and qa f = n− p.
(ii) There exist functions g, h : An → B such that f = g + h, h|An

=
≡ 0, h 6≡ 0, and

ess g = n− p.

The decomposition f = g + h given above is unique.

In the case when p ≥ 3, condition (i) of Theorem 2.7 can be transformed into condition
(i) of Theorem 1.1 by a straightforward application of Theorem 2.6(i). Thus, Theorem 1.1
is a special case of Theorem 2.7.

Remark 2.8. Note that if h : An → B satisfies h|An
=
≡ 0 and h 6≡ 0, then h depends on all

of its variables. For, since h is not the constant 0 function, there exists a tuple a ∈ An \An=
such that h(a) 6= 0. For each i ∈ [n], we may change the i-th component of a to obtain a
tuple b belonging to An=, and we have g(b) = 0 6= g(a), showing that g depends on the i-th
variable. Therefore, essh = n for the function h of Theorem 2.7.

3. Polynomial functions over fields

In what follows, we will assume that the reader is familiar with the basic notions of
algebra, such as rings, unique factorization domains, fields, vector spaces, polynomials and
polynomial functions. However, we find it useful to recall the following well-known result.

Fact 3.1. Every function f : Fn → F on a finite field F is a polynomial function over F .

Polynomials over infinite fields are in one-to-one correspondence with polynomial func-
tions. Fact 3.1 establishes a correspondence between polynomials and functions over finite
fields, which is not bijective. This correspondence can be made bijective by assuming that
we only consider polynomials over a given finite field, say F = GF(q), in which the exponent
of every variable in every monomial is at most q − 1; we shall call such polynomials over
finite fields canonical. In the case of infinite fields, every polynomial is canonical.

Given a polynomial function f : Fn → F , we denote by Pf the unique canonical polyno-
mial which induces f . Given a polynomial p ∈ F [x1, . . . , xn], we denote by p the function
f : Fn → F induced by p. Note that p+ q = p+ q for all p, q ∈ F [x1, . . . , xn].

Fact 3.2. A variable xi is essential in a polynomial function f : Fn → F if and only if xi
occurs in Pf .

Let F be a field, and let us apply the results of Section 2 in the case A = B = F for
polynomial functions f : Fn → F .

Lemma 3.3. If f is a polynomial function over F , then the functions g and h in the de-
composition f = g+h given in Theorem 1.1 and Theorem 2.7 are also polynomial functions.

Proof. Since ess g = n − p ≤ n − 1, the function g has an inessential variable, say the i-th
variable is inessential in g. Let j 6= i. We clearly have gi←j = g, and since h|An

=
≡ 0, we

have
fi←j = gi←j + hi←j = g + 0 = g.

Thus, g is a minor of f and hence a polynomial function. Then h = f − g is a polynomial
function as well. �

Lemma 3.4. If h is an n-ary polynomial function over F , then h|Fn
=
≡ 0 if and only if h

is induced by a multiple of the polynomial

∆n =
∏

1≤i<j≤n

(xi − xj) ∈ F [x1, . . . , xn].
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Proof. It is clear that if h is induced by a multiple of ∆n, then h|Fn
=
≡ 0. For the converse

implication, we need to distinguish between the cases of finite and infinite F . Assume first
that F is infinite, and let us suppose that h|Fn

=
≡ 0. Let us consider Ph as an element of

R[xn], where R denotes the ring F [x1, . . . , xn−1]. Since h|Fn
=
≡ 0, each one of the elements

x1, . . . , xn−1 ∈ R is a root of the unary polynomial Ph(xn) ∈ R[xn]. Therefore Ph is divisible
by xi − xn for all i = 1, . . . , n− 1. Repeating this argument with xj in place of xn, we can
see that xi − xj divides Ph for all 1 ≤ i < j ≤ n. Since these divisors of Ph are relatively
prime (and R[xn] = F [x1, . . . , xn] is a unique factorization domain), we can conclude that
Ph is divisible by their product ∆n.

Assume then that F is finite. Define the function h′ : Fn → F by the rule

h′(a) =

{
h(a) · (∆n(a))−1, if a ∈ Fn \ Fn=,

0, if a ∈ Fn=.

Observe that ∆n(a) 6= 0 for every a ∈ Fn \ Fn=; hence h′ is well defined. (In fact, h′ could
be defined in an arbitrary way on Fn=.) Clearly h = h′ ·∆n. By Fact 3.1, h′ is a polynomial
function. Thus h is induced by the polynomial Ph′ ·∆n. �

Combining the previous two lemmas with Theorem 1.1 we obtain the following description
of polynomial functions over F with arity gap at least 3.

Theorem 3.5. Let F be a field and let f : Fn → F be a polynomial function of arity at
least 3 that depends on all of its variables. Then gap f = p ≥ 3 if and only if there exist
polynomials P,Q ∈ F [x1, . . . , xn] such that f = P+Q, P is canonical, exactly n−p variables
occur in P , and Q is a nonzero multiple of the polynomial ∆n such that Q is not identically
0. Moreover, if f = P ′ +Q′, where P ′ is canonical, n− p variables occur in P ′ and Q′ is a
nonzero multiple of ∆n such that Q′ is not identically 0, then P ′ = P and Q′ = Q.

4. Polynomial functions determined by oddsupp over fields of
characteristic 2

We refine Fact 2.5 for polynomial functions over an arbitrary field F . For this purpose,
we need some formalism. We use the following notation:

• If F is infinite, then NF denotes the set N of nonnegative integers, MF denotes
the set of all nonnegative even integers, and ⊕F denotes the usual addition of
nonnegative integers.

• If F has finite order q, then NF denotes the set {0, 1, . . . , q − 1}, MF := NF , and
⊕F is the operation on NF given by the following rules:

– 0⊕F 0 = 0.
– If a 6= 0 or b 6= 0, then a⊕F b = c, where c is the unique number in {1, . . . , q−1}

such that c ≡ a+ b (mod q − 1).

Define the map τF : NF →MF by the rule m 7→ m⊕F m.

Remark 4.1. If F is infinite or of even order, then τF is a bijection that has 0 as a fixed
point.

Lemma 4.2. Let F be an arbitrary field, and let f : Fn → F be a polynomial function with

Pf =
∑

k=(k1,...,kn)∈Nn
F

ckx
k1
1 x

k2
2 · · ·xknn .

Then f2←1 does not depend on x1 if and only if for all (k, k3, . . . , kn) ∈ Nn−1
F with k 6= 0,∑

(a1,a2)∈N2
F

a1⊕F a2=k

c(a1,a2,k3,...,kn) = 0.

Proof. The canonical polynomial for f2←1 is∑
(b1,b3,...,bn)∈Nn−1

F

d(b1,b3,...,bn)x
b1
1 x

b3
3 · · ·xbnn ,
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where

d(b1,b3,...,bn) =
∑

(a1,a2)∈N2
F

a1⊕a2=b1

c(a1,a2,b3,...,bn).

By Fact 3.2, the condition that f2←1 does not depend on x1 is equivalent to the condition
that d(b1,b3,...,bn) = 0 for all (b1, b3, . . . , bn) ∈ Nn−1

F such that b1 6= 0. �

Proposition 4.3. Let F be an arbitrary field, and let f : Fn → F be a polynomial function
with

Pf =
∑

k=(k1,...,kn)∈Nn
F

ckx
k1
1 x

k2
2 · · ·xknn .

Then f is determined by oddsupp if and only if

(A) f is symmetric, i.e., c(k1,...,kn) = c(l1,...,ln) whenever there is a permutation π ∈ Sn
such that ki = lπ(i) for all i ∈ [n], and

(B) for all (k, k3, . . . , kn) ∈ Nn−1
F with k 6= 0,∑

(a1,a2)∈N2
F

a1⊕F a2=k

c(a1,a2,k3,...,kn) = 0.

In particular, if the characteristic of F is 2, then f is determined by oddsupp if and only
if condition (A) above holds together with

(B2) c(k,k,k3,...,kn) = 0 for all (k, k, k3, . . . , kn) ∈ Nn
F with k 6= 0.

Proof. By Fact 2.5, f is determined by oddsupp if and only if f is totally symmetric (i.e.,
(A) holds) and f2←1 does not depend on x1 (i.e., (B) holds, by Lemma 4.2).

Assume then that the characteristic of F is 2. We need to prove that condition (B) is
equivalent to (B2) under the assumption that f is totally symmetric. Let us analyse more
carefully the coefficient

d(b1,b3,...,bn) =
∑

(a1,a2)∈N2
F

a1⊕F a2=b1

c(a1,a2,b3,...,bn)

=
∑

a1∈NF

a1⊕F a1=b1

c(a1,a1,b3,...,bn)

︸ ︷︷ ︸
(I)

+

∑
(a1,a2)∈N2

F
a1<a2, a1⊕F a2=b1

(c(a1,a2,b3,...,bn) + c(a2,a1,b3,...,bn))

︸ ︷︷ ︸
(II)

.

Assuming that f is totally symmetric, we have c(a1,a2,b3,...,bn) = c(a2,a1,b3,...,bn). Hence
summand (II) above equals 2·C for some C ∈ F , which is equal to 0 since F has characteristic
2.

As for summand (I), observe first that if F is infinite and b1 is odd, then there is no
a1 ∈ NF such that a1 ⊕F a1 = b1; hence the sum in (I) is empty and equals 0. Thus, in
this case, we have d(b1,b3,...,bn) = 0. Otherwise, i.e., if F is finite or if F is infinite and b1 is

even, the sum in (I) has just one summand, namely the one indexed by a1 = τ−1F (b1) (τF is
a bijection by Remark 4.1), and we have d(b1,b3,...,bn) = c(τ−1

F (b1),τ
−1
F (b1),b3,...,bn)

.

By the above observations, we conclude that under the assumption that F has char-
acteristic 2 and f is totally symmetric, condition (B) is equivalent to the condition that
c(k,k,k3,...,kn) = 0 for all (k, k, k3, . . . , kn) ∈ Nn

F with k 6= 0. �

We reassemble in the following remark some facts that have been established in [5] (more
specifically, in the second paragraph of Section 5 and in Theorem 5.2 of [5]).
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Remark 4.4. Assume that B is a set with a Boolean group structure (i.e., an abelian group
such that x+x = 0 holds identically). Let n ≥ 3, and assume that f : An → B is a function
such that f |An

=
is determined by oddsupp. Fix an element a ∈ A, and let ϕ : An−2 → B

be the function given by ϕ(a1, . . . , an−2) := f(a1, . . . , an−2, a, a) for all a1, . . . , an−2 ∈ A.
(Since f |An

=
is determined by oddsupp, the definition of ϕ is independent of the choice

of a.) Then ϕ is determined by oddsupp, i.e., ϕ = ϕ∗ ◦ oddsupp|An−2 for some function
ϕ∗ : P(A)→ B. Let ϕ̃ : An → B be the function given by

ϕ̃(a1, . . . , an) =
∑
k<n
2|n−k

∑
1≤i1<···<ik≤n

ϕ∗(oddsupp(ai1 , . . . , aik)),

for all a1, . . . , an ∈ A. Each summand ϕ∗(oddsupp(ai1 , . . . , aik)) on the right side is an
identification minor of ϕ. The function ϕ̃ is determined by oddsupp and ϕ̃|An

=
= f |An

=
.

Proposition 4.5. Let F be a field, and let f : Fn → F be a polynomial function. If F
is finite or the characteristic of F is 2, then f |Fn

=
is determined by oddsupp if and only

if there exist polynomials P,Q ∈ F [x1, . . . , xn] such that f = P + Q, P is determined by
oddsupp, and Q is a multiple of the polynomial ∆n.

Proof. For sufficiency, let us assume that f = P +Q, where P and Q are as in the statement
of the proposition. Since P is determined by oddsupp, the restriction P |Fn

=
is obviously

determined by oddsupp as well. Moreover, Q|Fn
=
≡ 0 by Lemma 3.4. Thus, f |Fn

=
= P |Fn

=
+

Q|Fn
=

= P |Fn
=

is determined by oddsupp.
For necessity, assume first that F is finite. If f |Fn

=
is determined by oddsupp, then there is

a (not necessarily unique) function g such that g is determined by oddsupp and f |Fn
=

= g|Fn
=

.
By Fact 3.1, g is a polynomial function; hence so is h = f − g. By Lemma 3.4, Ph is a
multiple of the polynomial ∆n.

Assume then that F is a field of characteristic 2. Since the additive group of any field
of characteristic 2 is a Boolean group, Remark 4.4 applies to operations on F . Assume
that f : Fn → F is a polynomial function such that f |Fn

=
is determined by oddsupp, and

let ϕ, ϕ∗, and ϕ̃ be as defined in Remark 4.4. Then ϕ is also a polynomial function.
The functions ϕ∗(oddsupp(ai1 , . . . , aik)), being identification minors of ϕ, are polynomial
functions. Therefore, Remark 4.4 implies that ϕ̃ is a polynomial function and ϕ̃|Fn

=
= f |Fn

=
.

Letting g := ϕ̃ and h := f − g, and arguing as in the previous paragraph, we conclude that
Ph is a multiple of the polynomial ∆n. �

Theorem 4.6. Let F be a field of characteristic 2, possibly infinite, and let f : Fn → F
be a polynomial function of arity at least 4 which depends on all of its variables. Then
gap f = p ≥ 2 if and only if there exist polynomials P,Q ∈ F [x1, . . . , xn] such that f = P+Q,
P is canonical, Q is a multiple of the polynomial ∆n, and either

(a) exactly n− p variables occur in P and Q 6= 0, or
(b) P is not a constant polynomial and P satisfies conditions (A) and (B2) of Proposi-

tion 4.3.

Otherwise gap f = 1.

Proof. Combine Theorem 2.6, Theorem 2.7, Lemma 3.3, Lemma 3.4, Proposition 4.3, and
Proposition 4.5, and observe that if f |Fn

=
is determined by oddsupp then qa f = n if and

only if f |Fn
=

is not constant. �

Corollary 4.7. Let F = GF(q), where q is a power of 2, and let f : Fn → F be a polynomial
function of essential arity n > max(q, 3). If gap f = 2, then f can be decomposed into a
sum of polynomial functions of essential arity at most q − 1.

Proof. If n > q, then Fn= = Fn; hence case (a) in Theorem 4.6 cannot occur, while in
case (b) we have Q ≡ 0; thus f = P . Moreover, in case (b), every monomial of P involves
at most q − 1 variables, by conditions (A) and (B2) of Proposition 4.3. This implies that
f can be written as a sum of polynomial functions of essential arity at most q − 1, namely
the polynomial functions corresponding to the monomials of f . �



8 M. COUCEIRO, E. LEHTONEN, AND T. WALDHAUSER

Remark 4.8. Applying Corollary 4.7 in the case q = 2, we see that any function f : {0, 1}n →
{0, 1} with essential arity n ≥ 4 and gap f = 2 can be written as a sum of at most unary
functions, i.e., that f is a linear function.

Remark 4.9. From the results of [5] it follows that if A is a finite set and B is a Boolean
group, then every function f : An → B with essential arity n > max(|A|, 3) and gap f = 2
can be decomposed into a sum of functions of essential arity at most n−2 (cf. Remark 4.4).
Corollary 4.7 shows that the bound n − 2 on the essential arity of the summands can be
improved to q − 1 (which is independent of n) if A = B = GF(q), where q is a power of 2
(for further results in this direction see also [7]). In the example below, we will construct
a polynomial function f : Fn → F over F = GF(q) for any odd prime power q and any
n ≥ 2, such that gap f = 2 but f cannot be written as a sum of (n− 1)-ary functions. This
shows that Corollary 4.7 does not hold for finite fields with odd characteristic and that the
condition of B’s being a Boolean group cannot be dropped in the aforementioned result of
[5].

Example 4.10. Let q be an odd prime power, and let f be the polynomial function

(2) f(x1, . . . , xn) =

n∏
i=1

(
xq−1i − 1

2

)
over GF(q), where 1

2 stands for the multiplicative inverse of 2 = 1 + 1 (it exists, since GF(q)
is of odd characteristic). Let us identify the first two variables of f :

f(x1, x1, x3, . . . , xn) =
(
xq−11 − 1

2

)2
·
n∏
i=3

(
xq−1i − 1

2

)
=
(
x2q−21 − xq−11 +

1

4

)
·
n∏
i=3

(
xq−1i − 1

2

)
=

1

4
·
n∏
i=3

(
xq−1i − 1

2

)
,

since xq1 = x1 holds identically in GF(q). We see that x1 becomes an inessential variable,
and ess f2←1 = n− 2. This together with the total symmetry of f shows that gap f = 2.

Suppose that f is a sum of functions of arity at most n− 1. By Fact 3.1, these functions
are polynomial. This implies that every monomial of Pf involves at most n − 1 variables.
However, this is clearly not possible, as the expansion of the right side of (2) is a canonical

polynomial that involves the monomial xq−11 · · ·xq−1n , which will not be cancelled by any
other monomial. This contradiction shows that f cannot be expressed as a sum of functions
of arity at most n− 1.

5. Polynomial functions over fields of characteristic 0

We now consider the case of polynomial functions over fields of characteristic 0. Unlike
polynomial functions over fields of characteristic 2 (see Proposition 4.5), it turns out that
in the current case there is no polynomial function f : Fn → F whose restriction f |Fn

=
is

nonconstant and determined by oddsupp.
We first recall the notion of partial derivative in the case of polynomial functions. We

denote the partial derivative of a polynomial p ∈ F [x1, . . . , xn] with respect to its i-th
variable by ∂ip, and we define it by the following rules. The i-th partial derivative of a
monomial is defined by the rule

(3) ∂icx
a1
1 · · ·xann =

{
caix

a1
1 · · ·x

ai−1

i−1 x
ai−1
i x

ai+1

i+1 · · ·xann , if ai 6= 0,

0, otherwise.

Moreover, partial derivatives are additive, i.e.,

(4) ∂i
∑
j∈J

fj =
∑
j∈J

∂ifj .
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The partial derivatives of arbitrary polynomials can then be determined by application of
(3) and (4). The partial derivative of a polynomial function f : Fn → F with respect to its
i-th variable is denoted by ∂if , and it is given by ∂if := ∂iPf .

Observe that for fields of characteristic 0, ∂if = 0 if and only if the i-th variable is
inessential in f . Also, let us note the difference between

∂1f(x1, x1, x2) = ∂1(f(x1, x1, x2)) and (∂1f)(x1, x1, x2),

where f : F 3 → F is a polynomial function. The first one is a partial derivative of an iden-
tification minor of f , while the second one is an identification minor of a partial derivative
of f . The chain rule gives the following relationship between these polynomials functions:

∂1f(x1, x1, x2) = (∂1f)(x1, x1, x2) + (∂2f)(x1, x1, x2).

Since we will often consider derivatives of minors, it is worth formulating a generalization
of the above formula.

Fact 5.1. Let F be a field of characteristic 0, let f : Fn → F be a polynomial function,
let σ : [n] → [m], and let g ∈ Fm → F be the minor of f defined by g(x1, . . . , xm) =
f(xσ(1), . . . , xσ(n)). Then the j-th partial derivative of g is

∂jg =
∑
σ(i)=j

(∂if)(xσ(1), . . . , xσ(n)).

Lemma 5.2. Let F be a field of characteristic 0 and let f : Fn → F be a polynomial
function of arity at least 2. Then f |Fn

=
is determined by oddsupp if and only if f |Fn

=
is

constant, i.e., qa f = 0.

Proof. Sufficiency is obvious. We will prove necessity. For n = 2, the claim is trivial, so
we will assume that n ≥ 3. Let us suppose that f |Fn

=
is determined by oddsupp. Then

f(x1, x1, x3, . . . , xn) does not depend on x1 by Fact 2.5; hence we have

(∂1f)(x1, x1, x3, . . . , xn) + (∂2f)(x1, x1, x3, . . . , xn) = 0

by Fact 5.1. Let u = (x1, x1, x1, x4, . . . , xn) ∈ Fn. From the above equality it follows that

(∂1f)(u) + (∂2f)(u) = 0,

and a similar argument shows that

(∂1f)(u) + (∂3f)(u) = 0 and (∂2f)(u) + (∂3f)(u) = 0.

Since the characteristic of F is different from 2, by adding these three equalities we can
conclude that

(∂1f)(u) + (∂2f)(u) + (∂3f)(u) = 0.

However, according to Fact 5.1, (∂1f)(u)+(∂2f)(u)+(∂3f)(u) is nothing else but the deriva-
tive of f(x1, x1, x1, x4, . . . , xn) with respect to x1. This implies that f(x1, x1, x1, x4, . . . , xn)
does not depend on x1, i.e.,

(5) f(a, a, a, x4, . . . , xn) = f(b, b, b, x4, . . . , xn)

for any a, b, x4, . . . , xn ∈ F .
Informally, equality (5) expresses the fact that whenever the first three entries of an n-

tuple are the same, then replacing these three entries with another element of F , the value
of f does not change. (By symmetry, this is certainly true for any three entries, not only
the first three.) From the definition of being determined by oddsupp it follows immediately
that we can also change any two identical entries:

(6) f(· · · a · · · a · · · ) = f(· · · b · · · b · · · ).

Let x = (x1, . . . , xn) be any vector in Fn=. We may suppose without loss of generality
that x1 = x2. With the help of (5) and (6) we can replace the entries of x in triples and
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pairs, until all of them are the same:

f(x) = f(x1, x1, x3, x4, x5, x6, . . . , xn)

= f(x3, x3, x3, x4, x5, x6, . . . , xn)

= f(x4, x4, x4, x4, x5, x6, . . . , xn)

= f(x5, x5, x5, x5, x5, x6, . . . , xn)

= f(x6, x6, x6, x6, x6, x6, . . . , xn) = · · ·
= f(xn, xn, xn, xn, xn, xn, . . . , xn).

If n is even, then (6) shows that f(x) = f(0):

f(x) = f(xn, xn, xn, xn, . . . , xn, xn) = f(0, 0, 0, 0, . . . , 0, 0);

while if n is odd, then we use both (5) and (6):

f(x) = f(xn, xn, xn, xn, xn, . . . , xn, xn) = f(0, 0, 0, 0, 0, . . . , 0, 0).

We have shown that f(x) = f(0) for all x ∈ Fn=; hence f |Fn
=

is indeed constant. �

Remark 5.3. It follows from Lemma 3.4 that a function f : An → B satisfies the condition
of Lemma 5.2, i.e., f |Fn

=
is constant, if and only if f is induced by a polynomial of the form

P ·∆n + c, where P ∈ F [x1, . . . , xn] and c ∈ F .

Lemma 5.4. Let F be a field of characteristic 0 and let f : F 3 → F be a polynomial
function. If gap f = 2, then qa f = 1.

Proof. By case (iii) of Theorem 2.6, there exist a nonconstant map h : A→ B and i1, i2, i3 ∈
{0, 1} such that

f(x1, x0, x0) = h(xi1),

f(x0, x1, x0) = h(xi2),

f(x0, x0, x1) = h(xi3).

Up to permutation of variables there are four possibilities for (i1, i2, i3), namely (1, 1, 1),
(0, 0, 0), (1, 1, 0) and (1, 0, 0). We will show that the first three cases cannot occur.

If (i1, i2, i3) = (1, 1, 1) then f |F 3
=

is determined by oddsupp, and Lemma 5.2 shows that
h is constant, a contradiction.

If (i1, i2, i3) = (0, 0, 0) then f(x2, x1, x1) = f(x1, x2, x1) = f(x1, x1, x2) = h(x1); hence
f(x2, x1, x1) does not depend on x2. By Fact 5.1 this means that (∂1f)(x2, x1, x1) = 0,
in particular, (∂1f)(x1, x1, x1) = 0 for all x1 ∈ F . Similarly, we have (∂2f)(x1, x1, x1) =
(∂3f)(x1, x1, x1) = 0. Another application of Fact 5.1 yields

∂1h(x1) = ∂1f(x1, x1, x1)

= (∂1f)(x1, x1, x1) + (∂2f)(x1, x1, x1) + (∂3f)(x1, x1, x1) = 0,

and this means that h is constant, a contradiction.
If (i1, i2, i3) = (1, 1, 0), then f(x1, x2, x2) = f(x2, x1, x2) = f(x1, x1, x2) = h(x1), which

does not depend on x2. Again, by Fact 5.1 we see that

(∂2f)(x1, x2, x2) + (∂3f)(x1, x2, x2) = 0,

(∂1f)(x2, x1, x2) + (∂3f)(x2, x1, x2) = 0,

(∂3f)(x1, x1, x2) = 0.

From these equalities it follows that

(∂1f)(x1, x1, x1) = (∂2f)(x1, x1, x1) = (∂3f)(x1, x1, x1) = 0,

which is again a contradiction.
We are left with the case that (i1, i2, i3) = (1, 0, 0) (up to permutation). This implies

that f |F 3
=

= h(x1)|F 3
=

, i.e., qa f = 1. �
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Theorem 5.5. Let F be a field of characteristic 0, let n ≥ 3, and let P ∈ F [x1, . . . , xn] be
a polynomial such that all n variables occur in P . Then gapP = p ≥ 2 if and only if there
exist polynomials Q,R ∈ F [x1, . . . , xn] such that P = Q + R, exactly n − p variables occur
in Q, and R is a nonzero multiple of the polynomial ∆n. Otherwise gapP = 1. Moreover,
the decomposition P = Q+R is unique.

Proof. For necessity, assume that gapP = p ≥ 2. By Lemma 5.2, if P |Fn
=

is determined by

oddsupp, then qaP = 0. Theorem 2.6 and Lemma 5.4 then imply that if gapP = p ≥ 2,
then qaP = n − p. By Theorem 2.7, there exist unique functions g, h : Fn → F such that
P = g + h, h|Fn

=
≡ 0, h 6≡ 0 and ess g = n − p. By Lemma 3.3, g and h are polynomial

functions. Since F is infinite, each one of g and h is induced by a unique polynomial over
F , namely Pg and Ph, respectively. Thus, P = Pg +Ph. By Fact 3.2, exactly n−p variables
occur in Pg, and by Lemma 3.4, Ph is a nonzero multiple of ∆(x1, . . . , xn).

For sufficiency, assume that P = Q + R, where Q and R are as in the statement of the
theorem. Then essQ = n − p by Fact 3.2, and R 6≡ 0 and R|Fn

=
≡ 0 by Lemma 3.4. From

Theorem 2.7 it follows that qaP = n− p, and then Theorem 2.6 implies that gapP = p.
The uniqueness of the decomposition P = Q + R follows from Theorem 2.7 and from

the fact that polynomials and polynomial functions over infinite fields are in one-to-one
correspondence. �

Let us note that in the proof of the above theorem we did not really make use of the
fact that the function P is polynomial; we only used the basic properties of the derivative.
Therefore the theorem remains valid for differentiable real functions.

Theorem 5.6. Let f : Rn → R be a differentiable function of arity at least 2. Then
gap f = p ≥ 2 if and only if there exist differentiable functions g, h : Rn → R such that
f = g + h, h|Rn

=
≡ 0, h 6≡ 0, and ess g = n − p. Otherwise gap f = 1. Moreover, the

decomposition f = g + h is unique.

6. Some remarks on polynomial functions over infinite fields of odd
characteristic

As the following example illustrates, Proposition 4.5 and Lemma 5.2 do not extend to
infinite fields of odd characteristic.

Example 6.1. Let F be an arbitrary field of characteristic 3, and let f : F 3 → F be the
polynomial function induced by

(7) 2x3 + 2y3 + 2z3 + yz2 − xy2 − xz2 + y2z + 2xyz.

It is straightforward to verify that

f(x, x, y) = f(x, y, x) = f(y, x, x) = 2y3.

Hence f |F 3
=

is determined by oddsupp but f |F 3
=

is not constant. This shows that Lemma 5.2
does not hold if F has characteristic 3.

Next we show that Proposition 4.5 does not hold for infinite fields of characteristic 3.
Assume now that F is infinite, and let f be induced by (7). Suppose that g : F 3 → F is a
polynomial function determined by oddsupp induced by the canonical polynomial∑

(k1,k2,k3)∈N3

c(k1,k2,k3)x
k1
1 x

k2
2 x

k3
3 .

Condition (B) of Proposition 4.3 yields the following equalities:

c(3,0,0) + c(2,1,0) + c(1,2,0) + c(0,3,0) = 0,

c(2,0,1) + c(1,1,1) + c(0,2,1) = 0,

c(1,0,2) + c(0,1,2) = 0.

Taking into account the total symmetry of g (condition (A)) and the fact that the charac-
teristic of F is not 2, the only solution to this system of equations is c(k1,k2,k3) = 0 for all

(k1, k2, k3) ∈ N3 such that k1 + k2 + k3 = 3. Thus, the canonical polynomial of g(x, x, x)
does not contain any cubic term; therefore it cannot coincide with f(x, x, x) = 2x3, and we
conclude that f |F 3

=
6= g|F 3

=
.
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