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ADDITIVE DECOMPOSABILITY OF FUNCTIONS

OVER ABELIAN GROUPS

MIGUEL COUCEIRO, ERKKO LEHTONEN, AND TAMÁS WALDHAUSER

Abstract. Abelian groups are classified by the existence of certain additive decom-

positions of group-valued functions of several variables.

1. Introduction

The problem of expressing functions of several variables in terms of a finite number
of functions with fewer variables has been addressed in various ways in the literature.
Perhaps one of the most famous incarnations of this general problem is Hilbert’s 13th
problem dealing with 7th-degree equations, which leads to the question whether continu-
ous real functions of several variables can be expressed as a superposition of finitely many
continuous functions with fewer variables. Affirmative answers were provided in the works
by Kolmogorov [20] and Arnol’d [1, 2], which led into Kolmogorov’s Superposition Theo-
rem [21] that asserts, roughly speaking, that every continuous real function of two or more
variables can be written as finite sums and superpositions of continuous real functions of
just one variable.

In this paper we consider yet another instance of this general problem. We study
additive decompositions of functions f : An → B into sums of functions depending on
fewer than n variables, assuming that A is an arbitrary set and B is an abelian group (not
necessarily the real numbers). We show that such a decomposition exists for all functions
f : An → B determined by oddsupp (see Section 2.2) if and only if A is finite and the
exponent of B is a power of 2. In the case that the exponent of B is 2e, every function
f : An → B determined by oddsupp is decomposable into a sum of functions depending on
at most |A|+e−2 variables. (Note that this bound depends only on A and B.) Moreover,
there exists such a decomposition where the summands are obtained from f by substitution
of constants for variables. This generalizes and improves on Theorem 5.2 in [10] whereby
functions f : An → B determined by oddsupp and valued on a Boolean group B were
decomposed into sums of functions depending on at most n − 2 variables. Functions
determined by oddsupp arise in a natural way in the study of sequences 〈pn(C)〉n<ω,
where pn(C) denotes the number of n-ary operations of a clone C which depend on all of
their variables (see [3, 18, 30]). Later, it was shown that determinability by oddsupp is
also tightly related to the notion of arity gap, or the effect of identification of variables
on the number of essential variables of functions of several variables (see Sections 2.1
and 2.2).

2. Preliminaries

2.1. Functions, essential variables, the arity gap. Throughout this paper, let A and
B be arbitrary sets with at least two elements. A function (of several variables) from A
to B is a mapping f : An → B, for some integer n ≥ 1 called the arity of f . Functions of
several variables from A to A are referred to as operations on A.

For an integer n ≥ 1, let [n] := {1, . . . , n}. Let f : An → B, and let i ∈ [n]. We
say that the i-th variable is essential in f (or f depends on xi), if there exist elements

2010 Mathematics Subject Classification. 08A40, 05E15.
Key words and phrases. Abelian group; Boolean group; group-valued function; arity gap; additive

decomposition; discrete derivative.

1

http://dx.doi.org/10.1142/S0218196713500136


2 M. COUCEIRO, E. LEHTONEN, AND T. WALDHAUSER

a1, . . . , an, a
′
i ∈ A such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

Variables that are not essential are called inessential. The cardinality of the set Ess f :=
{i ∈ [n] : xi is essential in f} is called the essential arity of f and is denoted by ess f .

Let f : An → B, g : Am → B. We say that g is a simple minor of f , if there is a
map σ : [n]→ [m] such that g(x1, . . . , xm) = f(xσ(1), . . . , xσ(n)). We say that f and g are
equivalent if each one is a simple minor of the other.

For i, j ∈ [n], i 6= j, define the identification minor of f : An → B obtained by identify-
ing the i-th and the j-th variable as the simple minor fi←j : An → B of f corresponding
to the map σ : [n]→ [n], i 7→ j, ` 7→ ` for ` 6= i, i.e., fi←j is given by the rule

fi←j(x1, . . . , xn) := f(x1, . . . , xi−1, xj , xi+1, . . . , xn).

Observe that a function g is a simple minor of f , if g can be obtained from f by
permutation of variables, addition and deletion of inessential variables and identification
of variables. Similarly, two functions are equivalent, if one can be obtained from the other
by permutation of variables and addition of inessential variables.

The arity gap of f is defined as

gap f := min
i,j∈Ess f
i6=j

(ess f − ess fi←j).

Note that the definition of arity gap makes reference to essential variables only. Hence,
in order to determine the arity gap of a function f , we may consider instead an equivalent
function f ′ that is obtained from f by deleting its inessential variables. It is easy to see
that in this case gap f = gap f ′. Therefore, we may assume without loss of generality that
every function the arity gap of which we may consider depends on all of its variables.

For general background and studies on the dependence of functions on their variables,
see, e.g., [5, 6, 12, 13, 14, 25, 27, 29, 31]. For the simple minor relation and its variants,
see, e.g., [4, 11, 15, 16, 19, 22, 23, 24, 28, 32]. The notion of arity gap was considered
in [7, 8, 9, 10, 25, 30], and a general classification of functions according to their arity
gap was established in [8], given in terms of the notions of quasi-arity and determina-
tion by oddsupp. The following explicit complete classification of Boolean functions was
established in [7].

Theorem 1. Let f : {0, 1}n → {0, 1} be a Boolean function with at least two essential
variables. Then gap f = 2 if and only if f is equivalent to one of the following polynomial
functions over GF(2):

• x1 + x2 + · · ·+ xm + c for some m ≥ 2,
• x1x2 + x1 + c,
• x1x2 + x1x3 + x2x3 + c,
• x1x2 + x1x3 + x2x3 + x1 + x2 + c,

where c ∈ {0, 1}. Otherwise gap f = 1.

2.2. Functions determined by oddsupp. We will denote tuples by boldface letters and
their components by the corresponding italic letters with subscripts, e.g., x = (x1, . . . , xn) ∈
An. For I ⊆ [n] and x ∈ An, let x|I ∈ AI stand for the tuple that is obtained from x by
deleting the i-th component of x for every i /∈ I. More precisely, if I = {i1, . . . , ik} and
i1 < · · · < ik, then x|I = (xi1 , . . . , xik).

Berman and Kisielewicz [3] introduced the following notion of a function’s being de-
termined by oddsupp. Denote by P(A) the power set of A, and define the function
oddsupp:

⋃
n≥1A

n → P(A) by

oddsupp(a1, . . . , an) := {a ∈ A : |{j ∈ [n] : aj = a}| is odd}.

For ϕ : P(A)→ B, let dϕ :
⋃
n≥1A

n → B be the map defined by dϕ(x) = ϕ(oddsupp(x)).

A function f : An → B is determined by oddsupp if f(x) depends only on oddsupp(x), i.e.,
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if there exists ϕ : P(A) → B such that dϕ|An = f . When there is no risk of ambiguity,
we will simply write dϕ instead of dϕ|An . Clearly, the restriction of ϕ to

P ′n(A) =
{
S ∈ P(A) : |S| ∈ {n, n− 2, . . .}

}
uniquely determines f and vice versa. Thus, for finite sets A and B, the number of
functions f : An → B that are determined by oddsupp is |B||P′

n(A)|. The following facts
are straightforward to verify.

Fact 2. The Boolean functions determined by oddsupp are exactly the affine functions
(also known as linear functions in the theory of Boolean functions).

Fact 3. A function f : An → B is determined by oddsupp if and only if f is totally
symmetric and f2←1 does not depend on x1.

Fact 4. If (B; +) is an abelian group, then dϕ1+ϕ2 = dϕ1 + dϕ2 holds for all maps
ϕ1, ϕ2 : P(A)→ B.

It was shown by Willard [30] that if the essential arity of a function f : An → B is
sufficiently large, then gap f ≤ 2, and he also classified such functions according to their
arity gap.

Theorem 5 (Willard [30]). Let A be a finite set and B be an arbitrary set, and assume
that f : An → B depends on all of its variables and n > max(|A|, 3). If f is determined
by oddsupp then gap f = 2. Otherwise gap f = 1.

If B is a Boolean group (i.e., an abelian group of exponent 2), then functions f with
gap f ≥ 2 can be characterized by the existence of certain additive decompositions. Here
we present one of the main results of [10] in the case n > |A|.

Theorem 6 ([10]). Let (B; +) be a Boolean group, and let f : An → B be of essential
arity n > |A|. If f is determined by oddsupp, then there exists a map ϕ : P ′n(A) → B
such that

(1) f(x) =

bn
2 c∑
i=1

∑
I⊆[n]
|I|=n−2i

dϕ(x|I).

From Theorems 5 and 6 it follows that every function f : An → B with large enough
essential arity (i.e., ess f > max(|A|, 3)) and gap f = 2 is decomposable into a sum of
essentially at most (n − 2)-ary functions. This fact is the starting point of the current
paper. We will prove in Section 3 that such decompositions exist not only when B is a
Boolean group, but also whenever B is a group whose exponent is a power of 2. In fact, we
will show that in this case there is a decomposition into functions with bounded essential
arity, where the bound does not depend on n. We will also see that if the exponent
of B is not a power of 2, then such a decomposition does not always exist, not even a
decomposition into (n − 1)-ary functions. In Section 4 we focus on Boolean groups B,
and we provide a concrete decomposition of a very special symmetric form, which is also
unique.

Any set B can be embedded into a Boolean group, e.g., into P(B) with the symmetric
difference operation. Then we can regard any function f : An → B as a function from
An to P(B), and we can apply the results of Section 4 to this function. We illustrate
this for the case A = B = Z3 in Section 5. Here we obtain decompositions involving a
strange mixture of the field operations on Z3 and the symmetric difference operation, but
we will see that they can be always computed within B, without the need of working in
the extension P(B).

2.3. Binomial coefficients. We shall make use of the following combinatorial results.
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Theorem 7 (Shattuck, Waldhauser [26]). For all nonnegative integers m, t with 0 ≤ t ≤
m
2 − 1, the following identity holds:

bm
2 c∑

i=t+1

(
m

2i

)(
i− 1

t

)
= 2m−2t−1

b t
2c∑

k=0

(
m− 3− t− 2k

t− 2k

)
+ (−1)t+1.

Theorem 8. For all nonnegative integers m, t with 0 ≤ t ≤ m−1
2 the following identity

holds:

bm+1
2 c∑

k=t+1

(
m

2k − 1

)(
2k − 1

2t

)
=

(
m

2t

)
2m−2t−1.

Proof. Both sides of the identity count the number of pairs (A,B), where A ⊆ B ⊆ [m],
|A| = 2t, and |B| is odd. �

3. The general case

Throughout this section, unless mentioned otherwise, A is a finite set with a distin-
guished element 0A and (B; +) is an arbitrary, possibly infinite abelian group with neutral
element 0B . With no risk of ambiguity, we will omit the subscripts and will denote both
0A and 0B by 0. Recall that the order of b ∈ B, denoted by ord(b), is the smallest pos-
itive integer n such that nb = b+ · · ·+ b︸ ︷︷ ︸

n times

= 0. If there is no such positive integer, then

ord(b) = ∞. If the orders of all elements of B have a finite common upper bound, then
the exponent of B, denoted by exp(B), is the least common upper bound (equivalently,
the least common multiple) of these orders. Otherwise let exp(B) = ∞. Note that a
Boolean group is a group of exponent 2.

We say that a function f : An → B is k-decomposable if it admits an additive decom-
position f = f1 + · · · + fs, where the essential arity of each fi : A

n → B is at most k.
Moreover, we say that f is decomposable if it is (n− 1)-decomposable.

According to Fact 2, every Boolean function determined by oddsupp is 1-decomposable,
while the functions described in Theorem 6 are (n − 2)-decomposable. Our goal in this
section is to extend these results by characterizing those abelian groups B which have
the property that every function f : An → B determined by oddsupp is decomposable.
As we will see, this is the case if and only if exp(B) is a power of 2. Moreover, we will
determine, for each such abelian group B, the smallest number k such that every function
f : An → B determined by oddsupp is k-decomposable.

The Taylor formula developed for finite functions by Gilezan [17] provides a tool to
test decomposability of functions. Although in [17] the codomain B was assumed to be a
ring, only multiplication by 0 and 1 was used in the Taylor formula; hence it is valid for
abelian groups as well. For self-containedness, we present here the formula with a proof
(see Proposition 10).

For a given x ∈ An and i ∈ [n], a ∈ A, let xai denote the n-tuple that is obtained from
x by replacing its i-th component by a. More generally, for I ⊆ [n] and a ∈ An, let xa

I

denote the n-tuple that is obtained from x by replacing its i-th component by ai for every
i ∈ I. (Observe that the components ai of a with i /∈ I are irrelevant in determining xa

I .)
For any a ∈ A and i ∈ [n] we define the partial derivative of f : An → B with respect

to its i-th variable with parameter a as the function ∆a
i f : An → B given by

∆a
i f(x) = f(xai )− f(x).

Note that for each parameter a ∈ A we have a different partial derivative of f with respect
to its i-th variable. We need the parameter a because A is just a set without any structure;
hence we cannot define differences like f(x + h)− f(x). It is easy to verify that the i-th
variable of f is inessential if and only if ∆a

i f is identically 0 for some a ∈ A (equivalently,
for all a ∈ A).
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Clearly, the partial derivatives are additive, i.e., ∆a
i (f + g) = ∆a

i f + ∆a
i g. Moreover,

differentiations with respect to different variables commute with each other:

(2) ∆a
i∆b

jf(x) = ∆b
j∆

a
i f(x) = f(xabij )− f(xai )− f(xbj) + f(x)

for all a, b ∈ A, i 6= j ∈ [n]. (Here xabij is a shorthand notation for (xai )bj = (xbj)
a
i .) This

property allows us to define higher-order derivatives: for I = {i1, . . . , ik} ⊆ [n] and a ∈ An
let ∆a

If = ∆a1
i1
· · ·∆ak

ik
f . (Again, the components ai (i /∈ I) are irrelevant.) The following

proposition generalizes formula (2) above.

Proposition 9. For any function f : An → B, I ⊆ [n] and a ∈ An, we have

∆a
If(x) =

∑
J⊆I

(−1)|I\J|f(xa
J).

Proof. Easy induction on |I|. (For |I| = 2, the identity is just (2).) �

Now we are ready to state and prove the Taylor formula for functions f : An → B,
which is essentially the same as Theorem 2 and Theorem 3 in [17]. (Let us note that in
the following considerations any fixed n-tuple a ∈ An could be used instead of 0.)

Proposition 10. Any function f : An → B can be expressed as a sum of some of its
partial derivatives at 0:

(3) f(x) =
∑
I⊆[n]

∆x
I f(0).

Proof. Using Proposition 9, we can compute the right-hand side as follows:∑
I⊆[n]

∆x
I f(0) =

∑
I⊆[n]

∑
J⊆I

(−1)|I\J|f(0x
J).

Observe that K := I \ J can be any subset of [n] \ J . Hence∑
I⊆[n]

∑
J⊆I

(−1)|I\J|f(0x
J) =

∑
J⊆[n]

∑
K⊆[n]\J

(−1)|K|f(0x
J)

=
∑
J⊆[n]

( ∑
K⊆[n]\J

(−1)|K|
)
f(0x

J).

Since a nonempty finite set has the same number of subsets of odd cardinality as subsets
of even cardinality, the coefficient

∑
K⊆[n]\J(−1)|K| of f(0x

J) above is 0 unless J = [n].

Thus the sum reduces to f(0x
[n]) = f(x), and this completes the proof. �

The following proposition provides a useful criterion of decomposability.

Proposition 11. A function f : An → B is k-decomposable if and only if ∆a
If(0) = 0

for all a ∈ An and I ⊆ [n] with more than k elements.

Proof. Sufficiency follows directly from Proposition 10: clearly, the essential arity of the
function x 7→ ∆x

I f(0) is at most |I|. Therefore, if ∆x
I f(0) vanishes whenever |I| > k, then

(3) is a decomposition into a sum of essentially at most k-ary functions.
For necessity, let us suppose that f = f1 + · · · + fs, where ess fi ≤ k for i ∈ [s]. If

|I| > k, then I contains (the index of) at least one of the inessential variables of fi, hence
∆a
Ifi is constant 0 for every a ∈ An and i ∈ [s]. Since ∆a

If = ∆a
If1 + · · ·+ ∆a

Ifs, we can
conclude that ∆a

If is constant 0. In particular, we have ∆a
If(0) = 0. �

The following two theorems constitute the main results of this section, and they show
a strong dichotomy of abelian groups with respect to the decomposability of functions
determined by oddsupp.

Theorem 12. If A is a finite set and B is an abelian group of exponent 2e, then every
function f : An → B determined by oddsupp is (|A|+ e− 2)-decomposable.
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Proof. Observe that if the essential arity of f is at most |A| + e − 2, then the statement
trivially holds (with a decomposition involving only one summand). Suppose now that
n = ess f > |A|+e−2 and f = dϕ for some ϕ : P ′n(A)→ B. By Proposition 11, it suffices
to verify that ∆a

If(0) = 0 whenever |I| ≥ |A| + e − 1. Let {ai : i ∈ I} =: {b1, . . . , bt}
(bi 6= bj whenever i 6= j), and let Bj := {i ∈ I : ai = bj}. Thus |Bj | is the number of
occurrences of bj in a|I ; hence |B1| + · · · + |Bt| = |I| and t ≤ |A|. Using Proposition 9,
we can expand ∆a

If(0) as

(4) ∆a
If(0) =

∑
J⊆I

(−1)|I\J|f(0a
J) =

∑
J⊆I

(−1)|I\J|ϕ(oddsupp(0a
J)).

Let us fix a set S ⊆ A that appears as oddsupp(0a
J) in the above sum.

Assume first that 0 ∈ {b1, . . . , bt}, say bt = 0. Then oddsupp(0a
J) = S if and only if

|J ∩Bj | is odd whenever bj ∈ S and |J ∩Bj | is even whenever bj /∈ S for j = 1, . . . , t− 1
(note that J ∩ Bt is irrelevant in determining 0a

J). Since the number of subsets of Bt of
even cardinality equals the number of subsets of Bt of odd cardinality, it holds that the
number of sets J satisfying oddsupp(0a

J) = S that have an even cardinality equals the
number of those that have an odd cardinality. Hence, the terms corresponding to such
sets J will cancel each other in (4).

Assume now that 0 /∈ {b1, . . . , bt}. Then clearly t ≤ |A|−1. Similarly, as in the previous
case, we have that oddsupp(0a

J) = S if and only if |J ∩Bj | is odd whenever bj ∈ S and
|J ∩Bj | is even whenever bj /∈ S for j = 1, . . . , t. Therefore, the number of sets J ⊆ I
satisfying oddsupp(0a

J) = S is

2|B1|−1 · · · 2|Bt|−1 = 2|B1|+···+|Bt|−t = 2|I|−t.

Moreover, the parity of |J | is determined by S. Therefore, all occurrences of ϕ(S) in (4)
have the same sign.

By the argument above, ∆a
If(0) can be written as a sum of finitely many terms of the

form ±2|I|−tϕ(S), where t ≤ |A| − 1. Since |I| ≥ |A| + e − 1, the coefficient 2|I|−t is a
multiple of 2e; hence ±2|I|−tϕ(S) = 0 independently of the value of ϕ(S). We conclude
that ∆a

If(0) = 0, as claimed. �

As the following example shows, Theorem 12 cannot be improved and the number
|A| + e − 2 cannot be decreased. More precisely, for every finite set A with at least two
elements, for every abelian group B of exponent 2e, and for every n > |A|+ e− 3, there
exists a function f : An → B that is determined by oddsupp but is not (|A| + e − 3)-
decomposable.

Example 13. Let A = {0, 1, . . . , `}, and let B be an arbitrary abelian group of exponent
2e. Fix an element b ∈ B of order 2e. Let ϕ : P(A)→ B be defined by

ϕ(T ) =

{
b, if T ⊇ A \ {0},
0, otherwise,

let n ≥ `+ e− 1, and let f : An → B be given by f(x) = dϕ(x).
To see that f is not (|A| + e − 3)-decomposable, by Proposition 11, it suffices to find

I ⊆ [n] and a ∈ An such that |I| = |A|+ e− 2 = `+ e− 1 and ∆a
If(0) 6= 0. To this end,

let

a := (1, 2, . . . , `− 1, `, . . . , `︸ ︷︷ ︸
e

, 0, . . . , 0︸ ︷︷ ︸
n−`−e+1

),

and let I := {1, 2, . . . , ` + e − 1}. Consider the expansion of ∆a
If(0) as in (4). We can

verify that for all J ⊆ I,

f(0a
J) =

{
b, if J ⊇ {1, . . . , `− 1} and |J ∩ {`, . . . , `+ e− 1}| is odd,

0, otherwise.
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From this it follows that the number of sets J ⊆ I satisfying f(0a
J) = b is 2e−1. Therefore,

we have

∆a
If(0) = (−1)e−12e−1b 6= 0,

where the inequality holds because the order of b is 2e.

Theorem 14. If A is a finite set with at least two elements and B is an abelian group
whose exponent is not a power of 2, then for each n there exists a function f : An → B
determined by oddsupp that is not decomposable.

Proof. If the exponent of B is not a power of 2, then B has an element b whose order is
not a power of 2 (possibly infinite). Let us consider first the special case A = {0, 1}. For
any x ∈ An let w(x) denote the Hamming weight of x, i.e., the number of 1’s appearing
in x. Let f0 : An → B be the function defined by

f0(x) =

{
b, if w(x) is even,

0, if w(x) is odd.

Let us compute ∆1
[n]f0(0) with the help of Proposition 9:

∆1
[n]f0(0) =

∑
J⊆[n]

(−1)|[n]\J|f0(01
J) = (−1)n

∑
J⊆[n]

(−1)|J|f0(01
J).

Since w(01
J) = |J |, the above sum consists of 2n−1 many b’s and 2n−1 many 0’s. Thus

∆1
[n]f0(0) = (−1)n2n−1b 6= 0, as ord(b) does not divide (−1)n2n−1. Now Proposition 11

shows that f0 is not (n− 1)-decomposable.
Considering the general case, let 0 and 1 be two distinguished elements of A, and let

f : An → B be any function that is determined by oddsupp such that f |{0,1}n = f0. Then
f is not decomposable, since any decomposition of f would give rise to a decomposition
of f |{0,1}n . �

Corollary 15. Let A be a finite set with at least two elements, and B be an abelian
group. All functions f : An → B determined by oddsupp are decomposable if and only if
the exponent of B is a power of 2.

As the following example shows, decomposability is not guaranteed when A is infinite,
no matter what the exponent of B is.

Example 16. Let A be an infinite set, let B be an abelian group and let 0 6= b ∈ B. Fix
n ≥ 2, and let S := {s1, . . . , sn} ⊆ A \ {0} with |S| = n. Define f : An → B by the rule

f(x) =

{
b, if {x1, . . . , xn} = S,

0, otherwise.

It is clear that f is determined by oddsupp. Computing ∆a
[n]f(0) for a := (s1, . . . , sn) as

in (4), we obtain ∆a
[n]f(0) = b 6= 0. Hence f is not decomposable by Proposition 11.

Remark 17. Theorem 6 asserts that if B is a Boolean group and n > |A|, then every
function f : An → B determined by oddsupp is (n− 2)-decomposable. Theorem 12 gives
a stronger result as it provides a decomposition into a sum of functions of essential arity
at most |A| − 1. Note that here the bound does not depend on n, and in the case n > |A|
we have |A| − 1 ≤ n − 2. Theorem 14 implies that if exp(B) is not a power of 2, then
even the weakest kind of decomposability (namely, (n− 1)-decomposability) fails to hold
for all functions f : An → B determined by oddsupp.

4. The case of Boolean groups

In this section we assume that A is a finite set with a distinguished element 0 and
(B; +) is a Boolean group with neutral element 0. Applying Theorem 12 to this case
(with e = 1), we see that every function f : An → B determined by oddsupp is (|A| − 1)-
decomposable. Here we will provide a canonical, highly symmetric decomposition of such
functions and show that it is unique.
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If n > |A|, then Theorem 6 provides a decomposition of f into a sum of functions
of essential arity at most n − 2. Each summand dϕ(x|I) is a function determined by
oddsupp, and if |I| > |A|, then we can apply Theorem 6 to decompose dϕ(x|I) into a sum
of functions of essential arity at most |I| − 2. Repeating this process as long as we have
summands of essential arity greater than |A|, we end up with an |A|-decomposition of f . If
the parities of |A| and n are different, then this is already an (|A| − 1)-decomposition. By
counting how many times a given summand dϕ(x|I) appears, we arrive at decomposition
(5) given below in Theorem 18. If the parities of |A| and n are equal, then we have to
further decompose the summands of essential arity |A|. We then get the more refined
decomposition (7) given below in Theorem 19. Note that in these theorems we assume
that B is finite. However, as we will see in Remark 20, the general case can be easily
reduced to the case of finite groups.

Theorem 18. Let f : An → B, where B is a finite Boolean group, A is a finite set, and
n− |A| = 2t+ 1 > 0. Then f is determined by oddsupp if and only if f is of the form

(5) f(x) =

bn
2 c∑

i=t+1

∑
I⊆[n]
|I|=n−2i

(
i− 1

t

)
dϕ(x|I),

for some map ϕ : P ′n(A)→ B. Moreover, ϕ is uniquely determined by f .

Proof. Let gϕ : An → B denote the function given by the right-hand side of (5). Let
us note that since n > |A| and n − |A| is odd, P ′n(A) contains all subsets of A whose
complement has an odd number of elements. Observe also that in (5) I ranges over
subsets of [n] of size |A| − 1, |A| − 3, . . .; hence (5) provides an (|A| − 1)-decomposition of
f . Clearly, for such sets I we have oddsupp(x|I) ∈ P ′n(A).

To prove the theorem, it suffices to show that the following three statements hold:

(i) the number of functions f : An → B that are determined by oddsupp is the same as
the number of maps ϕ : P ′n(A)→ B;

(ii) gϕ is determined by oddsupp for every ϕ : P ′n(A)→ B;
(iii) if ϕ1 6= ϕ2 then gϕ1 6= gϕ2 .

The existence and uniqueness of the decomposition then follows by a simple counting
argument: the functions f : An → B determined by oddsupp are in a one-to-one corre-
spondence with the functions gϕ. (Alternatively, the existence could be proved by repeated
applications of Theorem 6, as explained above.)

Statement (i) is clear: the number of functions f : An → B that are determined by

oddsupp is |B||P′
n(A)|, the same as the number of maps ϕ : P ′n(A)→ B.

To see that (ii) holds, observe that each gϕ is a totally symmetric function. Hence,
by Fact 3, it suffices to prove that gϕ(x1, x1, x3, . . . , xn) does not depend on x1. Let
x = (x1, x1, x3, . . . , xn) and let I be a set appearing in the summation in (5) such that
1 ∈ I and 2 /∈ I. Then I ′ := I 4 {1, 2} = (I \ {1}) ∪ {2} (4 denotes the symmetric
difference) appears as well, since it has the same cardinality as I. As oddsupp(x|I) =
oddsupp(x|I′), we have dϕ(x|I) = dϕ(x|I′), thus these two summands will cancel each
other. The remaining sets I either contain both 1 and 2 or neither of them. In the first case,
oddsupp(x|I) = oddsupp(x|I\{1,2}), and hence dϕ(x|I) does not depend on x1, whereas
in the second case x1 does not appear in dϕ(x|I) at all. Thus gϕ(x1, x1, x3, . . . , xn) does
not depend on x1, which shows that (ii) holds.

To prove statement (iii), suppose on the contrary that there exist maps ϕ1, ϕ2 : P ′n(A)→
B such that ϕ1 6= ϕ2 but gϕ1

= gϕ2
. Then for ϕ = ϕ1 + ϕ2 we have gϕ = gϕ1

+ gϕ2
≡ 0

by Fact 4, that is,

(6)

bn
2 c∑

i=t+1

∑
I⊆[n]
|I|=n−2i

(
i− 1

t

)
dϕ(x|I) = 0
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for all x ∈ An. Moreover, since ϕ1 6= ϕ2, there exists an S ∈ P ′n(A) with ϕ(S) 6= 0. Let
us choose S to be minimal with respect to this property, i.e., ϕ(S) 6= 0, but ϕ vanishes on
all proper subsets of S.

Suppose first that S is nonempty, say S = {s1, . . . , sn−2r}. Since n− |A| = 2t+ 1, we
have that t ≤ r − 1. Let us examine the left-hand side of (6) for

x := (s1, . . . , s1︸ ︷︷ ︸
2r+1

, s2, . . . , sn−2r) ∈ An.

Observe that oddsupp(x|I) ⊆ S. If oddsupp(x|I) ⊂ S, then dϕ(x|I) = 0 by the minimality
of S. If oddsupp(x|I) = S, then dϕ(x|I) = ϕ(S) 6= 0. The latter is the case if and only if
I is a proper superset of {2r + 2, . . . , n} of cardinality n− 2i for some i. The number of
sets I ⊆ [n] with |I| = n− 2i and I ⊃ {2r + 2, . . . , n} is

(
2r+1
2i

)
. Hence the left-hand side

of (6) equals
r∑

i=t+1

(
2r + 1

2i

)(
i− 1

t

)
ϕ(S).

Since r ≥ t+ 1, the coefficient
∑r
i=t+1

(
2r+1
2i

)(
i−1
t

)
of ϕ(S) is odd according to Theorem 7

(for m = 2r + 1). Therefore, taking into account that B is a Boolean group, we can
conclude that the left-hand side of (6) is ϕ(S) 6= 0, which is a contradiction.

Suppose then that S is empty. Choose x := (s1, . . . , s1) for an arbitrary s1 ∈ A. Since
S ∈ P ′n(A), n is even and hence each I occurring in (6) is of even cardinality. Whenever
|I| is even, oddsupp(x|I) = ∅ = S and dϕ(x|I) = ϕ(S). Therefore, the left-hand side of
(6) becomes

bn
2 c∑

i=t+1

(
n

2i

)(
i− 1

t

)
ϕ(S),

which equals ϕ(S) by Theorem 7 (for m = n). This yields the desired contradiction, and
the proof of (iii) is now complete. �

Theorem 19. Let f : An → B, where B is a finite Boolean group, A is a finite set, and
n− |A| = 2t > 0. Then f is determined by oddsupp if and only if f is of the form

(7) f(x) =

bn
2 c∑

i=t+1

∑
I⊆[n]
|I|=n−2i

(
i− 1

t

)
dϕ(x|I) +

bn+1
2 c∑

k=t+1

∑
K⊆[n]

|K|=n−2k+1

(
2k − 1

2t

)
dϕ(x|K).

for some map ϕ : P(A)→ B satisfying ϕ(S) = ϕ(S4{0}) for every S ∈ P(A). Moreover,
ϕ is uniquely determined by f .

Proof. Let us note first that since n > |A| and n−|A| is even, P ′n(A) contains all subsets of
A whose complement has an even number of elements. The number of maps ϕ : P(A)→ B

satisfying ϕ(S) = ϕ(S 4 {0}) for every S ∈ P(A) is |B||P′
n(A)|, since ϕ|P′

n(A) can be
chosen arbitrarily, and this uniquely determines ϕ|P(A)\P′

n(A). The number of functions

f : An → B that are determined by oddsupp is |B||P′
n(A)| as well, and we can use the same

counting argument as in the proof of Theorem 18. The fact that the right-hand side of
(7) is determined by oddsupp can be proven in a similar way, and for the uniqueness it
suffices to prove that if

(8)

bn
2 c∑

i=t+1

∑
I⊆[n]
|I|=n−2i

(
i− 1

t

)
dϕ(x|I) +

bn+1
2 c∑

k=t+1

∑
K⊆[n]

|K|=n−2k+1

(
2k − 1

2t

)
dϕ(x|K) = 0

for all x ∈ An, then ϕ|P′
n(A) is identically 0.

Suppose, for the sake of contradiction, that there exists an S ∈ P ′n(A) such that
ϕ(S) 6= 0, and let n − 2r be the cardinality of the smallest such S. If r = t, then
ϕ(A) = ϕ(A \ {0}) 6= 0, and ϕ is zero on all other subsets of A. Let A = {0, a1, . . . , a`},
where ` = n − 2t − 1, and let x = (0, . . . , 0, a1, . . . , a`) ∈ An, where the number of
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0’s is 2t + 1. Then, for any set I appearing in the first summation of (8), we have
A \ {0} * oddsupp(x|I); hence dϕ(x|I) = 0. Similarly, dϕ(x|K) = 0 for all sets K
appearing in (8), except for K = {2t+ 2, . . . , n}, where dϕ(x|K) = ϕ(A \ {0}). Thus the
left-hand side of (8) equals ϕ(A \ {0}) 6= 0, contrary to our assumption.

Let us now consider the case r > t, and let us suppose first that there exists a set
S ∈ P ′n(A) of cardinality n − 2r such that ϕ(S) 6= 0 and 0 ∈ S, say S = {s1, . . . , sn−2r}
with s1 = 0. Let T be a subset of S. By the minimality of |S|, if T ∈ P ′n(A) then we have
ϕ(T ) 6= 0 if and only if T = S. Similarly, if T /∈ P ′n(A) then we have ϕ(T ) 6= 0 if and only
if T = S \ {0}. (Indeed, if T 6= S \ {0}, then T 4 {0} ∈ P ′n(A) is a proper subset of S.
Hence ϕ(T ) = ϕ(T 4 {0}) = 0.)

Let us examine the left-hand side of (8) for

x := (s1, . . . , s1︸ ︷︷ ︸
2r+1

, s2, . . . , sn−2r) ∈ An.

The same argument as in the proof of Theorem 18 shows that the first sum of (8) equals
r∑

i=t+1

(
2r + 1

2i

)(
i− 1

t

)
ϕ(S),

which is ϕ(S) by Theorem 7, since r ≥ t + 1. If K is a set of size n − 2k + 1 appearing
in the second sum of (8), then dϕ(x|K) = ϕ(S \ {0}) = ϕ(S) if K ⊇ {2r + 2, . . . , n}, and

dϕ(x|K) = 0 otherwise. The number of such sets K is
(
2r+1
2k−1

)
, thus the second sum on

the left-hand side of (8) equals

r+1∑
k=t+1

(
2r + 1

2k − 1

)(
2k − 1

2t

)
ϕ(S).

By Theorem 8, the coefficient of ϕ(S) here is
(
2r+1
2t

)
22r−2t, which is even since r > t. Thus

the left-hand side of (8) reduces to ϕ(S), contradicting our assumption.
In the remaining case we have r > t and for all S ∈ P ′n(A) of cardinality n − 2r we

have 0 /∈ S whenever ϕ(S) 6= 0. Let S = {s1, . . . , sn−2r} be such a set, and let T ⊆ S.
If T ∈ P ′n(A), then we have ϕ(T ) 6= 0 if and only if T = S by the minimality of |S|.
Similarly, if T /∈ P ′n(A), then we have ϕ(T ) = 0. (Indeed, if T /∈ P ′n(A) then T ∪ {0} =
T 4 {0} ∈ P ′n(A) and |T 4 {0}| ≤ |S|. On the other hand, if ϕ(T 4 {0}) = ϕ(T ) 6= 0
then |T 4 {0}| ≥ |S| by the minimality of |S|. Thus we have |T 4 {0}| = |S| = n − 2r,
hence T 4 {0} is a set in P ′n(A) with cardinality n − 2r such that ϕ(T 4 {0}) 6= 0 and
0 ∈ T 4 {0}, and then replacing S by T 4 {0} we come back to the previous case.)

Let us choose x := (s1, . . . , s1, s2, . . . , sn−2r) ∈ An as before, and examine the sum-
mands in (8). For each K appearing in the second sum, oddsupp(x|K) ⊆ S and
oddsupp(x|K) /∈ P ′n(A), thus dϕ(x|K) = 0. For each I appearing in the first sum,
we have dϕ(x|I) = ϕ(S) 6= 0 if I is a proper superset of {2r + 2, . . . , n}; otherwise
oddsupp(x|I) ⊂ S, and so dϕ(x|I) = 0. Therefore, using Theorem 7 as before, we can
conclude that the left-hand side of (8) equals ϕ(S), and this contradiction finishes the
proof of the theorem. �

Remark 20. Theorems 18 and 19 still hold for infinite Boolean groups B. To see this, let
f : An → B be a function that is determined by oddsupp, where A is a finite set and B is
a possibly infinite Boolean group, and let R ⊆ B be the range of f . Since R is finite, the
subgroup [R] ≤ B generated by R is also finite. (The free Boolean group on r generators
has cardinality 2r.) Applying Theorems 18 and 19 to f : An → [R], we obtain the desired
decomposition of f . To show the uniqueness, suppose that ϕ1, ϕ2 : P(A)→ B both yield
the function f . Then we can replace B by its subgroup generated by the union of the
ranges of ϕ1 and ϕ2, and apply the uniqueness parts of Theorems 18 and 19.

5. Illustration: operations over the three-element set

We saw in Theorem 1 that a Boolean function of essential arity at least 4 has arity
gap 2 if and only if it is a sum of essentially at most unary functions. Alternatively, this
fact follows from the results of the previous section together with Willard’s Theorem 5.
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More generally, Theorems 18 and 19 can be applied to describe polynomial functions over
finite fields of characteristic 2 with arity gap 2. In this section we show how Theorems 18
and 19 can be used to describe functions f : Zn3 → Z3 of arity at least 4 with gap f = 2.
Since Z3 is not a Boolean group, we cannot apply these theorems directly. First we need
to embed Z3 into a Boolean group. To this extent, let A := Z3 = {0, 1, 2} with the usual
field operations + and ·, and B := P(A) with the symmetric difference operation ⊕. We
use the notation ⊕ instead of the more common 4 in order to emphasize that this is a
Boolean group operation on B (which was denoted by + before). The neutral element of
(A; +) is 0, and the neutral element of (B;⊕) is the empty set ∅. We identify the elements
of A with the corresponding one-element sets, i.e., we simply write a instead of {a} for
a ∈ A. In this way, A becomes a subset (but, of course, not a subgroup) of B.

Let f : An → B, where n ≥ 4 is even. Then we have n = 2t + 4 in Theorem 18, and
the summation in (5) runs over the subsets of [n] of size 2 (for i = t + 1) and of size

0 (for i = t + 2). The corresponding coefficients
(
i−1
t

)
are

(
t
t

)
= 1 and

(
t+1
t

)
= t + 1,

respectively. Thus
(
i−1
t

)
dϕ(x|I) = dϕ(x|I) whenever |I| = 2 or I = ∅ and t is even (i.e.,

n is divisible by 4); on the other hand, if I = ∅ and t is odd, then
(
i−1
t

)
dϕ(x|I) = 0.

Therefore, (5) takes one of the following two forms, depending on the residue of n modulo
4 (the summation indices i and j always run from 1 to n, unless otherwise indicated):

f(x) =
⊕
i<j

ϕ(oddsupp(xi, xj))⊕ ϕ(∅) if n ≡ 0 (mod 4),

f(x) =
⊕
i<j

ϕ(oddsupp(xi, xj)) if n ≡ 2 (mod 4).

(Note that ϕ(oddsupp(xi, xj)) = ϕ({xi, xj}) if xi 6= xj , and ϕ(oddsupp(xi, xj)) = ϕ(∅) if
xi = xj .)

If n is odd, then we can apply Theorem 19. In this case we have n = 2t+ 3, and in the
first summation of (7) I is a one-element set (i = t+ 1) and the corresponding coefficient

is
(
i−1
t

)
=
(
t
t

)
= 1. In the second summation, K is either a two-element set (k = t + 1)

or the empty set (k = t + 2). The corresponding coefficients
(
2k−1
2t

)
are

(
2t+1
2t

)
= 2t + 1

and
(
2t+3
2t

)
= (2t+3)(2t+1)(t+1)

3 ≡ t + 1 (mod 2). Thus, (7) takes one of the following two
forms:

f(x) =
⊕
i<j

ϕ(oddsupp(xi, xj))⊕
⊕
i

ϕ({xi}) if n ≡ 1 (mod 4),

f(x) =
⊕
i<j

ϕ(oddsupp(xi, xj))⊕
⊕
i

ϕ({xi})⊕ ϕ(∅) if n ≡ 3 (mod 4).

(Note that ϕ(oddsupp(xi)) = ϕ({xi}).)
The above formulas are valid for any function f : An → B, but we are interested only

in functions whose range lies within A, i.e., whose values are one-element sets in B. In
this case, we can give more concrete expressions for the above decompositions.

Theorem 21. Let f : Zn3 → Z3 be a function of arity at least 4. Then gap f = 2 if and
only if there exists a unary polynomial p = ax2 + bx + c ∈ Z3[x] and a constant d ∈ Z3,
which are uniquely determined by f , such that

f(x) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
⊕ d if n ≡ 0 (mod 4),

f(x) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
⊕
⊕
i

(
p(xi) + d

)
if n ≡ 1 (mod 4),

f(x) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
if n ≡ 2 (mod 4),

f(x) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
⊕
⊕
i

(
p(xi) + d

)
⊕ d if n ≡ 3 (mod 4).

Otherwise we have gap f = 1.
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Proof. Let A := Z3 and B := P(Z3) as explained above. We work out the details only for
the case n ≡ 3 (mod 4), the other cases are similar. First let us consider the function

f1(x) =
⊕
i

(
p(xi) + d

)
.

It is clear that this function is totally symmetric, and f1(x1, x1, x3, . . . , xn) does not
depend on x1, since

f1(x1, x1, x3, . . . , xn) =
(
p(x1) + d

)
⊕
(
p(x1) + d

)
⊕

n⊕
i=3

(
p(xi) + d

)
=

n⊕
i=3

(
p(xi) + d

)
.

Therefore, f1 is determined by oddsupp by Fact 3. Hence, it holds that f1(x) = ϕ1(oddsupp(x))
for some map ϕ1 : P ′n(A)→ B. Observe that P ′n(A) = {{0}, {1}, {2}, {0, 1, 2}}. Thus, in
order to determine ϕ1, it suffices to compute the following four values of f1:

ϕ1({0}) = f1(0, . . . , 0) =

n⊕
i=1

(
p(0) + d

)
= p(0) + d = c+ d,

ϕ1({1}) = f1(1, . . . , 1) =

n⊕
i=1

(
p(1) + d

)
= p(1) + d = a+ b+ c+ d,

ϕ1({2}) = f1(2, . . . , 2) =

n⊕
i=1

(
p(2) + d

)
= p(2) + d = a+ 2b+ c+ d,

ϕ1({0, 1, 2}) = f1(0, . . . , 0, 1, 2) =

n−2⊕
i=1

(
p(0) + d

)
⊕
(
p(1) + d

)
⊕
(
p(2) + d

)
=
(
p(0) + d

)
⊕
(
p(1) + d

)
⊕
(
p(2) + d

)
= (c+ d)⊕ (a+ b+ c+ d)⊕ (a+ 2b+ c+ d).

We now analyze the function

f2(x) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
in a similar manner. Examining f2(x1, x1, x3, . . . , xn) we can see that the summands
corresponding to i = 1, j ≥ 3 cancel the summands corresponding to i = 2, j ≥ 3, while
the summand corresponding to i = 1, j = 2 is (x1 − x1)2p(x1 + x1) + d = d. Hence

f2(x1, x1, x3, . . . , xn) = d⊕
⊕

3≤i<j

(
(xi − xj)2p(xi + xj) + d

)
,

which clearly does not depend on x1. Since f2 is totally symmetric, we can conclude
that f2 is determined by oddsupp. Therefore, there is a map ϕ2 : P ′n(A) → B such that
f2(x) = ϕ2(oddsupp(x)). For any a ∈ A we have

ϕ2({a}) = f2(a, . . . , a) =
⊕
i<j

(
(a− a)2p(a+ a) + d

)
=

(
n

2

)
d = d,

where the last equality holds, because
(
n
2

)
is an odd number by the assumption that n ≡ 3

(mod 4). To find ϕ2({0, 1, 2}), we can proceed as follows:

ϕ2({0, 1, 2}) = f2(0, . . . , 0, 1, 2)

=
⊕

i<j≤n−2

(
(0− 0)2p(0 + 0) + d

)
⊕
n−2⊕
i=1

(
(0− 1)2p(0 + 1) + d

)
⊕
n−2⊕
i=1

(
(0− 2)2p(0 + 2) + d

)
⊕
(
(1− 2)2p(1 + 2) + d

)
= (a+ b+ c+ d)⊕ (a+ 2b+ c+ d)⊕ (c+ d).

(Here we made use of the fact that
(
n−2
2

)
is even and n− 2 is odd.)
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The expression given for f in the theorem is f1(x) ⊕ f2(x) ⊕ d, and from the above
calculations it follows that this function is determined by oddsupp, namely, f1(x)⊕f2(x)⊕
d = ϕ(oddsupp(x)), where

ϕ({0}) = ϕ1({0})⊕ ϕ2({0})⊕ d = (c+ d)⊕ d⊕ d = c+ d,

ϕ({1}) = ϕ1({1})⊕ ϕ2({1})⊕ d = (a+ b+ c+ d)⊕ d⊕ d = a+ b+ c+ d,

ϕ({2}) = ϕ1({2})⊕ ϕ2({2})⊕ d = (a+ 2b+ c+ d)⊕ d⊕ d = a+ 2b+ c+ d,

ϕ({0, 1, 2}) = ϕ1({0, 1, 2})⊕ ϕ2({0, 1, 2})⊕ d
= (c+ d)⊕ (a+ b+ c+ d)⊕ (a+ 2b+ c+ d)

⊕ (a+ b+ c+ d)⊕ (a+ 2b+ c+ d)⊕ (c+ d)⊕ d = d.

Observe that the range of ϕ is a subset of A. Hence f1(x)⊕ f2(x)⊕ d is a function from
An to A.

Let us consider the linear transformation

L : Z4
3 → Z4

3, (a, b, c, d) 7→ (c+ d, a+ b+ c+ d, a+ 2b+ c+ d, d).

The determinant of L is 1; hence L is a bijection. This means that the maps ϕ : P ′n(A)→ B
that are of the above form are in a one-to-one correspondence with the 4-tuples over A, i.e.,
there are 34 = 81 such maps. The number of functions f : An → A that are determined
by oddsupp is also 81. Hence we can conclude by a simple counting argument that for any
such f there exists a unique tuple (a, b, c, d) ∈ A4 such that f(x) = f1(x)⊕ f2(x)⊕ d. �

Let us observe that when computing the value of a function of the form given in
Theorem 21, we do not have to “leave” Z3: using the fact that ⊕ is commutative and
associative and it satisfies u ⊕ u ⊕ v = v for any u, v ∈ Z3, we can always perform the
calculations in such a way that we work only with singleton elements of B. It is not
even necessary to know that B is the power set of Z3, it could be any Boolean group
that contains Z3 as a subset. To illustrate this point, let us compute f(0, 0, 1, 2) for the
function

f(x1, x2, x3, x4) =
⊕
i<j

(
(xi − xj)2p(xi + xj) + d

)
⊕ d

that corresponds to the case n = 4 with a = 1, b = c = d = 2 in Theorem 21:

f(0, 0, 1, 2) = 2⊕ 1⊕ 0⊕ 1⊕ 0⊕ 1⊕ 2 = (0⊕ 0)⊕ (1⊕ 1)⊕ (2⊕ 2)⊕ 1 = 1.
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