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PARAMETRIZED ARITY GAP

MIGUEL COUCEIRO, ERKKO LEHTONEN, AND TAMÁS WALDHAUSER

Abstract. We propose a parametrized version of arity gap. The parametrized
arity gap gap(f, ℓ) of a function f : An

→ B measures the minimum decrease in

the number of essential variables of f when ℓ consecutive identifications of pairs of
essential variables are performed. We determine gap(f, ℓ) for an arbitrary function
f and a nonnegative integer ℓ. We also propose other variants of arity gap and
discuss further problems pertaining to the effect of identification of variables on

the number of essential variables of functions.

1. Introduction

Let A and B be arbitrary nonempty sets. In this paper we investigate a variant of
the so-called arity gap of functions f : An → B. The study of arity gap goes back to
the 1963 paper by Salomaa [13], where he addressed the question how the number of
essential variables of a function is affected by substitution of constants for variables or
by identification of variables.

The arity gap of a function f : An → B is defined as the minimum decrease in the
number of essential variables when any two essential variables of f are identified, and
it is denoted by gap f . Concerning the effect of identifying variables on the number of
essential variables, Salomaa’s main result asserts that in the case when A = B = {0, 1},
it holds that gap f ≤ 2 for every function f : {0, 1}n → {0, 1} with at least two essential
variables. (In fact, it is implicit in Salomaa’s work that if |A| = k and |B| ≥ 2, then
the arity gap of any function f : An → B, all variables of which are essential, is at most
k, and that there exist functions of arity k for which this upper bound is met.)

For |A| = 2, examples of functions meeting each of the two possible values of the arity
gap can be easily constructed. For instance, it is clear that the Boolean multiplication
has arity gap 1, whereas the Boolean addition has arity gap 2. This observation asks
for a complete classification of Boolean functions into ones with arity gap 1 and ones
with arity gap 2.

Such a classification was attained in [4], where explicit descriptions of functions with
arity gap 2 were provided; interestingly, this result led to a similar classification of
pseudo-Boolean functions (i.e., A = {0, 1} and |B| ≥ 2) into ones with arity gap 1 and
ones with arity gap 2 (see [5]).

Willard [16] extended Salomaa’s result to functions defined on arbitrary finite do-
mains and showed that the same upper bound 2 holds for the arity gap of any function
f : An → B depending on all of its variables, provided that n > max(3, |A|). Moreover,
he proved that the arity gap of such a function f is 2 if and only if f is determined by
oddsupp (see Section 2.2).

Further classifications for wider classes of functions (e.g., whereA andB are arbitrary
nonempty sets) were obtained and made explicit under certain conditions in, e.g., [6,
7, 8, 14].
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is supported by the TÁMOP-4.2.1/B-09/1/KONV-2010-0005 program of the National Development
Agency of Hungary, by the Hungarian National Foundation for Scientific Research under grants no.

K77409 and K83219, by the National Research Fund of Luxembourg, and cofunded under the Marie
Curie Actions of the European Commission (FP7-COFUND)..

1

http://dx.doi.org/10.1007/s11083-012-9261-5


2 M. COUCEIRO, E. LEHTONEN, AND T. WALDHAUSER

In this paper we introduce a parametrized version of arity gap which measures the
minimum decrease in the number of essential variables when we make ℓ ≥ 1 successive
identifications of pairs of essential variables. For a function f : An → B, let gap(f, ℓ)
denote this minimum decrease. This parametrized notion extends that of arity gap as
gap f = gap(f, 1).

This paper is organized as follows. In Section 2, we recall basic notions and establish
preliminary results concerning the simple minor relation and the arity gap, which will
be needed in the later sections. Section 3 is devoted to the study of the parametrized
arity gap. In particular, given sets A and B and positive integers n, p, we explicitly
determine the possible sequences

gap(f, 1), gap(f, 2), . . . , gap(f, ℓ), . . . ,

for functions f : An → B depending on all of their variables such that gap f = p.
In Section 4, we briefly discuss some further problems related to the effect of several
identifications of essential variables on the number of essential variables of a function.

The current study was motivated by the questions and remarks made by Dan A.
Simovici at the IEEE 41st International Symposium on Multiple-Valued Logic (ISMVL
2011).

2. Preliminaries

2.1. Functions of several variables and simple minors. For a positive integer n,
we will denote [n] := {1, . . . , n}, and we will assume throughout this paper that A and
B are arbitrary sets with at least two elements. A function of several variables from A
to B is a map f : An → B for some positive integer n called the arity of f . We denote
the set of all finitary functions from A to B by

FAB :=
⋃

n≥1

BA
n

.

We say that the i-th variable xi is essential in f : An → B, or f depends on xi, if
there exist tuples a := (a1, . . . , an) and b := (b1, . . . , bn) such that aj = bj for all j 6= i
and f(a) 6= f(b). A variable that is not essential is called inessential. The essential
arity of f is defined to be the cardinality of the set

Ess f := {i ∈ [n] : xi is essential in f}

and is denoted by ess f . If ess f = n, then we say that f is essentially n-ary.
Let f : An → B and g : Am → B. We say that g is a simple minor of f , and we write

g ≤ f , if there exists a map α : [n] → [m] such that g(a1, . . . , am) = f(aα(1), . . . , aα(n))
for all a1, . . . , am ∈ A. (Informally, g is a simple minor of f , if g can be obtained from
f by permutation of variables, addition of inessential variables, deletion of inessential
variables, or identification of variables.)

Let f : An → B. For i, j ∈ [n], i 6= j, the simple minor fi←j : A
n → B of f given by

the rule
fi←j(a1, . . . , an) = f(a1, . . . , ai−1, aj , ai+1, . . . , an),

for all a1, . . . , an ∈ A, is called an identification minor of f , obtained by substituting
xj for xi. Note that aj occurs twice on the right-hand side of the above equality while
ai does not appear at all. Thus, xi is necessarily inessential in fi←j .

The simple minor relation ≤ is a quasiorder on FAB . As for quasiorders, ≤ induces
an equivalence relation ≡ on FAB . If f ≡ g, then we say that f and g are equivalent.
(Informally, f and g are equivalent, if each of f and g can be obtained from the other
by permutation of variables, addition of inessential variables, and deletion of inessential
variables.)

Remark 2.1. If f ≡ g, then ess f = ess g. Every nonconstant function is equivalent
to a function that depends on all of its variables.

If g ≤ f but f 6≡ g, then we write g < f and say that g is a strict minor of f . If
g < f but there is no h such that g < h < f , then we say that g is a lower cover of f
and denote this fact by g ≺ f .
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Remark 2.2. It was shown in [2] that the lower covers of any function f : An → B
have the same essential arity when A = B = {0, 1}. The proof of this fact given in [2]
actually shows that this claim is true whenever |A| = 2 and |B| ≥ 2. However, this is
not the case when |A| > 2, as the following example illustrates.

Example 2.3. Let A be a set with at least three elements, let B be a set with at least
two elements, and assume that 0 and 1 are distinct elements of B. Let ν : A2 → B be
the inequality predicate

ν(x, y) =

{

1, if x 6= y,

0, if x = y,

and let ∧ : B2 → B and ∨ : B2 → B be arbitrary extensions of the Boolean conjunction
and disjunction to B (i.e., arbitrary binary operations on B satisfying 0 ∧ 0 = 0 ∧ 1 =
1 ∧ 0 = 0, 1 ∧ 1 = 1, 0 ∨ 0 = 0, 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1). Consider the function
f : A4 → B defined by

f(x1, x2, x3, x4) := ν(x1, x2) ∨
∧

1≤i<j≤4
(i,j) 6=(1,2)

ν(xi, xj).

It is easy to see that fi←j = ν(x1, x2) for 1 ≤ i < j ≤ 4, (i, j) 6= (1, 2), and

f1←2 =
∧

2≤i<j≤4

ν(xi, xj).

Furthermore, ess f = 4, ess f1←2 = 3, ess fi←j = 2, and f1←2 6≤ fi←j 6≤ f1←2, for every
1 ≤ i < j ≤ 4, (i, j) 6= (1, 2). Hence, f has two lower covers of different essential arities.

For background on the simple minor relation and its variants, see [3, 9, 10, 11, 12,
15, 17].

We say that f is totally symmetric, if for all permutations π of [n] the identity
f(a1, . . . , an) = f(aπ(1), . . . , aπ(n)) holds for all a1, . . . , an ∈ A. Observe that a totally
symmetric function depends on either all or none of its variables.

Fact 2.4. If f : An → B is totally symmetric, then for all i, j, i′, j′ ∈ [n] (i 6= j, i′ 6= j′),
fi←j ≡ fi′←j′ . Therefore, if f is nonconstant, then for all distinct i, j ∈ [n], fi←j is,
up to equivalence, the unique lower cover of f .

2.2. Functions determined by supp and oddsupp. Following Berman and Kisiele-
wicz [1], we define supp:

⋃

n≥1A
n → P(A) and oddsupp:

⋃

n≥1A
n → P(A) as

supp(a1, . . . , an) := {a1, . . . , an},

oddsupp(a1, . . . , an) := {a ∈ A : |{i ∈ [n] : ai = a}| is odd}.

We say that f : An → B is determined by supp (respectively, determined by oddsupp),
if there exists a function ϕ : P(A) → B such that f = ϕ ◦ supp |An (respectively,
f = ϕ ◦ oddsupp |An). Note that every function determined by supp or oddsupp is
totally symmetric; hence such a function either depends on all of its variables or on
none of them. However, not every totally symmetric function is determined by supp or
oddsupp.

Remark 2.5. For any positive integer n, let us define the following subsets of P(A):

P≤n(A) := {S ⊆ A : 1 ≤ |S| ≤ n},

P ′≤n(A) := {S ⊆ A : |S| ∈ {n, n− 2, . . . }}.

Clearly, {supp(x) : x ∈ An} = P≤n(A), therefore the restriction of ϕ : P(A) → B
to P≤n(A) uniquely determines the function ϕ ◦ supp |An , and vice versa. Similarly,
we have {oddsupp(x) : x ∈ An} = P ′≤n(A), and consequently there is a one-to-one
correspondence between functions f : An → B determined by oddsupp and maps
ϕ : P ′≤n(A) → B. In particular, ϕ ◦ supp |An (resp. ϕ ◦ oddsupp |An) is constant if

and only if ϕ|P≤n(A) (resp. ϕ|P′
≤n

(A)) is constant, and has essential arity n otherwise.
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Example 2.6. Every constant function and every unary function is determined by
both supp and oddsupp. Furthermore, for each 2 ≤ n ≤ |A|, there are nonconstant
functions f : An → B that are determined by both supp and oddsupp. For instance,
let a and b be distinct elements of B and define f : An → B by the rule

f(a1, . . . , an) :=

{

a if ai 6= aj for all i 6= j,

b otherwise.

It is easy to see that f = φ ◦ supp |An = φ ◦ oddsupp |An , where φ : P(A) → B is the
map

φ(S) :=

{

a if |S| = n,

b otherwise.

Our next result shows that, in fact, such nontrivial examples of functions determined
by both supp and oddsupp can only be found among functions with small arities.

Proposition 2.7. If n > |A|, then f : An → B is determined by both supp and oddsupp
if and only if f is a constant function.

Proof. The condition is clearly sufficient: as noted in Example 2.6, every constant
function is determined by both supp and oddsupp.

For necessity, assume that f is determined by both supp and oddsupp. Then there
exist maps ϕ,ψ : P(A) → B such that f = ϕ ◦ supp |An = ψ ◦ oddsupp |An . We will
prove that for every S ⊆ A (|S| ≥ 2), t ∈ S, it holds that ϕ(S) = ϕ(S \ {t}). A simple
inductive argument then shows that the restriction of ϕ to P(A)\{∅} is constant, which
implies that f is constant, as claimed.

Thus, let S ⊆ A, |S| = s ≥ 2, say S = {a1, . . . , as}, as = t. Since |S| ≤ |A| < n,
there exists an injective map h : S → [n]. We will define tuples b, c ∈ An; the definition
depends on the parity of n− |S|:

• If n− |S| is odd, then for each j ∈ [n], let

bj :=

{

ai if h(ai) = j,

as otherwise,
cj :=

{

ai if h(ai) = j, i 6= s,

as−1 otherwise.

Since n − |S| is odd, b has an even number of occurrences of as, and c has an odd
number of occurrences of as−1. Therefore supp(b) = S, supp(c) = oddsupp(b) =
oddsupp(c) = S \ {as}.

• If n− |S| is even, then for each j ∈ [n], let

bj :=











ai if h(ai) = j, i 6= s,

as−1 if h(as) = j,

as otherwise,

cj :=

{

ai if h(ai) = j, i 6= s,

as−1 otherwise.

Since n−|S| is even, b has two occurrences of as−1 and an even number of occurrences
of as, and c has an even number of occurrences of as−1. Therefore supp(b) = S,
supp(c) = S \ {as}, oddsupp(b) = oddsupp(c) = S \ {as−1, as}.

Our choice of b and c yields

ϕ ◦ supp(b) = f(b) = ψ ◦ oddsupp(b) = ψ ◦ oddsupp(c) = f(c) = ϕ ◦ supp(c),

that is, ϕ(S) = ϕ(S \ {as}). This completes the proof of the proposition. �

As it will become clear from Propositions 2.8 and 2.11 below, if a nonconstant
function f is determined by oddsupp (supp, respectively) then every simple minor of f
is equivalent to a function that is determined by oddsupp (supp, respectively).

Proposition 2.8. Let A and B be finite nonempty sets, and let k := |A|. If f : An → B
is a nonconstant function determined by oddsupp, then the simple minors of f form a
chain

f = fn ≻ fn−2 ≻ · · · ≻ fn−2t−2 ≻ fn−2t

of length t such that ess fn−2i = n−2i for all i < t. Moreover, we either have ess fn−2t =
1 and t = n−1

2 or ess fn−2t = 0 and
⌈

n−k
2

⌉

< t ≤
⌊

n
2

⌋

.



PARAMETRIZED ARITY GAP 5

Proof. Let us assume that f = ϕ ◦ oddsupp |An for some ϕ : P(A) → B. Since f is
totally symmetric, it has a unique lower cover, namely the (n − 2)-ary function fn−2
given by fn−2 = ϕ ◦ oddsupp |An−2 . We see that fn−2 is also determined by oddsupp,
hence we can repeat this argument, and we conclude that the simple minors of f form
a chain as stated in the theorem. It is obvious that the length of this chain is t ≤

⌊

n
2

⌋

.
As every function in this chain is totally symmetric, the essential arity of fn−2i is either
n−2i or 0 for all i ≤ t. Clearly, only the last element of the chain can be constant, i.e.,
ess fn−2i = n−2i for i < t. Moreover, fn−2t has no proper simple minor, therefore it is
essentially at most unary. If ess fn−2t = 1, then n− 2t = 1, thus t = n−1

2 , as claimed.
Now let us assume that ess fn−2t = 0. By Remark 2.5, fn−2i is not constant if and

only if the restriction of ϕ to P ′≤n−2i(A) is not constant. Since f is not constant, and

P ′≤n(A) = P ′≤n−2i(A) whenever n− 2i+ 2 > k, we have that fn−2i is not constant for

all i ≤
⌈

n−k
2

⌉

. As fn−2t is constant by our assumption, it follows that t >
⌈

n−k
2

⌉

. �

In the following two examples we construct for all possible values of k, n and t
a function determined by oddsupp whose simple minors form a chain as stated in
Proposition 2.8, thereby showing that this result cannot be sharpened.

Example 2.9. Let k, n, t be positive integers such that k ≥ 2 and
⌈

n−k
2

⌉

< t ≤
⌊

n
2

⌋

.
Then s := n−2t+2 satisfies the inequalities 2 ≤ s ≤ k. Let A be a set with k elements,
let B be a set with at least two elements, and let us define ϕ : P(A) → B by

ϕ(S) :=

{

1 if |S| ≥ s,

0 if |S| < s,

where 0 and 1 denote two distinct elements ofB. For every 0 ≤ i ≤ t, let fn−2i : A
n−2i →

B be the function determined by oddsupp via ϕ, i.e., let fn−2i = ϕ ◦ oddsupp |An−2i . It
is straightforward to verify with the help of Remark 2.5 that fn−2t = fs−2 is constant,
and that ess fn−2i = n−2i if i < t. Moreover, for i < t, the unique lower cover of fn−2i
is fn−2i−2. Thus the simple minors of fn form a chain exactly as in (the second case
of) Proposition 2.8.

Example 2.10. Let k, n, t be positive integers such that k ≥ 2 and t = n−1
2 . Let A be

a set with k elements, let B be a set with at least two elements, and let ϕ : P(A) → B
be any function that is not constant on singletons, i.e., there exist a1, a2 ∈ A such
that ϕ({a1}) 6= ϕ({a2}). For every odd number r, let fr : A

r → B be the function
determined by oddsupp via ϕ, i.e., let fr = ϕ ◦ oddsupp |Ar . Then fr is not constant,
hence ess fr = r, and the unique lower cover of fr is fr−2. Thus the simple minors of
fn form a chain exactly as in (the first case of) Proposition 2.8.

Reasoning as above, by making use of Remark 2.5, we have the following analogue
of Proposition 2.8.

Proposition 2.11. Let A and B be finite nonempty sets, and let k := |A|. If f : An →
B is a nonconstant function determined by supp, then the simple minors of f form a
chain

f = fn ≻ fn−1 ≻ · · · ≻ fn−t+1 ≻ fn−t

of length t such that ess fn−i = n−i for all i < t. Moreover, we either have ess fn−t = 1
and t = n− 1, or ess fn−t = 0 and n− k < t < n.

As for functions determined by oddsupp, we can find functions which fall into each
of the two possible cases provided in Proposition 2.11.

2.3. Arity gap. Let f : An → B be a function that depends on at least two variables,
i.e., ess f ≥ 2. The arity gap of f , denoted gap f , is defined as

gap f := min
i,j∈Ess f
i6=j

(ess f − ess fi←j).
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While fi←j is not necessarily a lower cover of f in the simple minor quasiorder, every
lower cover of f is of the form fi←j . Therefore, we could define the arity gap of f in
an equivalent way as

gap f := min
g≺f

(ess f − ess g).

Whenever we consider the arity gap of a function f : An → B, we may assume, without
loss of generality, that f depends on all of its variables (see Remark 2.1).

As made apparent by Willard [16], the notion of arity gap is tightly related to deter-
minability by supp and oddsupp. The following corollaries are immediate consequences
of Propositions 2.8 and 2.11.

Corollary 2.12. If f : An → B is determined by oddsupp, n > |A|, and f is noncon-
stant, then gap f = 2.

Corollary 2.13. If f : An → B is determined by supp, n > |A|, and f is nonconstant,
then gap f = 1.

We now recall a few noteworthy results about the arity gap. These appear as
Lemma 1.2, Lemma 2.2, Corollary 2.3, and Corollary 2.7 in Willard’s paper [16].

Theorem 2.14 (Willard [16]). Let A and B be finite nonempty sets, and let k := |A|.
Suppose that f : An → B depends on all of its variables. If n > k, then gap f ≤ 2.
Moreover, if n > max(k, 3), then gap f = 2 if and only if f is determined by oddsupp.

Lemma 2.15 (Willard [16]). Let A and B be finite nonempty sets, and let k := |A|.
Suppose that f : An → B depends on all of its variables.

(1) If n > 2, gap f = 1, f is totally symmetric, and for any distinct i, j ∈ [n], fi←j
is equivalent to a totally symmetric function, then f is determined by supp.

(2) If f is determined by supp, then fi←j is equivalent to a function determined by
supp for any distinct i, j ∈ [n]. Moreover, if n > k, then fi←j is nonconstant.

(3) If n ≥ max(k, 3) + 2 and f is not totally symmetric, then there exist distinct
i, j ∈ [n] such that fi←j depends on n − 1 variables and is not equivalent to a
totally symmetric function.

The following theorem will play an important role in the next section.

Theorem 2.16. Let A and B be finite nonempty sets, and let k := |A|. Suppose that
f : An → B depends on all of its variables.

(1) If n ≥ max(k, 3) + 1 and gap f = 2, then for all g < f with ess g > k, it holds
that gap g = 2.

(2) If n ≥ max(k, 3)+2 and gap f = 1, then there exists a g ≺ f such that gap g = 1
and ess g = n− 1.

Proof. For (1), observe that Theorem 2.14 and the assumption gap f = 2 imply that f
is determined by oddsupp. Hence, by Proposition 2.8, g is also determined by oddsupp.
By Corollary 2.12, gap g = 2.

For (2), observe that Theorem 2.14 and the assumption gap f = 1 imply that f
is not determined by oddsupp. If f is not totally symmetric, then the claim holds
by Lemma 2.15 (3) and Theorem 2.14. Therefore we may assume that f is totally
symmetric. By Fact 2.4, f has a unique lower cover g, and ess g = ess f − 1. If g is
not totally symmetric, then it is not determined by oddsupp, and by Theorem 2.14,
gap g = 1. If g is totally symmetric, then Lemma 2.15 (1) implies that f is determined
by supp. By Lemma 2.15 (2), g is determined by supp. By Proposition 2.7, g is not
determined by oddsupp, from which it follows that gap g = 1 by Theorem 2.14. �

3. Parametrized arity gap

In this section we are interested in the following parametrized version of arity gap
which measures the minimum decrease in the essential arity when we take ℓ ≥ 0 steps
downwards in the simple minor partial order:

(3.1) gap(f, ℓ) := min
g∈↓ℓf

(ess f − ess g),
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where ↓0f := {g ∈ FAB : g ≡ f} and, for ℓ > 0,

↓ℓf := {g ∈ FAB | ∃f1, . . . , fℓ−1 : f ≻ f1 ≻ · · · ≻ fℓ−1 ≻ g}.

Note that gap(f, ℓ) is defined only if there exists a chain of length ℓ below f , and in
this case ℓ ≤ gap(f, ℓ) ≤ ess f . The arity gap (as defined in Section 2.3) corresponds
to the case ℓ = 1: we have gap(f, 1) = gap f for every function f . Observe also that
gap(f, 0) = 0 for every function f .

We saw in Section 2.1 that taking a strict minor of a function f requires the identi-
fication of at least one pair of essential variables of f ; otherwise, the minors we obtain
are equivalent to f . This means that gap(f, ℓ) can be computed by sequentially iden-
tifying a pair of essential variables ℓ times in all possible ways, starting from f , and
then determining the sequence of ℓ identifications which results in the minimum loss of
essential variables.

Remark 3.1. It is worth stressing the fact that the identification of variables is per-
formed sequentially, and at each step only one pair of essential variables is identified;
otherwise, ambiguities could occur since a priori we do not know which essential vari-
ables become inessential after a pair is identified.

We mentioned in Section 2.3 that not every identification minor fi←j is a lower cover
of f , and if fi←j is not a lower cover of f , then gap f < ess f − ess fi←j . Moreover,
it can be the case that f has two lower covers f1 and f2 such that ess f1 < ess f2,
and again we would conclude that gap f < ess f − ess f1. Hence, one might be led to
thinking that in order to compute gap(f, ℓ) it suffices to choose at each recursion step
an identification which results in the minimum loss of essential variables. However, as
the following example illustrates, this is not true.

Example 3.2. Let A be the 5-element field and consider the polynomial function
f : A6 → A defined by:

f(x1, x2, x3, x4, x5, x6) := (x1 − x2)(x5 − x6) +
∏

1≤i<j≤6
(i,j) 6=(5,6)

(xi − xj).

It is easy to verify that ess f = 6, f1←2 ≡ 0, and that f has, up to equivalence, two
lower covers, namely,

f3←1 = (x1 − x2) · (x5 − x6),

f6←5 =
∏

1≤i<j≤4

(xi − xj) ·
∏

1≤i≤4

(xi − x5)
2.

Figure 1 presents the Hasse diagram of the principal ideal generated by the equivalence
class of f in the simple minor poset. The label of each edge g ≺ h is the number
essh− ess g. We use the following notation for the simple minors of f :

q1 =
∏

1≤i<j≤4

(xi − xj) ·
∏

1≤i≤4

(xi − x5)
2, q2 = (x1 − x2) · (x3 − x4),

q3 = (x1 − x2) · (x1 − x3), q4 = (x1 − x2) · (x2 − x3),

q5 = (x1 − x2)
2, q6 = −(x1 − x2)

2.

Now if we would choose as our first identification the pair {5, 6}, then any other identi-
fication of essential variables results in the loss of all the remaining essential variables.
In other words, any downward path in Figure 1 which starts from f and passes through
q1 has length 2, and along it we first lose 1 and then 5 essential variables. However, the
downward paths that start from f and pass through q2 have length 4, and along them
we lose 2, 1, 1, and then 2 essential variables. This shows that, in order to compute
gap(f, 1) as in (3.1), the minimum value is attained at the lower cover q1, whereas, for
2 ≤ ℓ ≤ 4, we need to pass through q2 for computing gap(f, ℓ). Hence, gap(f, 0) = 0,
gap(f, 1) = 1, gap(f, 2) = 3, gap(f, 3) = 4, and gap(f, 4) = 6.
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Figure 1. The simple minors of the function f given in Example 3.2.

The following recursion formula is an immediate consequence of the definition:

(3.2) gap(f, ℓ) = min
g≺f

(ess f − ess g + gap(g, ℓ− 1)).

Theorem 3.3. Let A and B be finite nonempty sets, and let k := |A|. Let f : An → B,
ess f = n and gap f = 1. If 1 ≤ ℓ ≤ n−max(k, 3), then gap(f, ℓ) = ℓ.

Proof. We prove the theorem by induction on ℓ. If ℓ = 1, then gap(f, ℓ) = gap f = 1.
If ℓ ≥ 2 then n ≥ max(k, 3) + 2, hence by Theorem 2.16, f has a lower cover g with
ess g = n − 1 and gap g = 1. Since 1 ≤ ℓ − 1 ≤ ess g − max(k, 3), we can apply the
induction hypothesis to obtain gap(g, ℓ− 1) = ℓ− 1. From (3.2) it follows that

gap(f, ℓ) ≤ ess f − ess g + gap(g, ℓ− 1) = n− (n− 1) + (ℓ− 1) = ℓ.

On the other hand we have the trivial inequality gap(f, ℓ) ≥ ℓ, and therefore gap(f, ℓ) =
ℓ. �

Informally, the above theorem means that if gap f = 1, then we can walk down
from f in the simple minor quasiorder in such a way that in each step we lose only one
essential variable, provided that the walk is not too long. The next result asserts that if
we consider arbitrarily long walks, then we can lose any number of essential variables.
More precisely, for each 2 ≤ ℓ ≤ q ≤ n we can find a function f with ess f = n,
gap f = 1 and gap(f, ℓ) = q.

Theorem 3.4. For every 2 ≤ ℓ ≤ q ≤ n, there exist sets A and B and a function
f : An → B such that ess f = n, gap f = 1, gap(f, ℓ) = q, |A| < n.

Proof. Let p := n − q, k := n + 1 − ℓ, A := [k], B := [3], and for k ≤ m ≤ n, define
fm : Am → B as

fm(x1, . . . , xm) =











1, if xk = xk+1 = · · · = xm and supp(x) = A,

2, if x1 = · · · = xp = 2 and supp(x) ⊂ A,

3, otherwise.

We are going to prove that gap(fn, ℓ) = q.

Claim 3.4.1. For k ≤ m ≤ n, the function fm depends on all of its variables.

Proof of Claim 3.4.1 Let x = (1, 2, . . . , k, k, . . . , k) ∈ Am. Then fm(x) = 1, and it is
easy to verify that if any coordinate of x is changed, the value of f will change. ⋄

Claim 3.4.2. If m > k, then fm−1 ≺ fm.

Proof of Claim 3.4.2 Clearly fm−1(x1, . . . , xm−1) = fm(x1, . . . , xm−1, xm−1), so fm−1 ≤
fm. Since ess fm−1 = m−1 and ess fm = m by Claim 3.4.1, fm−1 is necessarily a lower
cover of fm. ⋄
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Claim 3.4.3. fk has a unique lower cover u : Ap → B, and essu = p.

Proof of Claim 3.4.3 Let g = (fk)i←j ; we may assume without loss of generality that
j < i. Then

g(x1, . . . , xk) = fk(x1, . . . , xi−1, xj , xi+1, . . . , xk).

Since supp(x1, . . . , xi−1, xj , xi+1, . . . , xk) ⊂ A, we have that, if i > p,

g(x1, . . . , xk) =

{

2, if x1 = · · · = xp = 2,

3, otherwise,

and if i ≤ p,

g(x1, . . . , xk) =

{

2, if x1 = · · · = xi−1 = xi+1 = · · · = xp = 2,

3, otherwise.

In the former case, g is equivalent to the function u : Ap → B,

u(x1, . . . , xp) =

{

2, if x1 = · · · = xp = 2,

3, otherwise,

and in the latter case g is equivalent to the function u′ : Ap−1 → B,

u′(x1, . . . , xp−1) =

{

2, if x1 = · · · = xp−1 = 2,

3, otherwise.

It clearly holds that u′ < u, and we conclude that u is the unique lower cover of fk. ⋄

Claim 3.4.4. If v < f and ess v = t ≤ k − 1, then v ≤ u.

Proof of Claim 3.4.4 There exists σ : [n] → [t] such that

v(x1, . . . , xt) = f(xσ(1), . . . , xσ(n)).

Since supp(xσ(1), . . . , xσ(n)) ⊂ A, we have

f(xσ(1), . . . , xσ(n)) = u(xσ(1), . . . , xσ(p)).

Hence v ≤ u. ⋄
By Claims 3.4.2 and 3.4.3, we have fn ≻ fn−1 ≻ · · · ≻ fk+1 ≻ fk ≻ u. Since

n− k + 1 = ℓ and ess fn − essu = n− p = q, it holds that gap(fn, ℓ) ≤ q. Suppose, on
the contrary, that gap(fn, ℓ) < q. Then there exists a chain fn ≻ g1 ≻ g2 ≻ · · · ≻ gℓ
such that ess fn−ess gℓ < q. Clearly ess fn−ess gℓ ≥ ℓ, that is ess gℓ ≤ ess fn−ℓ = n−ℓ =
k − 1. By Claim 3.4.4, gℓ ≤ u, whence ess gℓ ≤ essu = p = n− q = ess fn − q < ess gℓ.
We have reached a contradiction that completes the proof of the theorem. �

Next we consider the analogue of Theorem 3.3 for the case gap f = 2.

Theorem 3.5. Let A and B be finite nonempty sets, and let k := |A|. Let f : An → B,
ess f = n and gap f = 2. If 1 ≤ ℓ ≤

⌈

n−k
2

⌉

, then gap(f, ℓ) = 2ℓ.

Proof. If ℓ = 1, then gap(f, ℓ) = gap f = 2 = 2ℓ. If ℓ ≥ 2 then n ≥ k + 3 ≥
max(k, 3)+2. Hence by Theorem 2.14 f is determined by oddsupp. The theorem then
follows immediately from Proposition 2.8. �

Our last result shows that for almost every integer sequence 0 = n0 < n1 < n2 <
· · · < nr ≤ n, we can construct a function f : An → B whose parametrized arity gap
meets every member of the sequence. We only need to assume that nr−1 6= n − 1,
because no function has both an essentially unary function and a constant function as
its simple minors.

Theorem 3.6. Let A be a finite set with k elements and let B be a set with at least
two elements. Let 2 ≤ n ≤ k, 1 ≤ r ≤ n − 1, 0 = n0 < n1 < n2 < · · · < nr ≤ n such
that n− 1 ≤ nr ≤ n and nr−1 6= n− 1. Then there exists a function f : An → B such
that gap(f, ℓ) = nℓ for every 0 ≤ ℓ ≤ r.
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Proof. We can assume that the codomain B has a group structure, and 0 is the neu-
tral element of the group operation + on B. We will define recursively functions
fi : A

n−ni → B, 0 ≤ i ≤ r, such that f0 ≻ f1 ≻ · · · ≻ fr and ess fi = n − ni for all
0 ≤ i ≤ r.

If nr = n− 1, then let fr : A → B be an arbitrary nonconstant function. If nr = n,
then let fr : A→ B be an arbitrary constant function. Assume that fi+1 : A

n−ni+1 → B
has been defined (0 ≤ i < r). Define fi : A

n−ni → B as follows. Let gi : A
n−ni → B

be a function equivalent to fi+1, i.e., gi is obtained from fi+1 by adding ni+1 − ni
inessential variables. Let hi : A

n−ni → B be an arbitrary nonconstant function such
that hi(a1, . . . , an−ni

) = 0 whenever aj = aj′ for some j 6= j′. Set fi := gi + hi. It is
easy to verify that fi depends on all of its variables. Moreover, the strict simple minors
of fi are precisely the simple minors of fi+1 (including fi+1 itself). Therefore fi+1 is
the unique lower cover of fi.

Setting f := f0, we have that the simple minors of f are precisely the functions
f, f1, . . . , fr, and they comprise a covering sequence f ≻ f1 ≻ f2 ≻ · · · ≻ fr. Since
ess fℓ = n− nℓ, we conclude that gap(f, ℓ) = nℓ for every 0 ≤ ℓ ≤ r, as desired. �

4. Concluding remarks

The parametrized arity gap constitutes a tool for tackling yet another natural prob-
lem pertaining to the effect of variable identification on the number of essential variables
of a function. Given a function f : An → B and an integer p ≥ 1, what is the smallest
number m such that any m successive identifications of essential variables result in the
loss of at least p essential variables? Let us denote this smallest number by pag(f, p).
As the reader may now realise, pag(f, p) is the smallest ℓ for which gap(f, ℓ) ≥ p.

Example 4.1. Consider the 6-ary function f of Example 3.2. We can read off of
Figure 1 that

pag(f, 1) = 1, pag(f, 2) = 2, pag(f, 3) = 2,

pag(f, 4) = 3, pag(f, 5) = 4, pag(f, 6) = 4.

We may also consider similar problems when we perform several simultaneous iden-
tifications of variables. Following the formalism of Willard [16], we view functions of
several variables as maps f : AV → B, where V ⊆ {xi : i ∈ N}. The cardinality of V is
called the arity of f . In this framework, a function g : AW → B is a simple minor of
f : AV → B, if there exists a map α : V →W such that g(a) = f(a ◦α) for all a ∈ AW .

We denote the set of all equivalence relations on a set V by Eq(V ). Given an
equivalence relation θ ∈ Eq(V ), denote the canonical surjection by vθ : V → V/θ. For a
function f : AV → B, we define the function fθ : AV/θ → B by the rule fθ(a) = f(a◦vθ),
and we say that fθ is obtained from f by block identification of variables through θ. We
informally identify V/θ with any one of its distinct representatives; in this way fθ is a
simple minor of f , and every simple minor of f is equivalent to fψ for some ψ ∈ Eq(V ).
The number of variables identified through θ is

e(θ) :=
∑

X∈V/θ

(|X| − 1) = |V | − |V/θ|.

Assuming that f depends on all of its variables, i.e., ess f = |V |, we have that ess fθ ≤
|V/θ| = |V | − e(θ) = ess f − e(θ).

Now we can define the analogue of the parametrized arity gap for block identification
of variables. For a function f : AV → B with ess f = |V | = n and for an integer ℓ such
that 0 ≤ ℓ ≤ n− 1, we define

b-gap(f, ℓ) := min
θ∈Eq(V )
e(θ)=ℓ

(ess f − ess fθ).

Note that b-gap(f, 0) = 0 and b-gap(f, 1) = gap f for every function f . It is also clear
that ℓ ≤ b-gap(f, ℓ) ≤ n for every 0 ≤ ℓ ≤ n− 1, and b-gap(f, ℓ) ≤ gap(f, ℓ) for every
ℓ for which gap(f, ℓ) is defined.
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Let H(f) := {ess f − ess g : g ≤ f}. It is clear that {b-gap(f, ℓ) : 0 ≤ ℓ ≤ n − 1} ⊆
H(f).

Proposition 4.2. Let f : AV → B be a function such that ess f = |V | = n. Then
b-gap(f, ℓ) = min{m ∈ H(f) : m ≥ ℓ}, for all 0 ≤ ℓ ≤ n− 1.

Proof. Let ℓ ∈ {0, . . . , n − 1}. Assume first that ℓ ∈ H(f). Then there exists an
equivalence relation θ ∈ Eq(V ) such that ess fθ = n− ℓ. It clearly holds that e(θ) ≤ ℓ.
We can construct an equivalence relation ζ ∈ Eq(V ) such that e(ζ) = ℓ and fζ ≡ fθ.
Namely, we merge the blocks of θ that are indexing the inessential variables of fθ,
if any, and we merge the resulting block with another block of θ. We leave it for
the reader to verify that ζ indeed satisfies e(ζ) = ℓ and fζ ≡ fθ. This construction
shows that b-gap(f, ℓ) ≤ ℓ. On the other hand, b-gap(f, ℓ) ≥ ℓ, so we conclude that
b-gap(f, ℓ) = ℓ = min{m ∈ H(f) : m ≥ ℓ}.

Assume then that ℓ /∈ H(f). Since ℓ ≤ b-gap(f, ℓ) ∈ H(f), we have in fact that
ℓ < b-gap(f, ℓ); moreover, b-gap(f, ℓ) ≥ t for t := min{m ∈ H(f) : m ≥ ℓ}. Since
b-gap(f, ·) is a monotone increasing function in its second argument, and b-gap(f, t) = t
by the first part of this proof, we have

t ≤ b-gap(f, ℓ) ≤ b-gap(f, t) = t,

that is, b-gap(f, ℓ) = t = min{m ∈ H(f) : m ≥ ℓ}. �

Example 4.3. Consider the 6-ary function f of Example 3.2. We can read off of
Figure 1 that H(f) = {0, 1, 2, 3, 4, 6} and

b-gap(f, 1) = 1, b-gap(f, 2) = 2, b-gap(f, 3) = 3,

b-gap(f, 4) = 4, b-gap(f, 5) = 6.

We can still consider an analogue of the problem stated in the first paragraph of
this section. Given a function f : AV → B that depends on all of its variables and an
integer p ≥ 1, what is the smallest number m such that block identification of variables
of f through every equivalence relation θ on V with e(θ) = m results in the loss of
at least p essential variables? Let us denote this smallest number by b-pag(f, p). It is
again clear that b-pag(f, p) is the smallest ℓ for which b-gap(f, ℓ) ≥ p. In other words,
b-pag(f, 0) = 0 and b-pag(f, p) = max{m ∈ H(f) : m < p}+ 1 for 1 ≤ p ≤ n.

Example 4.4. Consider the 6-ary function f of Example 3.2. We can determine from
the values of b-gap(f, ℓ) listed in Example 4.3, or we can easily read off of Figure 1 that

b-pag(f, 1) = 1, b-pag(f, 2) = 2, b-pag(f, 3) = 3,

b-pag(f, 4) = 4, b-pag(f, 5) = 5, b-pag(f, 6) = 5.
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