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MINIMAL CLONES GENERATED BY MAJORITY OPERATIONS

TAMÁS WALDHAUSER

Abstract. The minimal majority functions of the four-element set are deter-

mined.

1. Introduction

A set C of finitary operations on a set A is a clone if it is closed under composition
of functions and contains all projections. In this paper we shall be concerned only
with clones on a finite set.

The set of all finitary operations onA is a clone as well as the set of all projections.
These are the largest and the smallest clones on A, the latter is often called the
trivial clone. The clone generated by a set F of finitary functions on A is the
intersection of all clones containing F , i.e. the smallest clone containing F . This
clone is denoted by [F ]. If F = {f} then we simply write [f ]. Clearly [F ] consists
of those functions which can be obtained from the elements of F and from the
projections by a finite number of compositions. In other words, [F ] is the set of
term functions of the algebra 〈A,F 〉.

We say that the n-ary function f preserves the relation ρ ⊆ Ak if for all ai,j ∈ A
(i = 1, . . . , k, j = 1, . . . , n)

(a11, a21, . . . , ak1) , (a12, a22, . . . , ak2) , . . . , (a1n, a2n, . . . , akn) ∈ ρ
implies

(f (a11, a12, . . . , a1n) , f (a21, a22, . . . , a2n) , . . . , f (ak1, ak2, . . . , akn)) ∈ ρ.
Preserving a relation is inherited when composing functions:

(1.1) If f preserves a relation ρ and g ∈ [f ], then g also preserves ρ.

An important special case is that of unary relations: f preserves B ⊆ A iff B is
closed under f . If f preserves all subsets of A then we say that f is conservative
(cf. [5]).

A clone is minimal if it has no proper subclones except for the trivial one. On
finite sets every clone contains a minimal one (cf. [6]). Obviously a clone is minimal
iff it is generated by every nontrivial member of it. (By a nontrivial function we
mean a function which is not a projection.) If C is a minimal clone and f is
nontrivial, and of minimum arity in C then we say that f is a minimal function
(cf. [7] p.408).

By a theorem of I. G. Rosenberg [7], every minimal clone (on a finite set) is
generated by a nontrivial minimal function f , for which one of the following holds:

1) f is unary and f2(x) ≈ f(x) or fp(x) ≈ x for some prime p.
2) f is binary idempotent, i.e. f(x, x) ≈ x.
3) f is ternary majority, i.e. f(x, x, y) ≈ f(x, y, x) ≈ f(y, x, x) ≈ x.
4) f is a semiprojection, i.e. there exists an i such that f(x1, x2, . . . , xn) = xi

whenever the arguments are not pairwise distinct.
5) f(x, y, z) = x+ y + z where 〈A,+〉 is a Boolean group.
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Note that in each case f cannot generate a nontrivial function which is of lesser
arity than f . This means that f is a minimal function iff [f ] is a minimal clone. In
cases 1) and 5) the conditions ensure the minimality of f , while in the other cases
they do not.

In [4] Post described all clones on a two-element set, in [1] B. Csákány determined
the minimal clones of a three-element set. For the four-element case binary minimal
clones were described by B. Szczepara in [8].

Conservative minimal majority and binary functions were determined on any
finite set by B. Csákány in [2].

In this paper we prove the following description of all the minimal majority
functions of a four-element set.

Theorem 1.1. If C is a minimal clone on a four-element set A and it contains
a majority function, then C = [f ] where f is either conservative or 〈A, f〉 ∼=
〈{1, 2, 3, 4},Mi〉 for some i ∈ {1, 2, 3} (see the table below).

M1 M2 M3

(1, 2, 3) 4 4 3
(2, 3, 1) 4 2 3
(3, 1, 2) 4 3 3
(2, 1, 3) 4 2 4
(1, 3, 2) 4 4 4
(3, 2, 1) 4 3 4
{1, 2, 4} 4 4 4
{1, 3, 4} 4 4 4
(4, 2, 3) 4 4 3
(2, 3, 4) 4 2 3
(3, 4, 2) 4 3 3
(2, 4, 3) 4 2 4
(4, 3, 2) 4 4 4
(3, 2, 4) 4 3 4

The middle two rows mean that if
{a, b, c} = {1, 2, 4} or {1, 3, 4}, then
Mi(a, b, c) = 4 for i = 1, 2, 3. For
the triplets not listed in the table the
majority rule defines the value of the
functions.

2. Majority functions on finite sets

If C is a clone which is generated by a majority function then we shall briefly
say that C is a majority clone.

Let A be a finite set and f be a majority function on A. We define the range of
f in the following way:

range(f) = { f(a, b, c) | a, b, c ∈ A are pairwise distinct } .

A simple induction argument shows that if g is a nontrivial function in a majority
clone, then g is a so-called near-unanimity function, i.e.

g(y, x, x, . . . , x, x) ≈ g(x, y, x, . . . , x, x) ≈ . . . ≈ g(x, x, x, . . . , x, y) ≈ x

(cf. (7) of [2]).
In Rosenberg’s theorem f cannot be a near-unanimity function except for the

majority case, so any minimal subclone of a majority clone is again a majority
clone. This means that in order to prove the minimality of a majority clone C, it
suffices to show that any two majority functions in C generate each other.

To show the nonminimality of a clone [f ] we will make use of the following facts.

Lemma 2.1. Let f be a majority function on A.

(2.1) If f is a minimal function and it preserves B ⊆ A then f |B must be a
minimal function on B.

(2.2) If a nontrivial g ∈ [f ] preserves some B ⊆ A but f does not, then [f ] is not
minimal.
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(2.3) If the range of some nontrivial g ∈ [f ] does not contain an element which
belongs to the range of f , then [f ] is not minimal. (Cf. Corollary 1.25 of
[9].)

Proof.

(2.1) Composing functions and restricting functions commute.
(2.2) This follows from (1.1).
(2.3) This also follows from (1.1) since a 6∈ range(g) iff g preserves the equivalence

relation whose blocks are {a} and A\{a}. �

We can use (2.1) for three-element set B because we know the minimal majority
clones for such set. These are described in [1] as follows. If C is a minimal majority
clone on a three-element set A, then there exists an f ∈ C such that

〈A, f〉 ∼= 〈{1, 2, 3},mi〉 for some i = 1, 2, 3,

where m1,m2,m3 are the following majority functions.
For {x0, x1, x2} = {1, 2, 3} we have

m1(x0, x1, x2) = 1
m2(x0, x1, x2) = x0
m3(x0, x1, x2) = xi+1 if xi = 1 (subscripts taken modulo 3).

The clones generated by m1,m2,m3 contain 1,3, and 8 majority functions re-
spectively; these are shown in the following table.

m1 m2 m3

(1, 2, 3) 1 1 2 3 2 3 2 2 3 2 3 3
(2, 3, 1) 1 2 3 1 2 2 2 3 3 3 3 2
(3, 1, 2) 1 3 1 2 2 2 3 2 3 3 2 3
(2, 1, 3) 1 2 1 3 3 3 2 3 2 2 3 2
(1, 3, 2) 1 1 3 2 3 2 3 3 2 3 2 2
(3, 2, 1) 1 3 2 1 3 3 3 2 2 2 2 3

Conservative minimal majority clones are described in [2] as follows:
If C is a conservative minimal majority clone then there exists an f ∈ C such

that for every three-element B ⊆ A there is an iB ∈ {1, 2, 3} such that

〈B, f |B〉 ∼= 〈{1, 2, 3},miB 〉.
Now we formulate a theorem which helps us reducing the number of functions

to be checked, when searching for minimal clones.

Theorem 2.2. Let f be a majority function on a finite set A. Then there exists a
majority function g ∈ [f ] which satisfies the following identity:

(∗) g
(
g(x, y, z) , g(y, z, x) , g(z, x, y)

)
≈ g(x, y, z).

Proof. We define functions f (k) (k ≥ 1) in the following way:

f (1)(x, y, z) = f(x, y, z),

f (k+1)(x, y, z) = f
(
f (k)(x, y, z) , f (k)(y, z, x) , f (k)(z, x, y)

)
.

We assert that

f (k+l)(x, y, z) ≈ f (k)
(
f (l)(x, y, z) , f (l)(y, z, x) , f (l)(z, x, y)

)
for k, l ≥ 1.

This can be proved by induction on k; the proof is left to the reader. Let us
define a binary operation ∗ on the set D =

{
f (k) : k ∈ N

}
as follows:(

f (k) ∗ f (l)
)
(x, y, z) = f (k)

(
f (l)(x, y, z) , f (l)(y, z, x) , f (l)(z, x, y)

)
.

The above assertion means that the map k 7→ f (k) is a homomorphism from
〈N,+〉 to 〈D, ∗〉. So the latter is a finite semigroup, hence it has an idempotent
element, say f (k)∗f (k) = f (k). And this is just the desired identity for g = f (k). �



4 T. WALDHAUSER

Now we introduce some more notation. The function g = f (k) which corresponds

to f in the theorem will be denoted by f̂ . We put 〈abc〉 = {(a, b, c), (b, c, a), (c, a, b)},
and we will use the symbol f |〈abc〉 ≡ u to mean that f(a, b, c) = f(b, c, a) =
f(c, a, b) = u, and f |〈abc〉 = p to mean that f(a, b, c) = a, f(b, c, a) = b, f(c, a, b) = c.

The following lemma tells us what identity (∗) means for a majority function.

Lemma 2.3. Let f be a majority function satisfying (∗) and let a, b, c be pairwise
distinct elements of A. Let u = f(a, b, c), v = f(b, c, a), w = f(c, a, b). Then
|{u, v, w}| 6= 2 and if u, v, w are pairwise different, then f |〈uvw〉 = p.

Proof. To prove the first statement, let us suppose (without loss of generality)
that u = v 6= w. Then (∗) for x = c, y = a, z = b yields that f(w, u, v) = w,
contradicting the majority property of f .

The second statement of the lemma follows similarly from (∗). �

We can say a bit more then Lemma 2.3 when f is a minimal function.

Theorem 2.4. If f is a minimal majority function satisfying (∗) and u = f(a, b, c),
v = f(b, c, a), w = f(c, a, b) are pairwise different then f |〈uvw〉 = p and also
f |〈vuw〉 = p.

Proof. By the previous lemma we have f |〈uvw〉= p. Now the nontrivial superposi-
tion g(x, y, z) = f(f(x, y, z), f(x, z, y), x) preserves {u, v, w} hence f does too, and
then from the description of the minimal majority functions on the three-element
set we get the conclusion of the theorem. �

3. The four-element case

We have seen that every conservative minimal majority clone is generated by a
function f having the following property:

(3.1) f |〈abc〉 ≡ u or f |〈abc〉 = p

for every a, b, c ∈ A with a suitable u (depending of course, on a, b, c).
One would hope that it holds for nonconservative clones too. In the first part of

this section we are going to try to prove this for a four-element A. It will turn out,
that the conjecture is not true, but (in the four-element case) there is essentially
only one exception. In the second part we determine the minimal ones among the
functions satisfying property (3.1), and in the third part we prove the minimality
of the clones we have found.

3.1.

Let S denote the set of those majority functions on the set A = {1, 2, 3, 4} for
which (3.1) holds for any a, b, c ∈ A.

In this section we will show that a minimal majority function which satisfies (∗)
must belong to the set S, or it is isomorphic to M2. Since we will consider the
values of the functions on the set {1, 2, 3}, we introduce one more notation. Let
[p, q, r; s, t, u] denote the set of majority functions f on A for which f(1, 2, 3) = p,
f(2, 3, 1) = q, f(3, 1, 2) = r, f(2, 1, 3) = s, f(1, 3, 2) = t, f(3, 2, 1) = u. If
we do not want to specify all these six values of f , than we will use ∗ to indi-
cate an arbitrary element of A. For example f ∈ [4, ∗, ∗; ∗, ∗, ∗] means just that
f(1, 2, 3) = 4. The letters a, b, c, d will always denote arbitrary distinct elements of
A, i.e. {1, 2, 3, 4} = A = {a, b, c, d}.

First we define and examine a superposition which we will use frequently later
on. For a ternary function f let fx, fy, fz stand for the composite functions where
the first, second resp. third variable of f is replaced by f itself.

fx(x, y, z) = f(f(x, y, z), y, z)

fy(x, y, z) = f(x, f(x, y, z), z)

fz(x, y, z) = f(x, y, f(x, y, z))
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We will briefly write fzy instead of (fz)y. We will also use the convention that

lower indices have priority to upper ones. So f
(2)
zy means (fzy)(2) and not (f (2))zy,

and also f̂zy stands for (̂fzy).
The proof of the following lemma is just a straightforward calculation, so we

omit it.

Lemma 3.1. If f(a, b, c) 6= d then fzy(a, b, c) = f(a, b, c). If this is not the
case, then fzy(a, b, c) = f(a, b, d) if the latter does not equal d. If it does, then
fzy(a, b, c) = f(a, d, c) if it is not b. If f(a, d, c) = b then fzy(a, b, c) = f(a, d, b).

From now on f will always denote an arbitrary majority function on A, satisfying
(∗). In the following lemma we prove a nice property of f , then through five claims
we reach the main result of this section, which is stated in Theorem 3.8. Let us
recall that 〈abc〉 is just the set {(a, b, c), (b, c, a), (c, a, b)}, hence f(〈abc〉) denotes
{f(a, b, c), f(b, c, a), f(c, a, b)}.

Lemma 3.2. If f is minimal and f(〈abc〉) ⊆ {a, b, c} then either f |〈abc〉= p and
f |〈bac〉= p or f |〈abc〉≡ u and f |〈bac〉≡ v for some u, v ∈ A.

Proof. The set f(〈abc〉) has three or one elements by Lemma 2.3. If it has three
elements then it is {a, b, c}, and then by Theorem 2.4 we have f |〈abc〉= p and
f |〈bac〉= p. In the latter case we may suppose f |〈abc〉≡ a. If d /∈ f(〈bac〉) then f
preserves {a, b, c} and then the description of the minimal majority functions on the
three-element set yields f |〈bac〉≡ v. If a ∈ f(〈bac〉) then we permute cyclically the

variables to have f(b, a, c) = a, and then g(2) preserves {a, b, c} for the superposition
g of Theorem 2.4, contradicting the minimality of f . Finally, if a /∈ f(〈bac〉)
but d ∈ f(〈bac〉) then f(〈bac〉) = {b, c, d}. Now we may suppose f(b, a, c) = c,
f(a, c, b) = d, f(c, b, a) = b or f(b, a, c) = b, f(a, c, b) = d, f(c, b, a) = c after a
cyclic permutation of variables. In the first case g, in the second case g(2) shows
that f is not minimal, since they preserve {a, b, c}. �

Claim 3.3. In either of the following four cases f is not minimal.

(1) f ∈ [4, 2, 1; ∗, ∗, ∗]
(2) f ∈ [4, 1, 2; ∗, ∗, ∗]
(3) f ∈ [4, 1, 3; ∗, ∗, ∗]
(4) f ∈ [4, 3, 1; ∗, ∗, ∗]

Proof.

(1) Lemma 3.1 shows that fzy preserves {1, 2, 3} (and hence f is not min-
imal) except when f(3, 2, 1) = 4, f(3, 2, 4) = 4 and f(3, 4, 1) = 4 or
f(3, 4, 1) = 2, f(3, 4, 2) = 4. Let us examine the set f(〈213〉). It has
one or three elements by Lemma 2.3. If it is {1}, {2} or {3}, then Lemma
3.2 shows that f cannot be minimal. If we have f |〈213〉≡ 4, then we can
compute that fzy ∈ [1, 2, 1; 2, u, 4], where u 6= 4. Depending on whether

u = 2, 3, 1 resp. it can be shown that f̂zy or fzy(y, z, fzy(x, y, z)) preserves

{1, 2, 3} or f̂zy is not minimal by Lemma 3.2. Now let us suppose that
f(〈213〉) is a three-element set. If it is {1, 3, 4}, then Theorem 2.4 implies
f |〈341〉= p, hence f(3, 4, 1) = 3, but we have seen that it is 4 or 2. Sim-
ilarly f(〈213〉) = {1, 2, 3}, {2, 3, 4} is also impossible. So f(〈213〉) can be
nothing else but {1, 2, 4}. Since f(3, 2, 1) = 4 there are only two possibili-
ties: f ∈ [4, 2, 1; 1, 2, 4] or f ∈ [4, 2, 1; 2, 1, 4], and then fzy ∈ [1, 2, 1; 1, 2, 4]

or fzy ∈ [1, 2, 1; 2, 1, 4]. In both cases Lemma 3.2 yields that f̂zy is not
minimal, hence neither is f , and we have finished the proof.

(2) Here we can use the same argument, the only difference is that in this case
fzy ∈ [1, 1, 2; ∗, ∗, ∗].

(3) The function f(x, z, y) is isomorphic to a function which is not minimal by
case (1). (We shall note here that changing the second and third variable
does not influence the identity (∗).)
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(4) Now f(x, z, y) falls under case (2) after renaming the elements of the base
set. �

Claim 3.4. If f ∈ [4, 3, 2; ∗, ∗, ∗] then f is not minimal.

Proof. Just as in the previous claim, we examine f(〈213〉). If it is {1}, {2}, {3}
or {1, 2, 3} then Lemma 3.2 shows that f is not minimal. If f |〈213〉≡ 4 then
g(x, y, z) = f(z, y, f(x, y, z)) ∈ [3, 3, 2;u, 2, v]. If none of u and v equals 4, then

g preserves {1, 2, 3}. If u 6= 3 then ĥ does, for h(x, y, z) = g(g(x, y, z), z, x). Only
u = 3, v = 4 remains, but in this case ĝ ∈ [3, 3, 3; 2, 4, 3], and it is not a mini-
mal function by Lemma 3.2. Now let us suppose that f(〈213〉) is a three-element
set containing 4. If it is {1, 2, 4}, then according to Claim 3.3, we must have
f ∈ [4, 3, 2; 2, 1, 4] or f ∈ [4, 3, 2; 1, 2, 4], and in both cases fzy preserves {1, 2, 3}.
Similarly f(〈213〉) = {1, 3, 4} implies f ∈ [4, 3, 2; 4, 1, 3] or f ∈ [4, 3, 2; 4, 3, 1], and
again fzy preserves {1, 2, 3}. Finally, if f(〈213〉) = {2, 3, 4} then f ∈ [4, 3, 2; 3, 4, 2]
or f ∈ [4, 3, 2; 2, 4, 3]. In the first case g(x, y, z) = f(z, y, f(x, y, z)) preserves
{1, 2, 3}, in the second case ĝ does. �

Claim 3.5. If f ∈ [4, 2, 3; 2, 1, 4] or f ∈ [4, 2, 3; 4, 1, 3] then f is not minimal.

Proof. In the first case fz preserves {1, 2, 3}, in the second case fy does. �

Claim 3.6. If f ∈ [4, 2, 3; 2, 4, 3] then f = M2.

Proof. Lemma 2.3 yields f |〈234〉= p and f |〈324〉= p. Let us put g(x, y, z) =
f(x, y, f(x, y, z)). Then g ∈ [f(1, 2, 4), 2, 3; 2, f(1, 3, 4), 3]. If none of f(1, 2, 4),
f(1, 3, 4) equals 4 then g preserves {1, 2, 3}. If one of them equals 4, the other not,
then ĝ is not minimal by Lemma 3.2. So we must have f(1, 2, 4) = f(1, 3, 4) = 4.
In the same way we get f(2, 1, 4) = f(3, 1, 4) = 4, f(1, 4, 2) = f(1, 4, 3) = 4, etc.
by using g(x, y, z) = f(y, x, f(x, y, z)), f(x, f(x, y, z), y) etc. �

Claim 3.7. If f ∈ [4, 2, 3; 4, 4, 4] then f is not minimal.

Proof. If fzy(2, 1, 3) = 1 then for h(x, y, z) = fzy(z, x, fzy(x, y, z)) either ĥ preserves
{1, 2, 3} or fails to be minimal by Lemma 3.2. If fzy(2, 1, 3) 6= 1 then the same
holds for fzy itself, except when fzy ∈ [4, 2, 3; 2, 4, 3]. In this case Claim 3.6 yields
fzy = M2. We will see later that the clone generated by M2 contains only three
majority functions, and none of them equals f . �

Theorem 3.8. Any minimal nonconservative majority function on A which satis-
fies (∗) is isomorphic to M2 or it belongs to the set S.

Proof. Let f be a function as stated in the theorem. According to Claim 3.3 and
Claim 3.4, for every a, b, c if neither f |〈abc〉= p nor f |〈abc〉≡ u holds, then we must
have that on two of the three triplets of 〈abc〉 the value of f equals the first variable,
while on the third one f equals d. If f /∈ S then this case really appears, so we
can suppose (after an isomorphism if necessary) that f(1, 2, 3) = 4, f(2, 3, 1) = 2,
f(3, 1, 2) = 3. Now if 4 /∈ f(〈213〉) then we get a contradiction by Lemma 3.2. If
f |〈213〉≡ 4 than Claim 3.7 implies that f is not minimal. So f(〈213〉) must be a
three-element set containing 4, and then again by Claims 3.3 and 3.4 we must have
f ∈ [4, 2, 3; 2, 1, 4], f ∈ [4, 2, 3; 4, 1, 3], or f ∈ [4, 2, 3; 2, 4, 3]. The first two of these
is impossible by Claim 3.5, and in the third case Claim 3.6 shows that f equals
M2. �

3.2.

In this section we are going to search for the minimal functions of the set S.
The conservative ones are already described, so we deal only with nonconservative
functions. We assume f to be such a function and we will prove several properties of
f , until we find that only a few functions (essentially two) possess these properties,
and these happen to be minimal.
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Definition 3.9. A ternary function g is said to be cyclically commutative if it is
invariant under the cyclic permutation of variables, i.e.

g(x, y, z) ≈ g(y, z, x) ≈ g(z, x, y).

Claim 3.10. The function f is cyclically commutative.

Proof. For contradiction, let us suppose f |〈124〉= p, and then by Lemma 3.2 we
have also f |〈214〉= p. Since f is not conservative, we may also suppose (with-
out loss of generality) that f |〈123〉≡ 4, and again by Lemma 3.2 we must have
f |〈213〉≡ u. First let us suppose u 6= 4. Then fzy preserves {1, 2, 3} except when
f(3, 1, 2) = f(3, 1, 4) = f(3, 4, 2) = 4 or f(3, 1, 2) = f(3, 1, 4) = f(3, 4, 1) = 4 and

f(3, 4, 2) = 1. In the first case f̂zy ∈ [1, 2, 4;u, u, u] so it is not a minimal function

by Lemma 3.2, while in the second case fzy ∈ [1, 1, 4;u, u, u], hence f̂zy preserves
{1, 2, 3}. If u = 4 then we have also fzy ∈ [1, 2, 4; ∗, ∗, ∗] or fzy ∈ [1, 1, 4; ∗, ∗, ∗] or
fzy(〈123〉) ⊆ {1, 2, 3}. The first case is impossible, since then Theorem 3.8 implies

that f̂zy is isomorphic to M2, but then f /∈ [f̂zy] shows that f is not minimal.
(In fact, the clone generated by M2 contains no function from S except for the
first projection.) For 〈213〉 we have also three possibilities: fzy ∈ [∗, ∗, ∗; 2, 1, 4],
fzy ∈ [∗, ∗, ∗; 2, 2, 4] and fzy(〈213〉) ⊆ {1, 2, 3}. The first one of these is impossible

for the same reason as above. In the remaining cases f̂zy preserves {1, 2, 3}. �

In the following we suppose f to be a nonconservative cyclically commutative
minimal majority function on A. In [3] these are determined by computer, here we
give a straightforward description. We again suppose f |〈123〉≡ 4, and f |〈213〉≡ u.
First we show that f preserves {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.

Claim 3.11. The only subset of A not preserved by f is {1, 2, 3}.

Proof. We separate two cases upon u.

Case 1. f |〈213〉≡ u 6= 4. For contradiction let us suppose that f does not preserve

{1, 2, 4}. Then f |〈214〉≡ 3 or f |〈124〉≡ 3. In the first case f(y, x, f(x, y, z)(2) pre-

serves {1, 2, 3} or {1, 2, 4}, in the second case f(x, fz(x, y, z), z)(2) or fz preserves
{1, 2, 3} depending on whether 4 ∈ {f(2, 3, 4), f(3, 1, 4)} or not.
Case 2. f |〈213〉≡ 4. What we have already proved of this claim means that if
f |〈abc〉≡ d and f |〈bac〉≡ a then f preserves the other three subsets of A, namely
{a, b, d}, {a, c, d}, {b, c, d}. So if we again suppose that f does not preserve {1, 2, 4}
then we must have f |〈124〉≡ 3 and f |〈214〉≡ 3. Similarly, f |〈234〉≡ 1 if and only if

f |〈324〉≡ 1 and f |〈134〉≡ 2 iff f |〈314〉≡ 2. One can check that fz or f̂z preserves
{1, 2, 3} or {1, 2, 4} except for only two functions (up to isomorphism and permu-
tation of variables). For both of them f |〈134〉≡ 3 and f |〈314〉≡ 4, and for one we
have f |〈234〉≡ 1 and f |〈324〉≡ 1, for the other one f |〈234〉≡ 4 and f |〈324〉≡ 3. In both

cases f̂z ∈ [4, 4, 4; 3, 3, 3], hence by Case 1 it preserves {1, 2, 4}. We supposed that f

does not preserve this set, so f /∈ [f̂z] and this contradicts the minimality of f . �

We have proved that if f ∈ S is a minimal function, then f is cyclically commu-
tative and preserves all but one three-element subsets of A. In the following two
claims – as usually – we suppose that f preserves {1, 2, 4}, {1, 3, 4}, {2, 3, 4} and
f |〈123〉≡ 4, f |〈213〉≡ u. Depending on whether u = 4 or not, we will finally reach
M1 and M3.

Claim 3.12. If f |〈213〉≡ u 6= 4 then 〈A; f〉 ∼= 〈A;M3〉.

Proof. We can suppose f |〈213〉≡ 3 without loss of generality. We also suppose

f |〈124〉≡ 4, f |〈314〉≡ 4, f |〈234〉≡ 4, since otherwise f̂zy preserves {1, 2, 3}. For
g(x, y, z) = f(y, x, f(x, y, z)) we have g ∈ [f(1, 2, 4), f(3, 2, 4), f(1, 3, 4); 4, 3, 3]. If
none of f(1, 2, 4), f(3, 2, 4), f(1, 3, 4) equals 4, then g(3) preserves {1, 2, 3}. If
there is a 4 amongst them, but 3 does not appear, then we put h(x, y, z) =
f(g(x, y, z), g(z, y, x), g(x, z, y)) and one calculate that the range of h(2) does not
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contain 4, hence f is not minimal by (2.3). Only nine functions remain; for
two of them g is isomorphic to M3, hence f is also. (The clone generated by
M3 contains only two functions from S, and only one of them can be equal to
f .) If g ∈ [2, 4, 3; 4, 4, 3] then g(y, g(y, z, x), g(x, y, z))(2) preserves {1, 2, 3}, if
g ∈ [1, 3, 4; 4, 4, 3] then g(g(x, y, z), y, g(y, z, x))(2) does so. In the remaining five
cases {1, 2, 3} is preserved by f(g(x, y, z), g(z, x, y), g(y, z, x)). �

Claim 3.13. If f |〈213〉≡ 4 then 〈A; f〉 ∼= 〈A;M1〉.

Proof. Let U = {f(1, 2, 4), f(3, 1, 4), f(2, 3, 4)} and V = {f(2, 1, 4), f(1, 3, 4),

f(3, 2, 4)}. If U 6= {4} and V 6= {4}, then f̂zy preserves {1, 2, 3}. If U = V = {4}
then f = M1. Now let us suppose U = {4} 6= V . If 4 /∈ V then f̂zy is not minimal

by Lemma 3.2. If this is not the case then by the previous claim f̂zy is isomorphic
to M3, but the clone [M3] contains no function which isomorphic to f . The case
V = {4} 6= U is similar. �

3.3.

We have now – up to isomorphism – only three functions: M1,M2,M3, and these
generate minimal clones.

Theorem 3.14. M1,M2,M3 are minimal functions on {1, 2, 3, 4}.

Proof. The proof is the same for all the three functions, so let f be any of them. This
function preserves the equivalence relation whose blocks are {1, 4}, {2}, {3}, and its
range does not contain the element 1. According to (1.1) and (2.3), the same is
valid for an arbitrary majority function g in [f ]. These properties determine g|{1,2,3}
provided g|{2,3,4} is given. Since f preserves {2, 3, 4} and f |{2,3,4} is minimal, there
exists an h ∈ [g] such that h|{2,3,4}=f |{2,3,4}. Now h has also the above mentioned
two properties, so h|{1,2,3} is uniquely determined: it can be nothing else than
f |{1,2,3}. On {1, 2, 4} and on {1, 3, 4} f is constant 4, consequently so are g and h,
hence h = f . Thus, for arbitrary g ∈ [f ], f ∈ [g] also holds, proving that [f ] is a
minimal clone. �

Remark. From the proof it is clear, that restriction to {2, 3, 4} gives a one-to-one
correspondence between the majority functions in [Mi] and [mi]. Hence these clones
contain also 1,3 or 8 majority functions. They can be seen in the following table.

M1 M2 M3

(1, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 1) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 1, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 1, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(1, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 1) 4 3 2 4 4 4 3 4 3 3 4 3
{1, 2, 4} 4 4 4 4 4 4 4 4 4 4 4 4
{1, 3, 4} 4 4 4 4 4 4 4 4 4 4 4 4
(4, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 4) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 4, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 4, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(4, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 4) 4 3 2 4 4 4 3 4 3 3 4 3
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