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INTERPOLATION BY POLYNOMIAL FUNCTIONS OF

DISTRIBUTIVE LATTICES: A GENERALIZATION OF A

THEOREM OF R. L. GOODSTEIN

MIGUEL COUCEIRO AND TAMÁS WALDHAUSER

Abstract. We consider the problem of interpolating functions partially defined
over a distributive lattice, by means of lattice polynomial functions. Goodstein’s

theorem solves a particular instance of this interpolation problem on a distribu-

tive lattice L with least and greatest elements 0 and 1, resp.: Given a function
f : {0, 1}n → L, there exists a lattice polynomial function p : Ln → L such that

p|{0,1}n = f if and only if f is monotone; in this case, the interpolating polyno-

mial p is unique.
We extend Goodstein’s theorem to a wider class of partial functions f : D →

L over a distributive lattice L, not necessarily bounded, and where D ⊆ Ln

is allowed to range over n-dimensional rectangular boxes D = {a1, b1} × · · · ×
{an, bn} with ai, bi ∈ L and ai < bi, and determine the class of such partial

functions which can be interpolated by lattice polynomial functions. In this wider

setting, interpolating polynomials are not necessarily unique; we provide explicit
descriptions of all possible lattice polynomial functions which interpolate these

partial functions, when such an interpolation is available.

1. Introduction

Let L be a distributive lattice and let f : D → L (D ⊆ Ln) be an n-ary partial
function on L. In this paper we are interested in the problem of extending such
partial functions to the whole domain Ln by means of lattice polynomial functions,
i.e., functions that can be represented as compositions of the lattice operations ∧
and ∨ and constants. More precisely, we aim at determining necessary and sufficient
conditions on the partial function f that guarantee the existence of a lattice polynomial
function p : Ln → L which interpolates f , that is, p|D = f .

An instance of this problem was considered by Goodstein [8] in the case when L is
a bounded distributive lattice, and the functions to be interpolated were of the form
f : {0, 1}n → L. Goodstein showed that such a function f can be interpolated by
lattice polynomial functions if and only if it is monotone. Furthermore, if such an
interpolating polynomial function exists, then it is unique.

The general solution to the above mentioned interpolation problem eludes us. How-
ever, we are able to generalize Goodstein’s result by allowing L to be an arbitrary
(possibly unbounded) distributive lattice and considering functions f : D → L, where
D = {a1, b1} × · · · × {an, bn} with ai, bi ∈ L and ai < bi. More precisely, we furnish
necessary and sufficient conditions for the existence of an interpolating polynomial
function. As it will become clear, in this more general setting, uniqueness is not
guaranteed, and thus we determine all possible interpolating polynomial functions.
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The structure of the paper is as follows. In Section 2 we recall basic background
on polynomial functions over distributive lattices (see [7, 10]) and formalize the in-
terpolation problem that we are interested in. In Section 3 we state and prove the
characterization of those functions that can be interpolated by polynomial functions
and we describe the set of all solutions of the interpolation problem. We discuss
variations of the interpolation problem in Section 4 and relate our work to earlier
results obtained for finite chains in [13]. Finally, in Section 5 we consider potential
applications of our results in mathematical modeling of decision making.

2. Preliminaries

Let L be a bounded distributive lattice with least element 0 and greatest element
1. It can be shown that a function p : Ln → L is a lattice polynomial function if and
only if there exist cI ∈ L(I ⊆ [n] := {1, . . . , n}) such that p can be represented in
disjunctive normal form (DNF for short) by

(2.1) p(x) =
∨

I⊆[n]

(
cI ∧

∧
i∈I

xi

)
, for all x = (x1, . . . , xn) ∈ Ln.

It is easy to verify that taking c′I =
∨

J⊆I cJ , we also have

p(x) =
∨

I⊆[n]

(
c′I ∧

∧
i∈I

xi

)
,

and hence the coefficients cI can be assumed to be monotone in the sense that I ⊆ J
implies cI ≤ cJ . This monotonicity assumption allows us to recover the coefficients
of the DNF from certain values of the polynomial function p. Indeed, denoting by 1I

the characteristic vector of I ⊆ [n] (i.e., the tuple 1I ∈ Ln whose i-th component is 1
if i ∈ I and 0 if i /∈ I), we then have that p(1I) = cI . Thus each polynomial function
p has a unique DNF with monotone coefficients. We call such a DNF a maximal
disjunctive normal form, as the coefficients of this DNF are the greatest among all
DNF’s representing the same polynomial function p (see [1]). In the sequel we will
always consider lattice polynomial functions in maximal DNF. These observations
contain the essence of Goodstein’s theorem. Let us note that this result is implicit in
the proof of [9, Corollary 2].

Theorem 2.1 (Goodstein [8]). Let L be a bounded distributive lattice, and let f be
a function f : {0, 1}n → L. There exists a polynomial function p over L such that
p|{0,1}n = f if and only if f is monotone. In this case p is uniquely determined, and
can be represented by the maximal DNF

p(x) =
∨

I⊆[n]

(
f(1I) ∧

∧
i∈I

xi

)
.

Remark 2.2. The notion dual to disjunctive normal form is that of conjunctive
normal form. Every polynomial function over a bounded distributive lattice has a
unique minimal conjunctive normal form whose coefficients satisfy I ⊆ J =⇒ cI ≥
cJ . The minimal conjunctive normal form of the polynomial function p in Theorem 2.1
is

p(x) =
∧

I⊆[n]

(
f(1I) ∨

∨
i/∈I

xi

)
.

Informally, Goodstein’s theorem asserts that polynomial functions of distributive
lattices are uniquely determined by their restrictions to the hypercube {0, 1}n, and
a function on the hypercube extends to a polynomial function if and only if it is
monotone.

Let us now consider a distributive lattice L without least and greatest elements.
(We omit the analogous discussion of the cases where L has one boundary element.)
Polynomial functions over L can still be given in DNF of the form (2.1) by allowing
the coefficients cI to take also the values 0 and 1, which are considered as external
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boundary elements (see, e.g., [1, 3]). For example, a polynomial function p(x, y) =
a ∨ x ∨ (b ∧ x ∧ y) can be rewritten as p(x, y) = a ∨ (1 ∧ x) ∨ (0 ∧ y) ∨ (b ∧ x ∧ y).

We can still assume monotonicity of the coefficients, and any such system cI ∈
L∪̇{0, 1}(I ⊆ [n]) of coefficients gives rise to a polynomial function p over L, provided
that c∅ 6= 1 and c[n] 6= 0. (The cases c∅ = 1 and c[n] = 0 correspond to the constant
1 and constant 0 functions.) Again, such DNF’s will be called maximal disjunctive
normal forms. Just like in the case of bounded lattices, there is a one-to-one corre-
spondence between maximal DNF’s and polynomial functions (cf. [1]). To see this,
let us choose elements a < b from L to play the role of 0 and 1, and let eI be the
“characteristic vector” of I ⊆ [n] (i.e., the tuple eI ∈ Ln whose i-th component is b if
i ∈ I and a if i /∈ I). If a is sufficiently small (less than all non-zero coefficients in the
maximal DNF of p) and b is sufficiently large (greater than all non-one coefficients in
the maximal DNF of p), then a routine computation shows that

p(eI) =


cI if cI ∈ L,

a if cI = 0,

b if cI = 1.

This means that we can recover the coefficients cI of the maximal DNF of p from
certain values of p, namely we need to consider p on larger and larger cubes {a, b}n
by letting a decrease and b increase indefinitely. As the next example shows, this does
not imply that there is only one polynomial function that takes prescribed values on
a fixed cube {a, b}n.

Example 2.3. Let L be the lattice of open subsets of a topological space X, and let
a, b ∈ L with a ⊂ b. Since L is a bounded distributive lattice, in view of (2.1), every
unary polynomial function p over L can be represented by a unique maximal DNF of
the form p(x) = c0 ∪ (c1 ∩ x) with c0, c1 ∈ L, c0 ⊆ c1. It is straightforward to verify
that such a polynomial function satisfies p(a) = p(b) = b if and only if

b \ a ⊆ c0 ⊆ b and b ⊆ c1 ⊆ X.

Thus, there may be infinitely many polynomial functions p whose restriction to the
“one-dimensional cube” {a, b} is constant b (for instance, let X be the real line, and
let a and b be open intervals).

Let us go one step further, and choose a “zero” and “one”, possibly different in
each coordinate: Let ai, bi ∈ L with ai < bi for each i ∈ [n], and let êI be the
“characteristic vector” of I ⊆ [n] (i.e., the tuple êI ∈ Ln whose i-th component is
bi if i ∈ I and ai if i /∈ I). The task of finding a polynomial function (or rather all
polynomial functions) that takes prescribed values on the tuples êI can be regarded
as an interpolation problem.

Problem 2.4. Let L be a distributive lattice. Given D := {êI : I ⊆ [n]} and
f : D → L, find all polynomial functions p : Ln → L such that p|D = f .

Note that here f is given on the vertices of a rectangular box (cuboid) instead of a
cube as in Theorem 2.1. We will solve this problem in Section 3, thereby generalizing
Goodstein’s theorem. Let us note that the problem can be interesting also in the
case of bounded lattices, for instance, if we do not have access to the values of the
polynomial function on {0, 1}n, but only on some “internal” points. We will discuss
such applications in Section 5.

3. Main results

Throughout this section we assume that L is a distributive lattice and that D =
{êI : I ⊆ [n]} and f : D → L are given. Our goal is to find (the maximal DNF of) all
n-ary polynomial functions p over L that satisfy p|D = f . Clearly, monotonicity of f
is a necessary condition for the existence of a solution of Problem 2.4, but, in contrast
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with Goodstein’s theorem, monotonicity is not always sufficient in this more general
setting. We will prove that the extra condition that we need is the following:

(?) f(êI∪{k}) ∧ ak ≤ f(êI) ≤ f(êI\{k}) ∨ bk for all I ⊆ [n], k ∈ [n].

Observe that the first inequality holds obviously if k ∈ I, and the second inequality
is also clear if k /∈ I.

Our first lemma shows how to obtain inequalities between f(êS) and f(êT ) for
S ⊆ T by repeated applications of (?).

Lemma 3.1. If the function f satisfies (?), then for all S ⊆ T ⊆ [n] we have

f(êT ) ∧
∧

k∈T\S

ak ≤ f(êS) and f(êT ) ≤ f(êS) ∨
∨

k∈T\S

bk.

Proof. We only prove the first inequality; the second one follows similarly. Let T \
S = {k1, . . . , kr}, and let us apply (the first inequality of) condition (?) with I =
S ∪ {k1, . . . , km−1} and k = km for m = 1, . . . , r:

f(êS∪{k1}) ∧ ak1
≤ f(êS),

f(êS∪{k1,k2}) ∧ ak2 ≤ f(êS∪{k1}),

...

f(êS∪{k1,...,kr}) ∧ akr ≤ f(êS∪{k1,...,kr−1}).

Combining these r inequalities, we get

f(êS∪{k1,...,kr}) ∧ ak1
∧ · · · ∧ akr

≤ f(êS). �

Let us now show that (?) is a necessary condition for the existence of a solution of
Problem 2.4.

Lemma 3.2. If there is a polynomial function p over L such that p|D = f , then f is
monotone and satisfies (?).

Proof. Assume that p is a polynomial function that extends f . Since p is monotone,
f is also monotone. To show that (?) holds, let us fix I ⊆ [n] and k ∈ [n], and let
us assume that k /∈ I (the case k ∈ I can be dealt with similarly). Let (êI)xk ∈ Ln

denote the n-tuple obtained from êI by replacing its k-th component by the variable
x. We can define a unary polynomial function u over L by u(x) := p((êI)xk). Using
this notation, (?) takes the form u(bk)∧ ak ≤ u(ak). The maximal DNF of u is of the
form u(x) = c0 ∨ (c1 ∧ x), where c0, c1 ∈ L ∪ {0, 1}. Using distributivity and the fact
that ak < bk, we can now easily prove the desired inequality:

u(bk) ∧ ak = (c0 ∨ (c1 ∧ bk)) ∧ ak = (c0 ∧ ak) ∨ (c1 ∧ bk ∧ ak)

= (c0 ∧ ak) ∨ (c1 ∧ ak) ≤ c0 ∨ (c1 ∧ ak) = u(ak). �

To find all polynomial functions p satisfying p|D = f , we will make use of the the
fact that every distributive lattice can be embedded into a Boolean algebra. More-
over, if L is a distributive lattice, then there is a Boolean algebra B(L) containing
L as a sublattice of the lattice reduct of B(L) such that the boundary elements of L
(if they exist) coincide with the boundary elements of B(L), and L generates B(L)
(as a Boolean algebra). This Boolean algebra B(L) is determined uniquely up to iso-
morphism (see [12]). Note that whenever we consider polynomial functions over B(L)
in the sequel, we will always mean lattice polynomial functions (not Boolean algebra
polynomial functions).

The complement of an element a ∈ B(L) is denoted by a′. Given a function
f : D → L, we define the following two elements in B(L) for each I ⊆ [n]:

(3.1) c−I := f(êI) ∧
∧
i/∈I

a′i, c+I := f(êI) ∨
∨
i∈I

b′i.

Observe that c−I ≤ c+I , and if f is monotone, then I ⊆ J implies c−I ≤ c−J and c+I ≤ c+J .
Let p− and p+ be the lattice polynomial functions over B(L) that are represented by
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the (maximal) DNF’s corresponding to these two systems of coefficients as in (2.1).
We will see that p− and p+ are the least and greatest lattice polynomial functions
over B(L) whose restriction to D coincides with f (whenever there exists such a
polynomial function). Recall that although B(L) is a Boolean algebra, we will only
consider polynomial functions over the lattice reduct of B(L); complements will appear
only in coefficients of DNF’s of these lattice polynomials.

Lemma 3.3. If f is monotone and satisfies (?), then p+(êJ) ≤ f(êJ) for all J ⊆ [n].

Proof. Let us fix J ⊆ [n] and consider the value of p+ at êJ :

p+(êJ) =
∨

I⊆[n]

(
c+I ∧

∧
j∈I

(êJ)j
)

=
∨

I⊆[n]

(
c+I ∧

∧
j∈I\J

aj ∧
∧

j∈I∩J
bj
)
.

It is sufficient to verify that each joinand is at most f(êJ). Taking into account the
definition of c+I , this amounts to showing that

(3.2)
(
f(êI) ∨

∨
i∈I

b′i
)
∧
∧

j∈I\J

aj ∧
∧

j∈I∩J
bj ≤ f(êJ)

holds for all I ⊆ [n]. Distributing meets over joins, the left hand side of (3.2) becomes

(3.3)
(
f(êI) ∧

∧
j∈I\J

aj ∧
∧

j∈I∩J
bj
)
∨
∨
i∈I

(
b′i ∧

∧
j∈I\J

aj ∧
∧

j∈I∩J
bj
)
.

Let us examine each joinand of this expression. For each i ∈ I, the joinand involving
b′i equals 0, since

b′i ∧
∧

j∈I\J

aj ∧
∧

j∈I∩J
bj ≤ b′i ∧

∧
j∈I\J

bj ∧
∧

j∈I∩J
bj = b′i ∧

∧
j∈I

bj ≤ b′i ∧ bi = 0.

The joinand of (3.3) that involves f(êI) can be estimated using (?) and Lemma 3.1
(with T = I and S = I ∩ J):

f(êI) ∧
∧

j∈I\J

aj ∧
∧

j∈I∩J
bj ≤ f(êI) ∧

∧
j∈I\(I∩J)

aj ≤ f(êI∩J).

Since f is monotone, we have f(êI∩J) ≤ f(êJ), and this proves (3.2). �

The following lemma is the dual of Lemma 3.3, and it can be proved by using the
minimal conjunctive normal form of p− (cf. Remark 2.2).

Lemma 3.4. If f is monotone and satisfies (?), then p−(êJ) ≥ f(êJ) for all J ⊆ [n].

The estimates obtained in the previous two lemmas allow us to find all solutions of
our interpolation problem over B(L), whenever a solution exists.

Theorem 3.5. Let L be a distributive lattice and let D = {êI : I ⊆ [n]} and f : D → L
be given, as in Problem 2.4. Suppose that f is monotone and satisfies (?), and let
c−I and c+I be the coefficients computed from f as in (3.1), and let p− and p+ be
lattice polynomial functions over B(L) given by the DNF’s corresponding to these
coefficients. Furthermore, let p be an n-ary lattice polynomial function over B(L)
given by a maximal DNF with coefficients cI ∈ B(L)(I ⊆ [n]). Then the following
three conditions are equivalent:

(i) p|D = f ;
(ii) for all I ⊆ [n] the inequalities c−I ≤ cI ≤ c+I hold;

(iii) for all x ∈ Ln we have p−(x) ≤ p(x) ≤ p+(x).

Proof. Implication (ii) =⇒ (iii) is trivial. To prove (i) =⇒ (ii), assume that p|D = f ,
i.e., p(êJ) = f(êJ) for all J ⊆ [n]. Then we can replace f(êJ) by p(êJ) in the definition
of c−J , and we can compute its value by substituting êJ into the maximal DNF of p:

c−J = f(êJ) ∧
∧
j /∈J

a′j = p(êJ) ∧
∧
j /∈J

a′j =
( ∨
I⊆[n]

(
cI ∧

∧
i∈I

(êJ)i
))
∧
∧
j /∈J

a′j

=
∨

I⊆[n]

(
cI ∧

∧
i∈I\J

ai ∧
∧

i∈I∩J
bi ∧

∧
j /∈J

a′j
)
.
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If there exists i ∈ I \ J , then ai ∧ a′i = 0 appears in the joinand corresponding to
I, hence we can omit each of these terms from the join, and keep only those where
I \ J = ∅:

c−J =
∨
I⊆J

(
cI ∧

∧
i∈I\J

ai ∧
∧

i∈I∩J
bi ∧

∧
j /∈J

a′j
)
≤
∨
I⊆J

cI = cJ .

This proves c−J ≤ cJ . The inequality cJ ≤ c+J can be proved by a dual argument.
Finally, to prove (iii) =⇒ (i), let us assume that p− ≤ p ≤ p+ holds in the pointwise

ordering of functions. Applying Lemma 3.3 and Lemma 3.4, we get the following chain
of inequalities for every I ⊆ [n]:

f(êI) ≤ p−(êI) ≤ p(êI) ≤ p+(êI) ≤ f(êI).

This implies p(êI) = f(êI) for all I ⊆ [n], therefore we have p|D = f . �

Note that in Lemma 3.2 we did not make use of the fact that p is a polynomial
function over L: the proof works also for lattice polynomial functions over B(L). This
fact together with Theorem 3.5 shows that monotonicity and property (?) of f are
necessary and sufficient for the existence of a solution of our interpolation problem
over B(L) (regarded as a lattice). This observation leads us to the following result.

Theorem 3.6. Let L be a distributive lattice and let D = {êI : I ⊆ [n]} and f : D → L
be given, as in Problem 2.4. Let c−I and c+I be the coefficients computed from f as
in (3.1), and let p− and p+ be the lattice polynomial functions over B(L) given by
the DNF’s corresponding to these coefficients. A polynomial function p : Ln → L
with p|D = f exists if and only if f is monotone and satisfies (?). In this case a
polynomial function p over L verifies p|D = f if and only if c−I ≤ cI ≤ c+I holds for
coefficients cI ∈ L ∪ {0, 1} of the maximal DNF of p for all I ⊆ [n]. In particular, p
can be chosen as the polynomial function p0 given by the DNF corresponding to the
coefficients cI = f(êI):

p0(x) =
∨

I⊆[n]

(
f(êI) ∧

∧
i∈I

xi

)
.

Proof. The necessity of the conditions has been established in Lemma 3.2. To prove
the sufficiency, we just need to observe that if f is monotone and satisfies (?), then
the polynomial function p0 is a solution of Problem 2.4 by Theorem 3.5, as c−I ≤
f(êI) ≤ c+I follows immediately from the definition of c−I and c+I . Since f(êI) ∈ L for
all I ⊆ [n], the polynomial function p0 is actually a polynomial function over L. The
description of the set of all solutions over L also follows from Theorem 3.5. �

Let us note that if L is bounded and ai = 0, bi = 1 for all i ∈ [n], then Theorem 3.6
reduces to Goodstein’s theorem. Indeed, in this case (?) holds trivially, hence a
solution exists if and only if f is monotone. Moreover, we have c−I = c+I = f(êI),
hence p0 (which is the same as the polynomial function p given in Theorem 2.1) is the
only solution of Problem 2.4.

4. Variations

We have seen that monotonicity and property (?) are necessary and sufficient to
guarantee the existence of a solution of Problem 2.4. The following example shows
that these two conditions are independent, hence neither of them can be dropped.

Example 4.1. Let L be a distributive lattice, let a, b, c ∈ L such that a < b < c, and
let D = {a, b}. Then the function f : D → L defined by f(a) = b, f(b) = a satisfies
(?) but it is not monotone, while the function g : D → L defined by g(a) = a, g(b) = c
is monotone but it does not satisfy (?).

Considering lattice polynomial functions over B(L), Problem 2.4 has a least and a
greatest solution, namely p− and p+, whenever a solution exists (see Theorem 3.5).
On the other hand, the instance of Problem 2.4 considered in Example 2.3 has no least
solution over L itself (since usually there is no least open set containing b \ a), and
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a dual example shows that in general there is no greatest solution over L. However,
if L is complete, then such extremal solutions exist over L. To describe these, let us
introduce the following notation. For an arbitrary b ∈ B(L), we define the elements
cl(b) and int(b) of L by

cl(b) :=
∧
a∈L
a≥b

a and int(b) :=
∨
a∈L
a≤b

a.

Completeness of L ensures that these (possibly infinite) meets and joins exist, and one
can verify that cl is a closure operator on B(L) (the closed elements being exactly the
elements of L), while int is the dual closure operator on B(L) (also called as “interior
operator”).

Theorem 4.2. Let L be a complete distributive lattice; let D = {êI : I ⊆ [n]} and
f : D → L be given, as in Problem 2.4, and let us assume that f is monotone and
satisfies (?). Let c−I and c+I be the coefficients computed from f as in (3.1), and let p−

and p+ be the lattice polynomial functions over B(L) given by the DNF’s corresponding
to these coefficients. Then a polynomial function p over L is a solution of Problem 2.4
if and only if

cl(c−I ) ≤ cI ≤ int(c+I )

holds for the coefficients cI of the maximal DNF of p, for all I ⊆ [n].

Proof. Theorem 4.2 follows directly from Theorem 3.6, since, by the very definition
of cl and int, we have that c−I ≤ cI ≤ c+I holds for a given cI ∈ L if and only if

cl(c−I ) ≤ cI ≤ int(c+I ). �

Problem 2.4 was solved in [13] in the particular case of finite chains. That paper
deals with Sugeno integrals (cf. Section 5) instead of lattice polynomials; here we re-
formulate the criterion for the existence of a solution ([13, Theorem 3]) in the language
of lattice theory.

Theorem 4.3 ([13]). Let L be a finite chain, and let D be an arbitrary subset of Ln.
A function f : D → L extends to a lattice polynomial function on L if and only if

(4.1) ∀a,b ∈ D : f(a) < f(b) =⇒ ∃i ∈ [n] : ai ≤ f(a) < f(b) ≤ bi.

Let us explore the relationship between Theorem 4.3 and Theorem 3.6. Our con-
dition (?) is defined only for sets D of the form D = {êI : I ⊆ [n]}, whereas (4.1) can
be interpreted for any set D ⊆ Ln for any distributive lattice L. Hence it is natural
to ask whether Theorem 4.3 remains valid for arbitrary distributive lattices. As the
following example shows, if L is not a chain, then it can be the case that (4.1) is
neither sufficient nor necessary for the existence of a solution of Problem 2.4, not even
for the special kind of sets D that we considered in this paper.

Example 4.4. Let L = {0, 1, a, b} be the lattice shown on Figure 1. Let n = 1 and
D = {0, b}, and define f : D → L by f(0) = b, f(b) = a and g : D → L by g(0) = a,
g(b) = 1. Then f trivially satisfies (4.1), but f is not monotone, hence it is not the
restriction of any polynomial function. On the other hand, g does not satisfy (4.1),
although it is the restriction of the polynomial function p(x) = x ∨ a to D.

Observe that if L is a chain, then (4.1) implies that f is monotone (of course, this
follows from Theorem 4.3, but it is also easy to verify directly). As we have seen in
Example 4.4, this is not true for arbitrary distributive lattices. Thus we may want to
require that f is a monotone function satisfying (4.1). We will prove below that if D
is of “rectangular” shape, then monotonicity of f and condition (4.1) are sufficient to
ensure that f extends to a polynomial function (although (4.1) is not necessary, as we
have seen in Example 4.4).

Proposition 4.5. Let L be a distributive lattice and D = {êI : I ⊆ [n]} as in Prob-
lem 2.4. If f : D → L is monotone and satisfies (4.1), then there exists a polynomial
function p over L such that p|D = f .
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a b
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Figure 1. The lattice L considered in Examples 4.4 and 4.6

Proof. Let f : D → L be a monotone function satisfying (4.1). By Theorem 3.6, we
only have to prove that f also satisfies (?). Let us assume that k /∈ I; the other case is
similar. Then only f(êI∪{k})∧ak ≤ f(êI) needs to be verified, as the second inequality
of (?) is trivial in this case. Since f is monotone, we have f(êI) ≤ f(êI∪{k}), and if
equality holds here, then we are done. On the other hand, if f(êI) < f(êI∪{k}), then
(4.1) implies that there is an i ∈ [n] such that

(4.2) (êI)i ≤ f(êI) < f(êI∪{k}) ≤ (êI∪{k})i.

This is clearly impossible for i 6= k, since then the i-th component of êI and êI∪{k} is
the same. Thus we must have i = k, and then (4.2) reads as

ak ≤ f(êI) < f(êI∪{k}) ≤ bk.

From this we immediately obtain the desired inequality:

f(êI∪{k}) ∧ ak ≤ ak ≤ f(êI). �

Finally, we give an example that shows that monotonicity and condition (4.1)
together do not guarantee the existence of a solution of Problem 2.4 if L is an arbitrary
distributive lattice and D is an arbitrary subset of Ln. Thus it remains as a topic of
further research to find an appropriate criterion for the existence of an interpolating
lattice polynomial function in this general setting.

Example 4.6. Let L be the same lattice as in Example 4.4 (see Figure 1), and let
D = {a, b}. Then the function f : D → L defined by f(a) = b, f(b) = a is monotone
and satisfies (4.1), but it is not the restriction of a polynomial function. (This can be
verified by a brute-force method, as there are only five nonconstant unary polynomial
functions over L.)

5. Application in decision making

The original motivation for considering Problem 2.4 lies in the following mathe-
matical model of multicriteria decision making. Let us assume that we have a set of
alternatives from which we would like to choose the best one (e.g., a house to buy).
Several properties of these alternatives could be important in making the decision
(e.g., the size, price, etc., of a house), and this very fact can make the decision dif-
ficult (for instance, maybe it is not clear whether a cheap and small house is better
than a big and expensive one). To overcome this difficulty, the values corresponding
to the various properties of each alternative should be combined to a single value,
which can then be easily compared.

To formalize this situation, let us assume that there are n criteria along which
the alternatives are evaluated, and these take their values in linearly ordered sets
L1, . . . , Ln. These linearly ordered sets could be quantitative scales (e.g., L1 could be
the real interval [40, 200], measuring the size of a house in square meters) or qualitative
scales (e.g., L1 could be the finite chain {very small < small < big < very big}).
Thus, to each alternative corresponds a profile x ∈ L1×· · ·×Ln. Since this product is
usually not a linearly ordered set, some alternatives may be incomparable. Therefore,
we choose a common scale L, and monotone functions ϕi : Li → L(i ∈ [n]) to translate
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the values corresponding to the different criteria (which may have different units of
measure, e.g., square meters, euros, etc.) to this common scale, and which are then
combined into a single value (for each alternative) by a so-called aggregation function
p : Ln → L. In this way we obtain a function U : L1 × · · · × Ln → L defined by

(5.1) U(x) = p(ϕ1(x1), . . . , ϕn(xn)),

and we can choose the alternative that maximizes U . The function U is called a
global utility function, whereas the maps ϕi are called local utility functions. The
relevance of such functions is attested by their several applications in decision making,
in particular, in representing preference relations [2].

It is common to choose the real interval [0, 1] for L, and consider ϕi(xi) as a
kind of “score” with respect to the i-th criterion. In this case, simple aggregation
functions p are for instance the weighted arithmetic means, but there are of course
other, more elaborate ways of aggregating the scores such as the so-called Choquet
integrals. However, in the qualitative approach, where only the ordering between
scores is taken into account (for instance, when L = {bad < OK < good < excellent}),
such operators are of little use since they rely heavily on the arithmetic structure
of the real unit interval. In the latter setting, one of the most prominent class of
aggregation functions is that of discrete Sugeno integrals, which coincides with the
class of idempotent lattice polynomial functions (see [11]).

In [5] and [6] a more general situation was considered: L is an arbitrary finite
distributive lattice, the lattice polynomial functions are not assumed to be idempotent,
and the local utility functions are not assumed to be monotone (instead they have
to satisfy the boundary conditions ϕi(0i) ≤ ϕi(xi) ≤ ϕi(1i) for all xi ∈ Li, where 0i
and 1i denote the least and greatest element of Li). The corresponding compositions
(5.1) were called pseudo-polynomial functions, and several axiomatizations were given
for this class of functions. Besides axiomatization, another noteworthy problem is
the factorization of such functions: given a function U : L1 × · · · × Ln → L, find all
factorizations of U in the form (5.1). Such a factorization can be useful in real-life
applications, when only the function U is available (from empirical observations), and
an analysis of the behavior of the local utility functions ϕi and of the aggregation
function p could give valuable information about the decision maker’s attitude.

Suppose that we have already found the local utility functions ϕi (see [5] and [6]
for a method to find them), and let ai = ϕi(0i), bi = ϕi(1i). If x ∈ L1 × · · · × Ln is
such that xi = 1i if i ∈ I and xi = 0i if i /∈ I, then U(x) = p(êI). Thus, if we know
the global utility function U , then we have information about p|D, and we can use
Theorem 3.6 to find all possible lattice polynomial functions p that can appear in a
factorization (5.1) of U . (Of course, one also has to take into account the other values
of U , but this can be done by using the boundary conditions; see [6].)

The factorization procedure outlined above can be applied only if we have complete
information about the global utility function U . However, in practical situations this
is rarely the case: either U is not defined everywhere (e.g., there do not exist houses
with all possible combinations of sizes, prices, etc.) or we do not know all of its values
(e.g., the decision maker did not express his/her preferences about all the alternatives).
This fact gives rise to the following problem.

Problem 5.1. Let L1, . . . , Ln be bounded posets and L a distributive lattice. Given
D ⊆ L1 × · · · ×Ln and f : D → L, find all pseudo-polynomial functions p : L1 × · · · ×
Ln → L such that p|D = f .

Considering polynomials instead of pseudo-polynomials we have the following anal-
ogous problem, which was already outlined in Section 1.

Problem 5.2. Let L be a distributive lattice. Given D ⊆ Ln and f : D → L, find all
polynomial functions p : Ln → L such that p|D = f .

As mentioned in Section 4, Problem 5.2 was solved in [13] in the case of finite chains,
which is the most common setting in the qualitative theory of decision making. The
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general case is of interest not only to qualitative decision making, but it is also both
natural and pertinent in the theory of distributive lattices. This constitutes a topic
of current research being developed by the authors.
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