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Abstract. We give combinatorial proofs for some identities involving binomial
sums that have no closed form.

1. Introduction

The main result of this paper is a combinatorial proof of the following identity for
0 ≤ r ≤ m

2
− 1:

⌊m
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)(
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r

)
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⌊ r
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)

+ (−1)
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.

The sum on the left-hand side appeared in connection with investigations about the
arity gap of polynomial functions [2]. There, only the fact that this sum is always
odd was needed, which is not hard to prove by induction. Clearly, the right-hand side
reveals a much stronger divisibility property.

In the course of the proof we will give three other expressions for the same sum.
Before presenting these, let us introduce the following notation.
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(
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r
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∑
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Wn,r = 2n−r

⌊ r
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(

n− 2− 2k
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)
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We will prove the following identities relating these five sums.

Theorem 1.1. For all 0 ≤ r ≤ m
2
− 1, we have

Sm,r = Tm−1−r,r = Um−1−r,r = Vm−1−r,r = Wm−1−r,r.

Nowadays, such identities can be proven automatically thanks to the machinery
developed by Petkovšek, Wilf and Zeilberger [6], but we believe that the problem of
finding combinatorial proofs in the spirit of [1] is still of interest. Let us mention that

1

http://www.fq.math.ca/48-4.html


2 M. SHATTUCK AND T. WALDHAUSER

the above sums have no closed form. Indeed, considering, e.g., f (n) = T2n,n, creative
telescoping [4, 9] finds the recurrence
(

24n2 + 44n+ 16
)

f (n) +
(

21n2 + 37n+ 14
)

f (n+ 1)−
(

3n2 + 7n+ 2
)

f (n+ 2) = 0,

and algorithm Hyper [5] shows that the only hypergeometric solutions of this recurrence
are the functions of the form f (n) = c (−1)

n
. Clearly, T2n,n is not such a function,

hence it does not have a hypergeometric closed form. This implies that Tn,r and
Tm−1−r,r do not have closed forms either, and then Theorem 1.1 shows that the other
four sums also do not have closed forms. However, Wm−1−r,r stands out from the five
expressions, since it is the only one where the number of summands is independent of
m; hence it may be regarded as a closed form, if m is considered as the only variable
(with r regarded as a parameter). Furthermore, one can show that the five expressions
in Theorem 1.1 have a common generating function

∑

m≥2r+2

Sm,rx
m =

x2r+2

(1− x)(1− 2x)r+1
,

for fixed r ≥ 0.
Let us also note that replacing i − 1 by i in Sm,r yields a simple closed form and

the resulting identity is one of the well-known Moriarty formulas [3, 7]:
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i

r
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(
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r

)

m
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.

Similarly, replacing j − 1 by j in Tn,r, we get the easy-to-prove identity
n
∑

j=r

(

n

j

)(

j

r

)

= 2n−r

(

n

r

)

.

The following table shows the value of Tn,r for n = 1, . . . , 10 and r = 0, . . . , 9.

0 1 2 3 4 5 6 7 8 9

1 1

2 3 1

3 7 5 1

4 15 17 7 1

5 31 49 31 9 1

6 63 129 111 49 11 1

7 127 321 351 209 71 13 1

8 255 769 1023 769 351 97 15 1

9 511 1793 2815 2561 1471 545 127 17 1

10 1023 4097 7423 7937 5503 2561 799 161 19 1

This table appears in OEIS (up to signs and other minor alterations) as A118801,
A119258 and A145661 [8]. The formula given for A118801 is equivalent to Wn,r, while
the formula given for A119258 is equivalent to Tn,r.

The proof of Theorem 1.1 will be presented in the next section as a sequence of six
propositions. First we define certain arrangements of dominos and squares, tiling a 1×
m board, and prove that the number of such arrangements is Sm,r (see Proposition 2.1
below). Then we define another kind of arrangement, where we tile a 1× n board by
three kinds of squares, and show that Tn,r, Un,r and Vn,r count the number of such
arrangements (Propositions 2.2, 2.3 and 2.4). In Proposition 2.5 we give a bijection
between the two kinds of arrangements with n = m−1−r, thereby proving the identity
Sm,r = Tm−1−r,r. Finally, we consider Wn,r in Lemma 2.6, perhaps the trickiest part
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of the proof; we give a bijection between two special subsets of arrangements, and in
Proposition 2.7 we use this bijection to prove the identity Tn,r = Wn,r. The title of
the paper is explained by the fact that several times in the course of the proof, squares
towards the right end of the board (e.g., squares after the last domino) will play a
crucial role.

Acknowledgments. The second named author acknowledges that the present project
is supported by the National Research Fund, Luxembourg, and cofunded under the
Marie Curie Actions of the European Commission (FP7-COFUND), and supported by
the Hungarian National Foundation for Scientific Research under grant no. K77409.

2. Proofs

We will consider coverings of a board of length m (i.e., a 1 × m “chessboard”) by
dominos and white and black squares:

Each domino covers two consecutive cells of the board, and the dominos may not be
turned around: the white part of the domino is always on the left. We will refer to
such coverings as arrangements, and we will denote by Dm,r the set of all arrangements
containing r dominos and m−2r squares such that the first (leftmost) cell of the board
is covered by a black square. We partition this set into two subsets depending on the
colors of the last squares, i.e., the colors of the squares to the right of the last (rightmost)
domino: let D−

m,r ⊆ Dm,r denote the set of those arrangements, where all squares to

the right of the last domino are black (if any), and let D+
m,r = Dm,r \ D

−
m,r denote the

set of those arrangements where there is at least one white square to the right of the
last domino (not necessarily immediately adjacent to the domino). Here is an example
of an arrangement belonging to D+

17,3:

In the following proposition we count the arrangements of D+
m,r.

Proposition 2.1. For all 0 ≤ r ≤ m
2
− 1, we have

∣

∣D+
m,r

∣

∣ = Sm,r.

Proof. We give an interpretation for the sum Sm,r that is in a one-to-one correspon-
dence with the arrangements in D+

m,r. First we choose 2i squares of our board of length
m (in this example m = 17 and i = 5):

Then we color the squares of the board one by one from left to right, starting with
black on the first square, and changing the color after every chosen square:

There are i−1 or i places on the board where the color is changing from white to black
(going from left to right), depending on whether or not the last square was among the
2i chosen squares (the above example corresponds to the second case). We choose r of
these places with the restriction that in the second case we are not allowed to choose
the last place (in this example r = 2):
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Clearly, the number of such colored boards with r marks over some white-to-black
color changes is Sm,r. Putting dominos in the r marked places such that the middle of
each domino is exactly at the place where the color changes from white to black (and
removing the marks), we obtain an arrangement belonging to D+

m,r:

This assignment is a bijection: to obtain the inverse, just put a mark over the middle
of each domino, and then remove the dots from the dominos. �

We will interpret Tn,r, Un,r and Vn,r using another arrangement. Let us cover a
board of length n with three kinds of squares: white squares, black squares and (white)
squares decorated by a triangle (for brevity, we will refer to the latter as a decorated
square):

Let Bn,r denote the set of those arrangements where the number of black squares is r,
and the final (rightmost) square is not black (i.e., it is either white or decorated). Just
as in the case of Dm,r, we consider the last squares, namely those squares to the right
of the last black square: let B−

n,r ⊆ Bn,r denote the set of those arrangements, where

all squares to the right of the last black square are white, and let B+
n,r = Bn,r \ B−

n,r

denote the set of those arrangements where there is at least one decorated square to
the right of the last black square (not necessarily immediately adjacent to the black
square). Here is an example of an arrangement belonging to B+

17,6:

Let us define the weight of an arrangement in Bn,r as follows. If the second-to-last
square of the board is not black, then the weight is 0 (recall that the last square is never
black). Otherwise, the weight is the length of the interval of consecutive black squares
ending at the second-to-last square of the board. The example above is of weight 0,
and the arrangement α appearing in the proof of Lemma 2.6 below is of weight 3. Let
Be
n,r,B

o
n,r denote the set of arrangements of even, odd weight, respectively, and let us

define the sets B+,e
n,r ,B

+,o
n,r ,B

−,e
n,r ,B

−,o
n,r by taking B+,e

n,r = B+
n,r ∩ Be

n,r, etc.

In the following three propositions, we count the arrangements in B+
n,r in three

different ways, thereby proving the identity Tn,r = Un,r = Vn,r.

Proposition 2.2. For all 0 ≤ r ≤ n− 1, we have
∣

∣B+
n,r

∣

∣ = Tn,r.

Proof. Choose j cells from the board, cover all other cells by white squares, cover the
last one of the chosen cells by a decorated square, and then put r black squares and
j − 1− r decorated squares on the remaining j − 1 chosen cells. �

Proposition 2.3. For all 0 ≤ r ≤ n− 1, we have
∣

∣B+
n,r

∣

∣ = Un,r.

Proof. We claim that the summand of Un,r counts those arrangements in B+
n,r where

the last decorated square appears on cell j. First let us observe that the squares to
the right of the last decorated square are all white, by the definition of B+

n,r. Thus, we
may choose the r black squares from the j − 1 squares to the left of the last decorated
square in

(

j−1
r

)

many ways, and then we may decorate the squares in an arbitrary

subset of the remaining j − 1− r squares in 2j−1−r many ways. �

Proposition 2.4. For all 0 ≤ r ≤ n− 1, we have
∣

∣B+
n,r

∣

∣ = Vn,r.

Proof. We claim that the summand of Vn,r counts those arrangements in B+
n,r where

the last black square appears on cell n− j; note that by the definition of B+
n,r, we have
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j ≥ 1. The preceding r−1 black squares can be chosen in
(

n−1−j

r−1

)

ways. The remaining
n− r squares can then either be white or decorated, with the restriction that at least
one of the j squares to the right of the last black square has to be decorated. Thus we
can determine the white and decorated squares in 2n−r−j

(

2j − 1
)

many ways, so the
total number of possibilities is

(

n− 1− j

r − 1

)

· 2n−r−j ·
(

2j − 1
)

,

as claimed. �

The next proposition relates the two kinds of arrangements considered so far and
proves Sm,r = Tm−1−r,r.

Proposition 2.5. For all 0 ≤ r ≤ m
2
− 1, we have

∣

∣D+
m,r

∣

∣ =
∣

∣B+
m−1−r,r

∣

∣.

Proof. We construct a bijection from D+
m,r to B+

m−1−r,r as follows. An arrangement in

D+
m,r naturally divides the board into black and white intervals (regarding a domino

as a white square followed by a black square). Let us mark the first square of each
interval:

Let us then replace each marked square by a decorated square unless it is part of a
domino (the right half of a domino is always marked, the left half may be marked or
unmarked), and replace each remaining black square by a white square, unless it is
part of a domino:

Clearly, the original coloring can be recovered from this new arrangement. Finally, we
remove the first square of the board, the left half of each domino, and the white dots
from the right halves of the dominos:

This new arrangement belongs to B+
m−1−r,r, since the first white square after the last

domino in the original arrangement becomes a decorated square in the new arrange-
ment.

The above construction is indeed a bijection and its inverse can be constructed as
follows. Given an arrangement in B+

m−1−r,r, replace each black square by a domino,

add a new black square to the left end of the board, and color the squares (outside the
dominos) from left to right, changing the color at each decorated square. �

It remains to prove that Tn,r = Wn,r. The key ingredient for the proof is given by
the following lemma.

Lemma 2.6. For all 0 ≤ r ≤ n− 1, we have
∣

∣B+,o
n,r

∣

∣ =
∣

∣B−,e
n,r

∣

∣+ (−1)
r+1

.

Proof. We give an “almost bijection” between the sets B+,o
n,r and B−,e

n,r , leaving one

arrangement out from B+,o
n,r if r is odd, and leaving one arrangement out from B−,e

n,r

if r is even. Let us consider an arrangement α ∈ B+,o
n,r ∪ B−,e

n,r of weight k, and let us
examine its last squares. The very last square (i.e., the rightmost square of the board)
is either white or decorated. Before that, there is a sequence of k black squares; let
us denote the first (leftmost) one of these squares by B. If k = 0, then let us define
B to be the last square of the board (no matter whether it is white or decorated).
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Walking from square B to the left, let us denote the first non-white (i.e., either black
or decorated) square by A, provided there is such a square:

α

BA

The conjugate arrangement α is constructed in the following way. If A is a decorated
square, then we replace A by a black square and B by a white square. If A is a black
square, then we replace A by a decorated square and replace the white square preceding
B by a black square (B remains unchanged). In addition, in both cases we change the
last square of the board: if it is a white square, then we change it to a decorated square;
if it is a decorated square, then we change it to a white square. The arrangement α in
the above example corresponds to the first case with k = 3 (α ∈ B+,o

n,r ):

α

α

Another example illustrating the second case with k = 0 (β ∈ B−,e
n,r ):

β

β

The conjugate arrangement is not defined if square A does not exist, i.e., if k = r

and all the squares to the left of the black squares are white. There is only one such
arrangement in B+,o

n,r ∪B−,e
n,r , namely the arrangement ε+ ∈ B+,o

n,r below if r is odd (here,

r = 5) and the arrangement ε− ∈ B−,e
n,r below if r is even (here, r = 6):

ε+

ε−

Conjugation is a permutation of order two on the set B+,o
n,r ∪ B−,e

n,r \ {ε+, ε−} that

changes the parity of the weight, and it also changes the “sign”of the arrangement1.
Therefore, if r is odd, then conjugation provides a bijection between B+,o

n,r \ {ε+} and

B−,e
n,r , hence

∣

∣B+,o
n,r

∣

∣ =
∣

∣B−,e
n,r

∣

∣ + 1. Similarly, if r is even, then conjugation provides a

bijection between B+,o
n,r and B−,e

n,r \ {ε−}, hence
∣

∣B+,o
n,r

∣

∣ =
∣

∣B−,e
n,r

∣

∣− 1. �

Proposition 2.7. For all 0 ≤ r ≤ n− 1, we have Tn,r = Wn,r.

Proof. We may express Tn,r with the aid of the previous lemma:

Tn,r =
∣

∣B+
n,r

∣

∣ =
∣

∣B+,e
n,r

∣

∣+
∣

∣B+,o
n,r

∣

∣ =
∣

∣B+,e
n,r

∣

∣+
∣

∣B−,e
n,r

∣

∣+ (−1)
r+1

=
∣

∣Be
n,r

∣

∣+ (−1)
r+1

.

It remains to prove that

∣

∣Be
n,r

∣

∣ =

⌊ r

2⌋
∑

k=0

2n−r

(

n− 2− 2k

r − 2k

)

.

We claim that the summand counts the arrangements in Bn,r of weight 2k. Such
an arrangement can be built as follows. First we put an interval of 2k black squares
on the board such that the last one of these black squares is the second-to-last square

1This is actually true for all arrangements in Bn,r \
{

ε
+
, ε

−

}

except for the “positive”ones of

weight 0.
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of the board. Then we have n− 2− 2k places where we can put the remaining r − 2k
black squares:

2kn− 2− 2k

Thus there are
(

n−2−2k
r−2k

)

possibilities regarding the placement of the black squares, and
each one of the remaining n − r squares can be either white or decorated, hence the
number of arrangements of weight 2k is indeed

2n−r

(

n− 2− 2k

r − 2k

)

.

�
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