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THE ARITY GAP OF ORDER-PRESERVING FUNCTIONS AND

EXTENSIONS OF PSEUDO-BOOLEAN FUNCTIONS
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Abstract. The aim of this paper is to classify order-preserving functions ac-

cording to their arity gap. Noteworthy examples of order-preserving functions
are the so-called aggregation functions. We first explicitly classify the Lovász

extensions of pseudo-Boolean functions according to their arity gap. Then we

consider the class of order-preserving functions between partially ordered sets,
and establish a similar explicit classification for this function class.

1. Introduction

In this paper, we study the arity gap of functions of several variables. Essentially,
the arity gap of a function f : An → B (n ≥ 2) that depends on all of its variables
can be defined as the minimum decrease in the number of essential variables when
variables of f are identified. Salomaa [18] showed that the arity gap of any Boolean
function is at most 2. This result was extended to functions defined on arbitrary
finite domains by Willard [21], who showed that the same upper bound holds for
the arity gap of any function f : An → B, provided that n > max(|A|, 3). In
fact, he showed that if the arity gap of such a function f equals 2, then f is
totally symmetric. This line of research culminated into a complete classification
of functions f : An → B according to their arity gap (see Theorem 2.5), originally
presented in [4] in the setting of functions with finite domains; in [6] it was observed
that this result holds for functions with arbitrary, possibly infinite domains.

Salomaa’s [18] result on the upper bound for the arity gap of Boolean func-
tions mentioned above was strengthened in [3], where Boolean functions were com-
pletely classified according to their arity gap. Using tools provided by Berman and
Kisielewicz [1] and Willard [21], in [4] a similar explicit classification was estab-
lished for all pseudo-Boolean functions, i.e., functions f : {0, 1}n → R. As it turns
out, this leads to analogous classifications of wider classes of functions. In [5], this
result on pseudo-Boolean functions was the key step in showing that among lat-
tice polynomial functions only truncated ternary medians have arity gap 2; all the
others have arity gap 1.

Similar techniques are used in Section 3 to derive explicit descriptions of the
arity gap of well-known extensions of pseudo-Boolean functions to the whole real
line, namely, Owen and Lovász extensions.

In Section 4 we consider the arity gap of order-preserving functions. To this
extent, we present a complete classification of functions over arbitrary domains
according to their arity gap (originally established in [4] for functions over finite
domains), which is then used to derive a dichotomy theorem based on the arity gap
(and the so-called quasi-arity), and to explicitly determine those order-preserving
functions that have arity gap 1 and those that have arity gap 2.

Aggregation functions became a widely studied class of order-preserving func-
tions. Thus, as a by-product of our general results, we obtain an explicit classifica-
tion of these functions according to their arity gap, which we present in the end of
Section 4.
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2. Preliminaries: arity gap and the simple minor relation

Throughout this paper, let A and B be arbitrary sets with at least two elements.
A B-valued function (of several variables) on A is a mapping f : An → B for some
positive integer n, called the arity of f . The A-valued functions on A are called
operations on A. Operations on {0, 1} are called Boolean functions. We denote
the set of real numbers by R. Functions f : {0, 1}n → R are referred to as pseudo-
Boolean functions. For a natural number n ≥ 1, we denote [n] = {1, . . . , n}.

The i-th variable is said to be essential in f : An → B, or f is said to depend on
xi, if there is a pair

((a1, . . . , ai−1, ai, ai+1, . . . , an), (a1, . . . , ai−1, bi, ai+1, . . . , an)) ∈ An ×An,

called a witness of essentiality of xi in f , such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, bi, ai+1, . . . , an).

The number of essential variables in f is called the essential arity of f , and it is
denoted by ess f . If ess f = m, we say that f is essentially m-ary.

For n ≥ 2, define

An= := {(a1, . . . , an) ∈ An : ai = aj for some i 6= j}.

We also define A1
= := A. Note that if A has less than n elements, then An= = An.

Consider f : An → B. Any function g : An → B satisfying f |An
=

= g|An
=

is called
a support of f . The quasi-arity of f , denoted qa f , is defined as the minimum of
the essential arities of the supports of f , i.e., qa f = ming ess g, where g ranges over
the set of all supports of f . If qa f = m, we say that f is quasi-m-ary.

A function f : An → B is said to be obtained from g : Am → B by simple variable
substitution, or f is a simple minor of g, if there is a mapping σ : {1, . . . ,m} →
{1, . . . , n} such that

f(x1, . . . , xn) = g(xσ(1), . . . , xσ(m)) for all (x1, . . . , xn) ∈ An.

The simple minor relation constitutes a quasi-order ≤ on the set of all B-valued
functions of several variables on A which is given by the following rule: f ≤ g if and
only if f is obtained from g by simple variable substitution. If f ≤ g and g ≤ f ,
we say that f and g are equivalent, denoted f ≡ g. If f ≤ g but g 6≤ f , we denote
f < g. It can be easily observed that if f ≤ g then ess f ≤ ess g, with equality if
and only if f ≡ g. For background, extensions and variants of the simple minor
relation, see, e.g., [2, 7, 8, 9, 12, 13, 17, 20, 22].

For f : An → B, i, j ∈ {1, . . . , n}, i 6= j, we define fi←j : An → B to be the
simple minor of f given by the substitution of xj for xi, that is,

fi←j(x1, . . . , xn) = f(x1, . . . , xi−1, xj , xi+1, . . . , xn).

Note that on the right-hand side of the above equality, xj occurs twice, namely
both at the i-th and the j-th positions. We denote

ess< f = max
g<f

ess g,

and we define the arity gap of f by gap f = ess f−ess< f . It is easily observed that

gap f = min
i 6=j

(ess f − ess fi←j),

where i and j range over the set of indices of essential variables of f .
In the sequel, whenever we consider the arity gap of some function f , we will

assume that all variables of f are essential. This is not a significant restriction,
because every nonconstant function is equivalent to a function with no inessential
variables and equivalent functions have the same arity gap.

Salomaa [18] proved that the arity gap of every Boolean function with at least
two essential variables is at most 2. This result was generalized by Willard [21,
Lemma 1.2] in the following theorem.



THE ARITY GAP OF ORDER-PRESERVING FUNCTIONS 3

Theorem 2.1. Let A be a finite set. Suppose f : An → B depends on all of its
variables. If n > max(|A|, 3), then gap f ≤ 2.

In [3], Salomaa’s result was strengthened into an explicit classification of Boolean
functions in terms of arity gap.

Theorem 2.2. Assume that f : {0, 1}n → {0, 1} depends on all of its variables.
We have gap f = 2 if and only if f is equivalent to one of the following Boolean
functions:

• x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ c,
• x1x2 ⊕ x1 ⊕ c,
• x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ c,
• x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ x2 ⊕ c,

where ⊕ denotes addition modulo 2 and c ∈ {0, 1}. Otherwise gap f = 1.

Based on this, a complete classification of pseudo-Boolean functions according
to their arity gap was presented in [4].

Theorem 2.3. For a pseudo-Boolean function f : {0, 1}n → R which depends on all
of its variables, gap f = 2 if and only if f satisfies one of the following conditions:

• n = 2 and f is a nonconstant function satisfying f(0, 0) = f(1, 1),
• f = g ◦ h, where g : {0, 1} → R is injective and h : {0, 1}n → {0, 1} is a

Boolean function with gaph = 2, as listed in Theorem 2.2.
Otherwise gap f = 1.

Remark 2.4. It is noteworthy that there is a complete one-to-one correspondence
between pseudo-Boolean functions and set functions, i.e., functions v : 2[n] → R
for some n ≥ 1. This correspondence is based on the natural order-isomorphism
between {0, 1}n and the power set 2[n] of [n]. For a pseudo-Boolean function
f : {0, 1}n → R we can associate a set function vf : 2[n] → R given by vf (T ) =
f(eT ), where eT denotes the characteristic vector of T ⊆ [n]. Conversely, for a set
function v : 2[n] → R, let fv : {0, 1}n → R be the pseudo-Boolean function defined
by fv(eT ) = v(T ). Clearly, fvf = f and vfv = v for every pseudo-Boolean function

f : {0, 1}n → R and every set function v : 2[n] → R.

The study of the arity gap of functions An → B culminated into the character-
ization presented in Theorem 2.5, originally proved in [4]. We need to introduce
some terminology to state the result.

Let 2A be the power set of A, and define oddsupp:
⋃
n≥1A

n → 2A by

oddsupp(a1, . . . , an) =
{
ai : |{j ∈ [n] : aj = ai}| is odd

}
.

A partial function f : S → B, S ⊆ An, is said to be determined by oddsupp if
f = f∗ ◦ oddsupp|S for some function f∗ : 2A → B.

Theorem 2.5. Suppose that f : An → B, n ≥ 2, depends on all of its variables.
(i) For 3 ≤ p ≤ n, gap f = p if and only if qa f = n− p.

(ii) For n 6= 3, gap f = 2 if and only if qa f = n − 2 or qa f = n and f |An
=

is
determined by oddsupp.

(iii) For n = 3, gap f = 2 if and only if there is a nonconstant unary function
h : A→ B and i1, i2, i3 ∈ {0, 1} such that

f(x1, x0, x0) = h(xi1),

f(x0, x1, x0) = h(xi2),

f(x0, x0, x1) = h(xi3).

(iv) Otherwise gap f = 1.

Remark 2.6. The notion of a function’s being determined by oddsupp is due to
Berman and Kisielewicz [1]. Willard [21] showed that if f : An → B where A is
finite, n > max(|A|, 3) and gap f = 2, then f is determined by oddsupp.
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Remark 2.7. While Theorem 2.5 was originally stated and proved in the setting
of functions with finite domains, its proof presented in [4] does not make use of
any assumption on the cardinalities of the domain and codomain – as long as
they contain at least two elements. Hence the theorem immediately generalizes for
functions with arbitrary domains.

3. The arity gap of Lovász and Owen extensions

In this section, we consider well-known extensions of pseudo-Boolean functions
and generalize Theorem 2.3 accordingly. For further background on pseudo-Boolean
functions, we refer the reader to Hammer and Rudeanu [11].

As is well-known, every pseudo-Boolean function can be uniquely represented by
a multilinear polynomial expression. A common way to construct such representa-
tions makes use of the notion of “Möbius transform”.

Let v : 2[n] → R be a set function. The Möbius transform (or Möbius inverse) of
v is the map mv : 2[n] → R given by

mv(S) =
∑
T⊆S

(−1)|S|−|T |v(T ), for all S ⊆ [n].

In view of Remark 2.4, we say that m : 2[n] → R is the Möbius transform of
f : {0, 1}n → R if m = mvf .

Theorem 3.1 ([11]). Let f : {0, 1}n → R be a pseudo-Boolean function. Then

(1) f(x) =
∑
S⊆[n]

mvf (S)
∏
i∈S

xi, for all x ∈ {0, 1}n.

Remark 3.2. Theorem 3.1 motivates the terminology “Möbius inverse of v” since
it implies in particular that for every S ⊆ [n], v(S) =

∑
T⊆S

mv(T ).

The following result is well known and easy to verify (see, e.g., [15] for the case
of order-preserving pseudo-Boolean functions).

Lemma 3.3. Let f : {0, 1}n → R be a pseudo-Boolean function and consider its
corresponding set function vf . If xi is inessential in f , then mvf (S) = 0 whenever
i ∈ S. In particular, f depends on xi if and only if xi appears in the multilinear
polynomial representation (1) of f .

There are several ways of extending a pseudo-Boolean function f : {0, 1}n → R to
a function on R. Perhaps the most natural is the multilinear polynomial extension.
The Owen extension [16] (or multilinear extension) of a pseudo-Boolean function
f : {0, 1}n → R is the mapping Pf : Rn → R defined by

Pf (x) =
∑
S⊆[n]

mvf (S)
∏
i∈S

xi, for all x ∈ Rn.

Clearly, f coincides with the restriction of Pf to {0, 1}n.
Another extension of pseudo-Boolean functions to functions on R is the so-called

“Lovász extension”. This terminology is due to Singer [19] who refined a result by
Lovász [14] concerning convex functions. The Lovász extension of a pseudo-Boolean
function f : {0, 1}n → R is the mapping Ff : Rn → R defined by

Ff (x) =
∑
S⊆[n]

mvf (S)
∧
i∈S

xi, for all x ∈ Rn.

Observe that the Lovász extension of a pseudo-Boolean function f is the unique
extension of f which is linear on the “standard simplices”

Rnσ = {x ∈ Rn : xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)},

for any permutation σ on [n] (see [10]).
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Remark 3.4. The defining expressions of Owen and Lovász extensions differ only
in the fact that the connecting operations between variables are the product and the
minimum, respectively. In the sequel, this observation can be used to translate the
results concerning Lovász extensions into analogous results about Owen extensions.

Remark 3.5. Every function F : Rn → R of the form

(2) F (x) =
∑
S⊆[n]

m(S)
∧
i∈S

xi,

where m : 2[n] → R is the Lovász extension of a unique pseudo-Boolean function,
namely, f = F |{0,1}n . Therefore, we shall refer to any map of the form (2) as a
Lovász extension.

Theorem 3.6. Let f : {0, 1}n → R be a pseudo-Boolean function. Then the i-th
variable is essential in f if and only if the i-th variable is essential in Ff .

Proof. As observed, f coincides with Ff on {0, 1}n, and thus if the i-th variable is
inessential in Ff , then the i-th variable is inessential in f .

Conversely, if the i-th variable is inessential in f , then by Lemma 3.3 it follows
that xi does not appear in the defining expression of Ff . Hence, the i-th variable
is inessential in Ff . �

Corollary 3.7. Let f : {0, 1}n → R be a pseudo-Boolean function. Then gap f =
gapFf . In particular, gapFf ≤ 2.

Using Theorems 2.2 and 2.3, we obtain the following explicit descriptions of those
Lovász extensions that have arity gap 2.

Theorem 3.8. Assume that F : Rn → R is a Lovász extension that depends on all
of its variables. Then gapF = 2 if and only if F is of one of the following forms:

(i) F ≡ a− b
2

∑
S⊆[n]

(
(−2)|S| ·

∧
i∈S

xi
)
,

(ii) F ≡ a+ (b− a)x1 + (a− b)(x1 ∧ x2),
(iii) F ≡ a+ (b− a)

(
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

)
+ 2(a− b)(x1 ∧ x2 ∧ x3),

(iv) F ≡ a+ (b− a)(x1 + x2) + (a− b)
(
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

)
+ 2(b− a)(x1 ∧ x2 ∧ x3),

(v) F ≡ a+ (b− a)x1 + (c− a)x2 + (2a− b− c)(x1 ∧ x2),

for some a, b, c ∈ R. Otherwise gapF = 1.

Note that since F is assumed to depend on all of its variables, for functions of
the form (i)–(iv) it holds that a 6= b, and for functions of the form (v) it holds that
{a, b, c} 6= {a}.

Proof. Let f : {0, 1}n → R be the pseudo-Boolean function determined by F . By
Theorems 2.2 and 2.3, gap f = 2 if and only if

(i) f ≡ (b− a)(x1 ⊕ · · · ⊕ xn) + a,
(ii) f ≡ (b− a)(x1x2 ⊕ x1) + a,

(iii) f ≡ (b− a)(x1x2 ⊕ x1x3 ⊕ x2x3) + a,
(iv) f ≡ (b− a)(x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ x2) + a, or
(v) f : {0, 1}2 → R is nonconstant such that f(0, 0) = f(1, 1), say, f(0, 0) =

f(1, 1) = a, f(1, 0) = b and f(0, 1) = c,

where ⊕ denotes addition modulo 2, and a, b, c ∈ R. The theorem now follows by
computing the Möbius transform of vf in each possible case. �

Corollary 3.9. A nondecreasing Lovász extension F : Rn → R has arity gap 2 if
and only if

(3) F ≡ a+ (b− a)
(
(x1 ∧ x2) + (x1 ∧ x3) + (x2 ∧ x3)

)
+ 2(a− b)(x1 ∧ x2 ∧ x3).

Otherwise gapF = 1.
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Techniques similar to those developed in this section were successfully used in [5]
to classify the class of lattice polynomial functions, i.e., functions which can be
obtained as compositions of the lattice operations and variables (projections) and
constants. A well-known example of a lattice polynomial function on a distributive
lattice A is the median function med: A3 → A given by

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

As shown in [5], lattice polynomial functions with arity gap 2 are exactly the trun-
cated median functions.

Theorem 3.10 ([5]). Let f : An → A be a lattice polynomial function on a bounded
distributive lattice A. Then gap f = 2 if and only if

f ≡ (a ∨med(x1, x2, x3)) ∧ b,
for some a, b ∈ A, a < b. Otherwise gap f = 1.

In the next section, we extend these results to the more general class of order-
preserving maps between possibly different ordered sets A and B.

4. The arity gap of order-preserving functions

Let (A;≤) be a partially ordered set. We say that (A;≤) is

• upwards directed if every pair of elements of A has an upper bound,
• downwards directed if every pair of elements of A has a lower bound,
• bidirected if (A;≤) is both upwards directed and downwards directed,
• pseudo-directed if every pair of elements of A has an upper bound or a lower

bound.

Remark 4.1. In the above definitions, existence of a least upper bound or a great-
est lower bound is not stipulated. Therefore, an upwards (or downwards) directed
poset is not the same thing as a semilattice, nor is a bidirected poset the same thing
as a lattice. However, every semilattice is either upwards or downwards directed,
and every lattice and every bounded poset is bidirected. Moreover, every upwards
directed or downwards directed poset is pseudo-directed.

Let (A;≤A) and (B;≤B) be partially ordered sets. A function f : An → B
is said to be order-preserving (with respect to the partial orders ≤A and ≤B) if
for all a,b ∈ An, f(a) ≤B f(b) whenever a ≤A b, where a ≤A b denotes the
componentwise ordering of tuples, i.e., a ≤A b if and only if ai ≤A bi for all
i ∈ {1, . . . , n}.
Lemma 4.2. Let (A;≤A) be a pseudo-directed poset, and let f : An → B be a
function. If xi is essential in f then there are elements a1, . . . , an, bi ∈ A such that
ai <A bi and

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, bi, ai+1, . . . , an).

Moreover, if B is partially ordered by ≤B and f is order-preserving with respect to
≤A and ≤B, then

f(a1, . . . , ai−1, ai, ai+1, . . . , an) <B f(a1, . . . , ai−1, bi, ai+1, . . . , an).

Proof. Since xi is essential in f , there exist elements a1, . . . , ai−1, a
′, b′, ai+1, . . . , an ∈

A such that

f(a1, . . . , ai−1, a
′, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b

′, ai+1, . . . , an).

By the assumption that (A;≤) is pseudo-directed, a′ and b′ have an upper bound
or a lower bound. Assume first that a′ and b′ have an upper bound c. We clearly
have that

f(a1, . . . , ai−1, a
′, ai+1, . . . , an) 6= f(a1, . . . , ai−1, c, ai+1, . . . , an) or(4)

f(a1, . . . , ai−1, b
′, ai+1, . . . , an) 6= f(a1, . . . , ai−1, c, ai+1, . . . , an).(5)
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The claim thus follows by choosing bi := c and ai := a′ if (4) holds or ai := b′ if
(5) holds.

Otherwise a′ and b′ have a lower bound, and a similar argument shows that the
claim holds also in this case.

If f is order-preserving with respect to ≤A and ≤B , then we have in fact that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) <B f(a1, . . . , ai−1, bi, ai+1, . . . , an). �

Lemma 4.3. Let (A;≤A) be a bidirected poset, let (B;≤B) be any poset, and let
f : An → B (n ≥ 2) be an order-preserving function that depends on all of its vari-
ables. Then, for all i, j ∈ {1, . . . , n} (i 6= j), xj is essential in fi←j. Furthermore,
if i < j, then there exist elements c, d, a1, . . . , an ∈ A such that c <A d and

(6) f(a1, . . . , ai−1, c, ai+1, . . . , aj−1, c, aj+1, . . . , an)

<B f(a1, . . . , ai−1, d, ai+1, . . . , aj−1, d, aj+1, . . . , an).

Proof. Assume, without loss of generality, that i = 1, j = 2. Since x1 is essential
in f , by Lemma 4.2 there exist elements a1, . . . , an, b1 ∈ A such that a1 <A b1 and
f(a1, a2, . . . , an) <B f(b1, a2, . . . , an). By the assumption that (A;≤) is bidirected,
there exist a lower bound c of a1 and a2 and an upper bound d of b1 and a2. Again,
by the monotonicity of f ,

f1←2(a1, c, a3, . . . , an) = f(c, c, a3, . . . , an) ≤B f(a1, a2, a3, . . . , an)

<B f(b1, a2, a3, . . . , an) ≤B f(d, d, a3, . . . , an) = f1←2(a1, d, a3, . . . , an),

which shows that x2 is essential in f1←2 and inequality (6) holds. �

Proposition 4.4. Let (A;≤A) be a bidirected poset, let (B;≤B) be any poset, and
let f : An → B (n ≥ 2) be an order-preserving function that depends on all of its
variables. Then qa f ≥ n− 1 and f |An

=
is not determined by oddsupp.

Proof. Suppose first, on the contrary, that qa f = n− p for some p ≥ 2. Let g be a
support of f with essential arity n−p. Then g has at least two inessential variables,
say xi and xj , and these variables are clearly inessential in gi←j as well. But, since
fi←j = gi←j , this constitutes a contradiction to Lemma 4.3 which asserts that xj
is essential in fi←j .

Suppose then, on the contrary, that f |An
=

is determined by oddsupp. Then

f |An
=

= f∗ ◦ oddsupp for some f∗ : 2A → B. We clearly have that for all c,
d, a3, . . . , an ∈ A, oddsupp(c, c, a3, . . . , an) = oddsupp(d, d, a3, . . . , an) (note that
(c, c, a3, . . . , an), (d, d, a3, . . . , an) ∈ An=); hence f(c, c, a3, . . . , an) = f(d, d, a3, . . . ,
an). This contradicts Lemma 4.3. �

Proposition 4.5. Let (A;≤A) be a bidirected poset, let (B;≤B) be any poset, and
let f : A3 → B be an order-preserving function that depends on all of its variables.
Then gap f = 2 if and only if there is a nonconstant order-preserving unary function
h : A→ B such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

Proof. By Theorem 2.5, the condition is sufficient. For necessity, assume that
gap f = 2. Then, by Theorem 2.5, there is a nonconstant unary function h : A→ B
and i1, i2, i3 ∈ {0, 1} such that

f(x1, x0, x0) = h(xi1), f(x0, x1, x0) = h(xi2), f(x0, x0, x1) = h(xi3).

We claim that i1 = i2 = i3 = 0. Suppose, on the contrary, that i1 = 1. By
Lemma 4.3, there exist elements a, b, c ∈ A such that b <A c and f(a, b, b) <B
f(a, c, c), but this is a contradiction to f(a, b, b) = h(a) = f(a, c, c). Similarly, we
can derive a contradiction from the assumption that i2 = 1 or i3 = 1.

The monotonicity of h follows from the monotonicity of f . For, if a ≤A b, then

h(a) = f(a, a, a) ≤B f(b, b, b) = h(b). �
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Theorem 4.6. Let (A;≤A) be a bidirected poset, let (B;≤B) be any poset, and
let f : An → B (n ≥ 2) be an order-preserving function that depends on all of
its variables. Then gap f = 2 if and only if n = 3 and there is a nonconstant
order-preserving unary function h : A→ B such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

Otherwise gap f = 1.

Proof. Immediate consequence of Theorem 2.5 and Propositions 4.4 and 4.5. �

By imposing stronger assumptions on the underlying posets, we obtain more
stringent descriptions of order-preserving functions with arity gap 2.

Lemma 4.7. Let (A;≤A) and (B;≤B) be lattices, and let h : A → B be a lattice
homomorphism. Let f : A3 → B be an order-preserving function such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

If the homomorphic image of (A;≤A) by h is a distributive sublattice of (B;≤B),
then f = med

(
h(x1), h(x2), h(x3)

)
, where med denotes the ternary median function

on Imh.

Proof. By the monotonicity of f and the assumption that A is a lattice, we have
that for all a1, a2, a3 ∈ A,

h(a1 ∧ a2) = f(a1 ∧ a2, a1 ∧ a2, a3) ≤ f(a1, a2, a3)

≤ f(a1 ∨ a2, a1 ∨ a2, a3) = h(a1 ∨ a2).

A similar argument shows that for all i, j ∈ {1, 2, 3}, we have

h(ai ∧ aj) ≤ f(a1, a2, a3) ≤ h(ai ∨ aj).
By the assumption that B is a lattice, it follows from the above inequalities that

h(a1 ∧ a2) ∨ h(a2 ∧ a3) ∨ h(a1 ∧ a3) ≤ f(a1, a2, a3)

≤ h(a1 ∨ a2) ∧ h(a2 ∨ a3) ∧ h(a1 ∨ a3).

Since h is a lattice homomorphism, we have that

h(a1 ∧ a2) ∨ h(a2 ∧ a3) ∨ h(a1 ∧ a3)

=
(
h(a1) ∧ h(a2)

)
∨
(
h(a2) ∧ h(a3)

)
∨
(
h(a1) ∧ h(a3)

)
,

(7)

h(a1 ∨ a2) ∧ h(a2 ∨ a3) ∧ h(a1 ∨ a3)

=
(
h(a1) ∨ h(a2)

)
∧
(
h(a2) ∨ h(a3)

)
∧
(
h(a1) ∨ h(a3)

)
.

(8)

By the assumption that Imh is a distributive sublattice of B, the right-hand sides
of (7) and (8) are equal, and they are actually equal to med

(
h(a1), h(a2), h(a3)

)
.

We conclude that f(a1, a2, a3) = med
(
h(a1), h(a2), h(a3)

)
. �

Corollary 4.8. Let (A;≤A) be a chain and let (B;≤B) be any lattice. Let f : An →
B be an order-preserving function. Then gap f = 2 if and only if n = 3 and
f = med

(
h(x1), h(x2), h(x3)

)
for some nonconstant order-preserving unary func-

tion h : A → B (here med denotes the median function on Imh). Otherwise
gap f = 1.

Proof. If f = med
(
h(x1), h(x2), h(x3)

)
, where h is as described in the statement,

then clearly gap f = 2. For the converse implication, assume that gap f = 2. By
Theorem 4.6, n = 3 and there is a nonconstant order-preserving unary function
h : A→ B such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

Since every order-preserving function h is a lattice homomorphism from a chain A to
any lattice B and the homomorphic image of A by h is a chain and hence a distribu-
tive sublattice of B, it follows from Lemma 4.7 that f = med(h(x1), h(x2), h(x3)).

The last claim follows from Theorem 4.6, which asserts that gap f ≤ 2. �
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To illustrate the use of the results obtained in this section, we present an alter-
native proof of Theorem 3.10.

Proof of Theorem 3.10. It is well-known that lattice polynomial functions are order-
preserving. Therefore Theorem 4.6 applies, and gap f ≤ 2. Assume, without loss of
generality, that ess f = n. Suppose that gap f = 2. Then, by Theorem 4.6, n = 3
and there is a nonconstant order-preserving unary function h : A→ A such that

f(x1, x0, x0) = f(x0, x1, x0) = f(x0, x0, x1) = h(x0).

Since f is a polynomial function, h is a polynomial function as well, and hence
h(x) = (a ∨ x) ∧ b for some a, b ∈ A, a < b. In particular, h is a lattice homomor-
phism. Since A is a distributive lattice, Imh is a distributive sublattice of A, and
Lemma 4.7 then implies that

f = med
(
h(x1), h(x2), h(x3)

)
= h

(
med(x1, x2, x3)

)
.

Clearly, if f has the above form, then gap f = 2. Since gap f ≤ 2, the last claim of
the theorem follows. �

As mentioned, the class of order-preserving functions includes the noteworthy
class of aggregation functions. Traditionally, an aggregation function on a closed
real interval [a, b] ⊆ R is defined as a mapping M : [a, b]n → [a, b] which is nonde-
creasing and fulfills the boundary conditions M(a, . . . , a) = a and M(b, . . . , b) = b.
From Corollary 4.8, we obtain the following.

Corollary 4.9. Let M : [a, b]n → [a, b] be an aggregation function on a real interval
[a, b]. Then gapM = 2 if and only if n = 3 and

M = med
(
h(x1), h(x2), h(x3)

)
for some nonconstant order-preserving unary function h : [a, b] → [a, b] satisfying
h(a) = a, h(b) = b. Otherwise gap f = 1.
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