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Abstract. Our main result is that the subpower membership problem SMP(K)
is in P if K is a finite set of finite algebras with a cube term in a residually small
variety. We also prove that for any finite set of finite algebras K in a variety with
a cube term, the following three problems are polynomial time equivalent, and lie
in NP: SMP(K), SMP(HSK), and finding compact representations for subpowers
in K.

1. Introduction

Throughout the introduction we will only consider (classes of) algebras in a finite
language.

The subpower membership problem for a finite algebra A is the following com-
binatorial decision problem: given finitely many elements a1, . . . , ak and b in An,
determine whether b lies in the subalgebra B of An generated by {a1, . . . , ak}. A
naive algorithm for solving this problem is to generate all elements of B, and then
check whether b is in B. Since the size of the input a1, . . . , ak, b is (k + 1)n, while
the best upper bound for the size of B is |A|n, the time complexity of the naive
algorithm is exponential. In fact, it turns out that without further restrictions on
A, one cannot do better than the naive algorithm; in fact, it follows from the main
result of M. Kozik [11] that there exists a finite algebra A such that the subpower
membership problem for A is EXPTIME-complete.

In contrast, for finite algebras A in many familiar classes, the subpower mem-
bership problem is in P, that is, there is a polynomial time algorithm for solving
the problem. For example, if A is a group, then a variant of Sims’ algorithm (cf.
[7]) solves the problem in polynomial time. Other simple algorithms work if A is
a finite lattice or a finite lattice with additional operations (use the Baker–Pixley
Theorem [1]) or if A is a finite semilattice. A recent result of A. Bulatov, P. Mayr,
and M. Steindl [3] extends this observation on semilattices to any finite commutative
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semigroup A by showing that if A embeds into a direct product of a Clifford semi-
group and a nilpotent semigroup, then the subpower membership problem for A is
in P, and for all other finite commutative semigroups A the problem is NP-complete.

Extending the result on groups mentioned earlier R. Willard [13] proved that the
subpower membership problem is in P for every finite algebra A that is an expansion
of a group by multilinear operations. In particular, this is the case for every finite
ring, finite module, and finite K-algebra. It is not known whether this statement
remains true if the word ‘multilinear’ is omitted.

A well-studied class of algebras that includes expanded groups and expanded lat-
tices is the class of algebras which have cube terms.

Question 1. [9] Is the subpower membership problem for A in P if A is a finite
algebra with a cube term?

The answer to this question is not only of theoretical interest, it features prominently
in other problems in computer science; for example, constraint satisfaction problems
and problems on learnability (see, e.g., [5, 9]).

Question 1 will remain unresolved in this paper, but we will prove (see Theorem 6.4)
is that the answer to Question 1 is YES, provided A belongs to a residually small
variety. The proof relies on a structure theorem proved in [10] for the subalgebras of
finite powers of an algebra A with a cube term (or equivalently, parallelogram term).
The application of this structure theorem leads us to considering subalgebras of finite
products S1 × · · · × Sn where the factors S1, . . . ,Sn come from the finite collection
HSA of homomorphic images of subalgebras of A. As a consequence, it is natural
for us to expand the scope of the subpower membership problem, and define it for any
finite set K of finite algebras as follows:

SMP(K):

• INPUT: a1, . . . , ak, b ∈ A1 × · · · ×An with A1, . . . ,An ∈ K.
• QUESTION: Is b in the subalgebra of A1×· · ·×An generated by {a1, . . . , ak}?

There is a more important issue, which is raised by our passage from SMP(A)
to SMP(HSA): Does the subpower membership problem get harder when A is
replaced by SA or HA? It is easy to see that for any finite algebra A, SMP(A)
and SMP(SA) are essentially the same problem. However, this is not the case for
homomorphic images. A surprising result of M. Steindl [12] shows that there exists
a 10-element semigroup S with a 9-element quotient semigroup S such that SMP(S)
is in P while SMP(S) is NP-complete. This shows that the problem SMP(HSA)
may be harder that SMP(A) (provided P 6= NP), and therefore poses the following
question for us:

Question 2. Are the problems SMP(K) and SMP(HSK) polynomial time equiva-
lent if K is a finite set of finite algebras in a variety with a cube term?
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We will prove (see Theorem 4.8) that the answer to Question 2 is YES. The proof
uses the techniques of compact representations developed in [2]. We will also show
that, given a finite set of finite algebras K in a variety with a cube term, the problem
of finding compact representations for subalgebras of products of algebras in K is
polynomial time equivalent to the subpower membership problem SMP(K) (Theo-
rem 4.6), and both problems are in NP (Theorem 4.5 and Corollary 4.7).

2. Preliminaries

For every natural number m, we will use the notation [m] for the set {1, 2, . . . ,m}.
The collection of all k-element subsets of a set S will be denoted by

(
S
k

)
.

Algebras will be denoted by boldface letters, their universes by the same letters in
italics. For arbitrary algebras A and B, we will write B ≤ A to indicate that B is
a subalgebra of A. For any algebra A, Con(A) will denote the congruence lattice of
A, and the top and bottom elements of Con(A) are denoted 1 and 0, respectively.
We will use the notation Irr(A) for the set of all meet irreducible congruences of A,
excluding 1. Thus, the subdirectly irreducible quotients of A are exactly the algebras
A/σ, σ ∈ Irr(A).

Let ϑ be a congruence of an algebra A. The ϑ-class of an element a ∈ A is
usually denoted by a/ϑ, and we will often write a ≡ϑ b instead of (a, b) ∈ ϑ. If B is a
subalgebra of A, we will say that B is saturated with respect to ϑ, or B is a ϑ-saturated
subalgebra of A, if b ∈ B and b ≡ϑ a imply a ∈ B for all a ∈ A. In other words, B
is ϑ-saturated if and only if its universe is a union of ϑ-classes of A. For arbitrary
subalgebra B of A there exists a smallest ϑ-saturated subalgebra of A that contains
B, which we denote by B[ϑ]; the universe of B[ϑ] is B[ϑ] :=

⋃
b∈B b/ϑ. Denoting the

restrictions of ϑ to B and B[ϑ] by ϑB and ϑB[ϑ], respectively, we get from the second
isomorphism theorem that the map B/ϑB → B[ϑ]/ϑB[ϑ], b/ϑB 7→ b/ϑB[ϑ](= b/ϑ) is
an isomorphism.

For a product A1 × · · · × An of algebras and for any set I ⊆ [n], the projection
homomorphism

A1 × · · · ×An =
∏
i∈[n]

Ai →
∏
i∈I

Ai, (ai)i∈[n] 7→ (ai)i∈I

will be denoted by projI . For a subalgebra B or for an element b of
∏

i∈[n] Ai, we will

write B|I or b|I for projI(B) or projI(b), respectively. If I = {j1, . . . , jk}, then the
notation |{j1,...,jk} will be simplified to |j1,...,jk .

2.1. Cube Terms and Parallelogram Terms. Let K be a class of algebras in the
same language. For any n-ary term t, if M is an m× n matrix of variables and ~v is
an m× 1 matrix of variables,

(2.1) K |= t(M) = ~v
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will denote that the m identities represented by the rows in (2.1) are true in K. For
example,

(2.2) K |= t

(
x x y
y x x

)
=

(
y
y

)
expresses that t is a Maltsev term for K.

Now let us fix an integer d (> 1). A d-cube term for K is a term t satisfying a set
of identities of the form (2.1) in two variables x, y, where M is a matrix with d rows
such that every column of M contains at least one x, and ~v consists of y’s only. As
(2.2) shows, a Mal’tsev term is a 2-cube term.

Cube terms were introduced in [2] to show that a finite algebra A has few subpowers
— i.e., A the property that, for some polynomial p, the number of subalgebras of An

is bounded above by 2p(n) — if and only if A has a cube term. More manageable terms
that are equivalent to cube terms (e.g., edge terms, star terms) were also found in
[2]. In this paper we will use another family of equivalent terms, called parallelogram
terms, which were introduced in [10].

Let m and n be positive integers and let d = m+n. An (m,n)-parallelogram term
for K is a (d + 3)-ary term Pm,n such that

(2.3) K |= Pm,n



x x y
x x y

...
x x y
y x x

...
y x x
y x x

z y · · · y y · · · y y
y z y y y y
...

. . .
...

y y z y y y
y y y z y y
...

. . .
...

y y y y z y
y y · · · y y · · · y z


=



y
y
...
y
y
...
y
y


.

Here the rightmost block of variables is a d × d array, the upper left block is m × 3
and the lower left block is n× 3.

It is easy to see from these definitions that an (m,n)-parallelogram term that is
independent of its last d variables is a Maltsev term, and an (m,n)-parallelogram
term that is independent of its first 3 variables is a d-ary near unanimity term.

The theorem below summarizes the facts we will need later on about cube terms
and parallelogram terms.

Theorem 2.1 (See [2],[10]). Let V be a variety, and let d (> 1) be an integer.

(1) The following conditions are equivalent:
(a) V has a d-cube term,
(b) V has an (m,n)-parallelogram term for all m,n ≥ 1 with m+ n = d,
(c) V has an (m,n)-parallelogram term for some m,n ≥ 1 with m+ n = d.

(2) If V has a cube term, then V is congruence modular.
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The equivalence of conditions (a)–(c) in statement (1) follows by combining results
from [2, Theorem 4.4] and [10, Theorem 3.5]. Proofs for statement (2) can be found
in [2, Theorem 2.7] and [4, Theorem 3.2].

In view of the the equivalence of conditions (a) and (c) in Theorem 2.1, when
we consider classes of algebras with a d-cube term, we will work with a (1, d − 1)-
parallelogram term P = P1,d−1, and we will also use the following terms derived from
P :

s(x1, . . . , xd) := P (x1, x2, x2, x1, . . . , xd),(2.4)

p(x, u, y) := P (x, u, y, x, y, . . . , y).

For any class K of algebras with a (1, d − 1)-parallelogram term P one can easily
deduce from the (1, d− 1)-parallelogram identities that

K |= y = p(x, x, y),

p(x, y, y) = s(x, y, y, . . . , y),

s(y, x, y, . . . , y) = y,(2.5)

...

s(y, y, y, . . . , x) = y.

To simplify notation, we also define

xy := p(x, y, y) (= s(x, y, . . . , y)),

and
s`(x1, . . . , xd) := s(s`−1(x1, x2 . . . , xd), x2, . . . , xd) for all ` ≥ 1,

where s0 := x1. So, s1 = s and s` is the `-th iterate of s in the first variable.

2.2. Congruence Modular Varieties: the Commutator and Residual Small-
ness. Let V be an arbitrary congruence modular variety. For the definition and basic
properties of the commutator operation [ , ] on congruence lattices of algebras in
V the reader is referred to [6]. A congruence α ∈ Con(A) of an algebra A ∈ V is
called abelian if [α, α] = 0, and the centralizer of a congruence α ∈ Con(A), denoted
(0 : α), is the largest congruence γ ∈ Con(A) such that [α, γ] = 0.

Recall that V has a difference term (see [6, Theorem 5.5]), which we will denote
by d. In the last two sections of this paper we will need some properties of abelian
congruences, which can be summarized informally as follows: the difference term
d induces abelian groups on the blocks of all abelian congruences α of all algebras
A ∈ V ; moreover, the term operations of A are ‘linear between the blocks’ of α with
respect to these abelian groups. The theorem below gives a more precise formulation
of these facts.

Theorem 2.2 (From [6, Section 9]). Let V be a congruence modular variety with a
difference term d, let A ∈ V, and let α be an abelian congruence of A.



6 ANDREI BULATOV, PETER MAYR, AND ÁGNES SZENDREI

(1) For every o ∈ A, the α-class containing o is an abelian group (o/α; +o,−o, o)
with zero element o for the operations +o and −o defined by

x+o y := d(x, oC, y) and −o x := d(oC, x, oC) for all x, y ∈ o/α.

(2) For every term g(x1, . . . , xk) in the language of V, for arbitrary elements
o1, . . . , ok, o ∈ A such that g(o1, . . . , ok) ≡α o, and for any tuple (a1, . . . , ak) ∈
(o1/α)× · · · × (ok/α),

g(a1, a2, . . . , ak) = g(a1, o2, . . . , ok) +o g(o1, a2, o3, . . . , ok) +o . . .

+o g(o1, . . . , ok−1, ak)−o (k − 1)g(o1, o2, . . . , ok).

We will refer to the abelian groups described in statement (1) as the induced abelian
groups on the α-classes of A.

In any congruence modular variety V , an equivalence relation, called similarity, is
defined on the class of subdirectly irreducible algebras in V . The definition may be
found in [6, Definition 10.7], but for our purposes here it will be more convenient to use
the following characterization given in [6, Theorem 10.8]: two subdirectly irreducible
algebras B,C ∈ V are similar if and only if there exists an algebra E ∈ V (which
can be taken to be a subdirect subalgebra of B × C) and there exist congruences
β, γ, δ, ε ∈ Con(E) such that E/β ∼= B, E/γ ∼= C and there is a projectivity β∗/β ↘
ε/δ ↗ γ∗/γ in Con(E), where β∗ and γ∗ are the unique upper covers of β and γ
respectively.

For a cardinal c, a variety V is called residually less than c if every subdirectly
irreducible algebra in V has cardinality < c; V is called residually small if it is
residually less than some cardinal.

Theorem 2.3 (From [6]). Let A be a finite algebra that generates a congruence
modular variety V(A). Then the following conditions are equivalent:

(a) V(A) is residually small,
(b) V(A) is residually < q for some natural number q,
(c) the congruence identity [x∧ y, y] = x∧ [y, y] holds in the congruence lattice of

every subalgebra of A,
(d) the implication x ≤ [y, y]→ x = [x, y] holds in the congruence lattice of every

subalgebra of A,
(e) for every subdirectly irreducible algebra S ∈ HS(A) with abelian monolith µ,

the centralizer (0 : µ) of µ is an abelian congruence of S.

The equivalence of conditions (a), (b), and (d) is proved in [6, Theorem 10.15]. The
equivalence of (c) and (d) is established in [6, Theorem 8.1]. To show that condition
(e) is also equivalent to (c), one can apply the congruence identity in (c) (and basic
properties of the commutator) directly to deduce (c) ⇒ (e). Finally, to prove that if
(c) fails, then so does (e), one can use the specific failure of (c) produced in the first
paragraph of the proof of [6, Theorem 10.14].
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Now let K = {A1, . . . ,An} be a finite set of finite algebras, and let V(K) be
the variety generated by K; then V(K) is generated by the finite algebra A′ :=
A1 × · · · ×An, so Theorem 2.3 applies to V(K) = V(A′). Let H denote the subclass
of V(K) consisting of all algebras A ∈ V(K) satisfying condition (c). It follows
from [6, Theorem 8.1] that H is closed under the formation of quotient algebras,
subalgebras, and finite direct products. Therefore, condition (c) from Theorem 2.3
holds for the generator A′ = A1 × · · · ×An of V(K) if and only if it holds for each
one of A1, . . . ,An. Thus, we get the following.

Corollary 2.4. Let K be a finite set of finite algebras in a congruence modular
variety. The variety generated by K is residually small if and only if

(e)′ for every subdirectly irreducible algebra S ∈ HS(K) with abelian monolith µ,
the centralizer (0 : µ) of µ is an abelian congruence of S.

3. Compact Representations

Throughout this section V will be a variety with a d-cube term (d > 1). If K ⊆ V is
a finite set of finite algebras, aK will denote the maximum of the sizes of the algebras
in K.

Recall from Theorem 2.1 that if a variety has a d-cube term, it also has a (1, d−1)-
parallelogramm term P . Terms in the language of V which can be expressed using P
only, will be referred to as P -terms. For example, the terms s(x1, . . . , xd), p(x, u, y),
and xy constructed earlier, which satisfy (2.5), are P -terms. By a P -subalgebra of an
algebra A ∈ V we mean a subalgebra of the reduct of A to the language {P}. We
will say that an algebra B ∈ V is P -generated by R ⊆ B if R is a generating set for
the reduct of B to the language {P}; or equivalently, if every element of B is of the
form t(r1, . . . , rm) for some m ≥ 0, some elements r1, . . . .rm ∈ R, and some m-ary
P -term t. The P -subalgebra of an algebra B ∈ V generated by a set S (⊆ B) will be
denoted by 〈S〉P .

Now we will introduce a variant of the concept of ‘compact representation’ from
[2]. One difference is that we will use a less restrictive notion of ‘fork’ than ‘minority
fork’, because we want to avoid assuming finiteness of the algebras considered unless
finiteness is necessary for the conclusions. Another difference is that we will consider
subalgebras of products of algebras, rather than subalgebras of powers of a single
algebra. Let A1, . . . ,An ∈ V , and let B ⊆ A1 × · · · × An. For i ∈ [n] and γ, δ ∈ A2

i

we will say that (γ, δ) is a fork in the i-th coordinate of B if there exists b, b′ ∈ B
such that

(3.1) b|[i−1] = b′|[i−1] and b|i = γ, b′|i = δ.

The set of all forks in the i-th coordinate of B will be denoted by forki(B). Tuples
b, b′ ∈ B satisfying (3.1) will be referred to as witnesses for the fork (γ, δ) ∈ forki(B).
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For each i and B as above and for every positive integer e, we define

forkei (B) := {(γ, δγe) : (γ, δ) ∈ forki(B)}.
The elements of forkei (B) will be called e-derived forks in the i-th coordinate of B.
In the case when e = 1 we will use the notation fork′i(B) instead of fork1

i (B), and
will call the elements of fork′i(B) derived forks in the i-th coordinate of B. The next
lemma shows that derived forks are indeed forks, and they are ‘transferable’, which
does not hold for forks in general.

Lemma 3.1. Let A1, . . . ,An be algebras in a variety V with a d-cube term, and let
B be a P -subalgebra of A1 × · · · ×An. Then

(1) forki(B) ⊇ fork′i(B) ⊇ · · · ⊇ forkei (B) ⊇ forke+1
i (B) ⊇ . . . for all

i ∈ [n] and e ≥ 1; moreover,
(2) for every (γ, δ) ∈ fork′i(B) and for every b ∈ B with b|i = γ, there is an

element b′ ∈ B such that (3.1) holds, that is, b and b′ witness that (γ, δ) ∈
forki(B).

Proof. Let (γ, δ) ∈ fork′i(B). Then there exists (γ, β) ∈ forki(B) such that δ = βγ.
Let c, c′ ∈ B be witnesses for (γ, β) ∈ forki(B); thus, c|[i−1] = c′|[i−1] and c|i = γ,
c′|i = β. It follows from the identities in (2.5) that for the element b′ := p(c′, c, b) ∈ B
we have

b′|[i−1] = p(c′|[i−1], c|[i−1], b|[i−1]) = b|[i−1],

and

b′|i = p(c′|i, c|i, b|i) = p(β, γ, γ) = βγ = δ.

This proves (2), and also the inclusion forki(B) ⊇ fork′i(B) in (1). The inclusion
forkei (B) ⊇ forke+1

i (B) for any e ≥ 1 follows by the same argument, using δ =

βγ
e+1

= (βγ
e
)γ and βγ

e
in place of δ = βγ and β. �

Definition 3.2. For two sets B,R ⊆ A1 × · · · × An, we will say that R is a (d, e)-
representation for B if the following three conditions are met:

(i) R ⊆ B;
(ii) R|I = B|I for all I ⊆ [n] with |I| < d;

(iii) forki(R) ⊇ forkei (B) for all i ∈ [n].

If e = 1 and the parameter d of the cube term of V is clear from the context, then
reference to (d, e) will be omitted.

If the algebras A1, . . . ,An all belong to a fixed finite set K of finite algebras in V ,
then it is easy to see that every set B ⊆ A1 × · · · × An has a (d, e)-representation R
of size

|R| ≤
∑

I⊆[n],|I|<k

∣∣B|I∣∣+
∑
i∈[n]

forkei (B) ≤
(

n

d− 1

)
ad−1
K + 2na2

K.
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A (d, e)-representation R for B of size |R| ≤
(
n

d−1

)
ad−1
K + 2na2

K is called a compact
(d, e)-representation for B.

It was proved in [2] that for any subalgebra B of a finite power of a finite algebra
A ∈ V , a compact representation (with minority forks) generates B. The theorem
below is essentially the same result, with one significant difference: we organize the
proof so that we can get a useful upper bound on the length of computations needed
to generate elements of B from elements of a compact representation for B.

Theorem 3.3. Let V be a variety with a d-cube term, let P be a (1, d−1)-parallelogram
term for V, and let e be a positive integer. If B is a subalgebra of a product
A1 × · · · × An of finitely many algebras A1, . . . ,An ∈ V, then B is P -generated
by every (d, e)-representation R ⊆ B for B. In fact, every element of B can be ob-
tained from elements of R by at most 3

(
n+1
d+1

)
applications of P , p, or se+1 (to elements

of R or to elements obtained earlier in the process).

First we will prove the following lemma.

Lemma 3.4. Let V be a variety with a d-cube term, let P be a (1, d−1)-parallelogram
term for V, and let e be a positive integer. For every positive integer n ≥ d there exists
a P -term tn = tn

(
x, y, z, wI

)
with wI := (wI)I∈( [n]

d−1)
such that tn has the following

properties.
(i) For every subset R of a product A1 × · · · ×An with A1, . . . ,An ∈ V, and for

every tuple b = (b1, . . . , bn−1, γ) in A1 × · · · ×An, if

(a) for each I ∈
(

[n]
d−1

)
the set R contains a tuple bI satisfying bI |I = b|I , and

(b) for some element b′ = (b1, . . . , bn−1, β) of the P -subalgebra R∗ of A1×· · ·×An

generated by R, the set R contains tuples u = (u1, . . . , un−1, γ) and û =
(u1, . . . , un−1, β

γe) which are witnesses for the fork (γ, βγ
e
) ∈ forkn(R),

then

(3.2) b = tn
(
b′, û, u, bI

)
where bI := (bI)

I∈( [n]
d−1)

,

and therefore b is in R∗.
(ii) The right hand side of (3.2) can be computed from the input tuples b′ ∈ R∗ and

û, u, bI ∈ R
(
I ∈

(
[n]
d−1

))
in at most 3

(
n
d

)
steps, where one step is a single application

of P , p, or se+1 to input tuples or tuples computed earlier.

Proof. We start the proof by constructing a family of terms tV (V ⊆ [n]) which
‘approximate’ tn in the sense that for tV in place of tn the equality (3.2) holds in all
coordinates in V (but may fail in other coordinates).

Claim 3.5. For ` = n, n − 1, . . . , d − 1 and for every set V = V ′ ∪ ([n] \ [`]) with

V ′ ∈
(

[`]
d−1

)
there exists a P -term tV = tV (x, y, z, wI

V ) with wI
V := (wI)I∈( V

d−1)
such

that
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(i) tV is independent of the choice of A1, . . . ,An, R∗, and also of the choice of

the elements b, bI
(
I ∈

(
[n]
d−1

))
, b′, u, û;

(ii) for the element bV := tV
(
b′, û, u, bI

V )
, where bI

V
:= (bI)I∈( V

d−1)
, we have that

bV |V = b|V .

Proof of Claim 3.5. We proceed by induction on n− `. For n = ` we have V ∈
(

[n]
d−1

)
,

so we can choose tV = wV , and our claims (i)–(ii) are trivial.
Assume now that ` < n and that our claims are true for `+1. Let V = V ′∪([n]\[`])

with V ′ = {i1, . . . , id−1} ∈
(

[`]
d−1

)
, i1 < · · · < id−1. Let

Vj := V \ {ij} = {i1, . . . , ij−1, ij+1, . . . , id−1, `+ 1} ∪ ([n] \ [`+ 1]) (j = 1, . . . , d− 1).

We will prove that the term

tV = tV
(
x, y, z, wI

V
)

:= P
(
se+1

(
x, (tVj(x, y, z, wI

Vj))j∈[d−1]

)
, p
(
y, z, tV1(x, y, z, wI

V1)
)
,

tV1(x, y, z, wI
V1), x,

(
tVj(x, y, z, x, wI

Vj)
)
j∈[d−1]

)
has the desired properties. It is clear that (i) holds for tV . To establish (ii), notice

that by the induction hypothesis, the elements bVj := tVj
(
b′, û, u, bI

Vj)
satisfy the

condition bVj |Vj = b|Vj for all j ∈ [d− 1]; that is, bVj |V has the form

bVj |V = (bi1 , . . . , bij−1
, ζj, bij+1

, . . . , bid−1
, b`+1, . . . , bn−1, γ)

for some element ζj ∈ Aij in the j-th coordinate. To compute bV |V = tV (b′, û, u, bI
V

)|V ,
let’s start with evaluating the first two arguments of P on the right hand side. Using
the identities for s in (2.5) we get that

s
(
b′,
(
tVj(b

′, û, u, bI
Vj

)
)
j∈[d−1]

)∣∣
V

= s
(
b′|V ,

(
tVj(b

′, û, u, bI
Vj

)|V
)
j∈[d−1]

)

= s(b′|V , bV1|V , . . . , bVd−1|V ) = s



bi1 ζ1 bi1 . . . bi1
bi2 bi2 ζ2 . . . bi2
...

...
...

. . .
...

bid−1
bid−1

bid−1
. . . ζd−1

b`+1 b`+1 b`+1 . . . b`+1
...

...
...

...
bn−1 bn−1 bn−1 . . . bn−1

β γ γ . . . γ


=



bi1
bi2
...

bid−1

b`+1
...

bn−1

βγ


,
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so by repeating the same computation e more times so that every time the tuple just
obtained is placed in the first argument of s in the next computation, we obtain that
(3.3)

se+1
(
b′,
(
tVj(b

′, û, u, bI
Vj

)
)
j∈[d−1]

)∣∣
V

= se+1(b′|V , bV1|V , . . . , bVd−1|V ) =



bi1
bi2
...

bid−1

b`+1
...

bn−1

βγ
e+1


.

The identities for p in (2.5) yield that

(3.4) p
(
û, u, tV1(b

′, û, u, bI
V1

)
)
|V = p

(
û|V , u|V , tV1(b′, û, u, bI

V1
)|V
)

= p
(
û|V , u|V , bV1|V

)
= p



ui1 ui1 ζ1

ui2 ui2 bi2
...

...
...

uid−1
uid−1

bid−1

u`+1 u`+1 b`+1
...

...
...

un−1 un−1 bn−1

βγ
e

γ γ


=



ζ1

bi2
...

bid−1

b`+1
...

bn−1

βγ
e+1


.

Combining these results with the definition of tV , and using the (1, d−1)-parallelogram
identities, we obtain that

(3.5) bV |V = tV (b′, û, u, bI
V

)|V

= P



bi1 ζ1 ζ1 bi1 ζ1 bi1 . . . bi1
bi2 bi2 bi2 bi2 bi2 ζ2 . . . bi2
...

...
...

...
...

...
. . .

...
bid−1

bid−1
bid−1

bid−1
bid−1

bid−1
. . . ζd−1

b`+1 b`+1 b`+1 b`+1 b`+1 b`+1 . . . b`+1
...

...
...

...
...

...
...

bn−1 bn−1 un−1 bn−1 bn−1 bn−1 . . . bn−1

βγ
e+1

βγ
e+1

γ β γ γ . . . γ


=



bi1
bi2
...

bid−1

b`+1
...

bn−1

γ


= b|V .

This completes the proof of (ii), and thereby the proof of Claim 3.5. �
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The term tn := t[n] constructed in Claim 3.5 for

V = [n] = {1, . . . , d− 1} ∪ ([n] \ [d− 1])

clearly has the property claimed in statement (i) of Lemma 3.4.
To prove statement (ii), we will follow the calculations done in the proof of Claim 3.5.

To evaluate tn(b′, û, u, bI), we need to compute each tuple bV = tV (b′, û, u, bI
V

) (with
V as in Claim 3.5) only once. No computation is needed for |V | = d− 1. If |V | ≥ d,

then V = V ′∪([n]\[`]) for some set V ′ ∈
(

[`]
d−1

)
and for some ` ∈ {n−1, n−2, . . . , d−1}.

Hence, the number of V ’s — that is, the number of (new) tuples bV computed — is∑n−1
`=d−1

(
`

d−1

)
=
(
n
d

)
. To compute each bV (|V | ≥ d) from b′, û, u, and either from bI ’s(

I ∈
(

[n]
d−1

))
(if |V | = d) or from bV̂ ’s with V̂ ( V computed earlier (if |V | > d), we

need one application of each of se+1, p, and P , and two auxiliary tuples are computed
in the process. Thus, altogether, at most 3

(
n
d

)
tuples in R∗ need to be computed to

evaluate tn(b′, û, u, bI), each one requiring one application of P , p, or se+1 to tuples
given or computed earlier. �

Now let n ≥ d, and let tn = tn(x, y, z, wI) be the P -term constructed in the proof of
Lemma 3.4, where wI is a tuple of variables (wI)I∈( [n]

d−1)
indexed by all (d−1)-element

subsets of [n]. The analogous P -terms for d ≤ m ≤ n are tm = tm(x, y, z, wI
[m]) with

wI
[m] = (wI)I∈( [m]

d−1)
. We will use these terms to define new P -terms

Tm(z(d), ẑ(d), . . . , z(m), ẑ(m), wI
[m])

for each m = d − 1, d, . . . , n by recursion as follows: Td−1(w[d−1]) := w[d−1], and for
all m with d ≤ m ≤ n,

Tm(z(d), ẑ(d), . . . , z(m), ẑ(m), wI
[m])

:= tm
(
Tm−1(z(d), ẑ(d), . . . , z(m−1), ẑ(m−1), wI

[m−1]), z(m), ẑ(m), wI
[m]
)
.

In particular, for m = n, the term is Tn(z(d), ẑ(d), . . . , z(n), ẑ(n), wI), because wI
[n] =

wI .

Lemma 3.6. Let V be a variety with a d-cube term, let P be a (1, d−1)-parallelogram
term for V, and let e be a positive integer.

(i) For every element b and every subset R of a product A1 × · · · × An with
A1, . . . ,An ∈ V (n ≥ d), if

(a) for each I ∈
(

[n]
d−1

)
the set R contains a tuple bI satisfying bI |I = b|I , and

(b) for every m with d ≤ m ≤ n the set R contains tuples u(m), û(m) which
are witnesses for the fork (γ, βγ

e
) ∈ forkm(R) where

(3.6) γ = b|m and β = Tm−1(u(d), û(d), . . . , u(m−1), û(m−1), bI
[m−1]

)|m,
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then the following equalities hold:

(3.7) b|[m] = Tm(u(d), û(d), . . . , u(m), û(m), bI
[m]

)|[m] for all m = d− 1, d, . . . , n;

in particular,

(3.8) b = Tn(u(d), û(d), . . . , u(n), û(n), bI).

(ii) The right hand side of (3.8) can be computed from the input tuples u(d), û(d),

. . . , u(n), û(n) and bI
(
I ∈

(
[n]
d−1

))
in R in at most 3

(
n+1
d+1

)
steps, where one

step is a single application of P , p, or se+1 to input tuples or tuples computed
earlier.

Proof. Let R∗ denote the P -subalgebra of A1×· · ·×An generated by R, and assume
that conditions (a)–(b) hold for b and R. For m = d− 1, d, . . . , n let

b(m) := Tm(u(d), û(d), . . . , u(m), û(m), bI
[m]

).

We will proceed by induction to prove that (3.7) holds, that is, b|[m] = b(m)|[m] for all
m = d− 1, d, . . . , n. Then, for the case when m = n, (3.7) yields the equality (3.8).

To start the induction, let m = d − 1. Since Td−1(w[d−1]) := w[d−1], we have that

b(d−1) = b[d−1], so b|[d−1] = b(d−1)|[d−1] is clearly true by assumption (a).

Now assume that m ≥ d and that the equality b|[m−1] = b(m−1)|[m−1] holds. Then

the tuples b|[m] ∈ A1×· · ·×Am and b(m−1)|[m] ∈ R∗|[m] have the form (b1, . . . , bm−1, γ)
and (b1, . . . , bm−1, β), respectively, where γ and β are defined by (3.6). Assump-
tion (b) implies that R contains tuples u(m), û(m) ∈ R which are witnesses for the
fork (γ, βγ

e
) ∈ forkem(R). Then u(m)|[m] and û(m)|[m] are in R|[m], and they have the

form u(m)|[m] = (u1, . . . , um−1, γ) and û(m)|[m] = (u1, . . . , um−1, β
γe) for some ui ∈ Ai

(i ∈ [m− 1]). The fact that R satisfies assumption (a) also implies that the elements

bI |[m] ∈ R|[m] have the property (bI |[m])|I = (b|[m])|I for all I ∈
(

[m]
d−1

)
.

This shows that the assumptions of statement (i) in Lemma 3.4 hold for

� the subset R|[m] and element b|[m] = (b1, . . . , bm−1, γ) of A1 × · · · ×Am,

� the element b(m)|[m] = (b1, . . . , bm−1, β) in R∗|[m], and

� the elements u(m)|[m] = (u1, . . . , um−1, γ), û(m)|[m] = (u1, . . . , um−1, β
γe), and

bI |[m]

(
I ∈

(
[m]
d−1

))
in R|[m].
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Thus, Lemma 3.4 (i) — combined with the definitions of b(m−1), Tm, and b(m) —
implies that

b|[m] = tm(b(m−1)|[m], û
(m)|[m], u

(m)|[m], bI |[m]

[m]
)

= tm(b(m−1), û(m), u(m), bI
[m]

)|[m]

= tm
(
Tm−1(u(d), û(d), . . . , u(m−1), û(m−1), bI

[m−1]
), û(m), u(m), bI

[m])|[m]

= Tm(u(d), û(d), . . . , u(m), û(m), bI
[m]

)|[m]

= b(m)|[m].

This completes the proof of statement (i).
To prove statement (ii), we follow the steps of the induction in the preceding

paragraphs. At the start, getting b(d−1) requires no computation. By Lemma 3.4 (ii),

for each m (d ≤ m ≤ m) the tuple tm(b(m−1)|[m], û
(m)|[m], u

(m)|[m], bI |[m]

[m]
) can be

computed from the input tuples b(m−1)|[m], û
(m)|[m], u

(m)|[m], b
I |[m]

(
I ∈

(
[m]
d−1

))
in

at most 3
(
m
d

)
steps where one step is a single application of P , p, or se+1 to input

tuples or tuples computed earlier in the process. The same computation applied to
the full tuples b(m−1), û(m), u(m), and bI

(
I ∈

(
[m]
d−1

))
yields b(m). Therefore it takes

at most 3
(
m
d

)
steps to compute b(m) from b(m−1) and the elements û(m), u(m), and bI(

I ∈
(

[m]
d−1

))
of R. Hence the right hand side of (3.8) can be computed from the input

tuples u(d), û(d), . . . , u(n), û(n) and bI (I ∈
(

[n]
d−1

)
) in R in at most

n∑
m=d

3

(
m

d

)
= 3

(
n+ 1

d + 1

)
steps. This proves statement (ii). �

Proof of Theorem 3.3. Let R be a (d, e)-representation for B, and let R∗ denote the
P -subalgebra of A1×· · ·×An generated by R. Since R ⊆ B, we have that R∗ is a P -
subalgebra of B. Let b ∈ B. The desired conclusions that b belongs to R∗ and b can
be obtained from elements of R in at most 3

(
n+1
d+1

)
steps will follow from Lemma 3.6

if we show that conditions (a)–(b) hold for b and R. Condition (a) clearly follows
from our assumptions that b ∈ B and R is a (d, e)-representation for B. To verify
condition (b) we proceed by induction on m to show that for every m (d ≤ m ≤ n)

(b)m R contains tuples u(m), û(m) witnessing the fork (γ, βγ
e
) ∈ forkm(R) where

γ and β are defined by (3.6).

Let d ≤ m ≤ n, and assume that condition (b)i holds for i = d, . . . ,m − 1; note
that this assumption is vacuously true for the base case m = d. Our goal is to show
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that (b)m also holds. Let

b(m−1) := Tm−1(u(d), û(d), . . . , u(m−1), û(m−1), bI
[m−1]

),

and let γ and β be defined by (3.6); that is, γ = b|m and β = b(m−1)|m. Since

b(m−1) involves only the elements bI
(
I ∈

(
[m−1]
d−1

))
and u(d), û(d), . . . , u(m−1), û(m−1) of

R, and since our induction hypothesis ensures that these elements satisfy conditions
(a)–(b) in Lemma 3.6, we get from Lemma 3.6 that b|[m−1] = b(m−1)|[m−1]. Here

b ∈ B and b(m−1) ∈ R∗ ⊆ B, therefore b and b(m−1) are witnesses in B for the fork
(γ, β) ∈ forkm(B). Hence, by Lemma 3.1, (γ, βγ

e
) ∈ forkem(B). So, the fact that R

is a (d, e)-representation for B implies that (γ, βγ
e
) ∈ forkem(R). Thus, (b)m holds,

as we wanted to show. This proves that R satisfies condition (b), which completes
the proof of Theorem 3.3. �

Lemma 3.7. Let V be a variety with a d-cube term, let P be a (1, d−1)-parallelogram
term for V, and let p be the ternary P -term defined in (2.4). Furthermore, let R∗ be
a P -subalgebra of A1 × · · · ×An with A1, . . . ,An ∈ V. If (γ, δ) and (β, δ) are forks
in forkm(R∗) witnessed by the pairs (v, v′) and (u, u′) in R∗, respectively, then the
pair

(3.9)
(
p(p(v, v′, u′), p(v, v′, v′), v), p(u, v, v)

)
in R∗ is a witness for the fork (γ, βγ) ∈ forkm(R∗).

Proof. The choice of u, u′, v, v′ implies that u|[m−1] = u′|[m−1], v|[m−1] = v′|[m−1], and
u|m = β, u′|m = δ = v′|m, v|m = γ. Hence,

p(p(v, v′, u′), p(v, v′, v′), v)|[m−1]

= p(p(v|[m−1], v
′|[m−1], u

′|[m−1]), p(v|[m−1], v
′|[m−1], v

′|[m−1]), v|[m−1])

= p(u|[m−1], v|[m−1], v|[m−1]) = p(u, v, v)|[m−1]

and

p(p(v, v′, u′), p(v, v′, v′), v)|m = p(p(γ, δ, δ), p(γ, δ, δ), γ)|m = γ,

p(u, v, v)|m = p(β, γ, γ) = βγ.

Clearly, u, u′, v, v′ ∈ R∗ implies that the pair (3.9) also lies in R∗, so the proof of the
lemma is complete. �

We close this section by discussing the following question: given a generating set
for a subdirect subalgebra B of a product B1×· · ·×Bn (in a variety with a cube term)
and a product congruence θ of B1 × · · · × Bn, how can one construct a generating
set for the θ-saturation B[θ] of B? (For the definition θ-saturation, see Section 2.)
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Theorem 3.8. Let V be a variety with a d-cube term, and let B be a subalgebra of
B1 × · · · ×Bn with B1, . . . ,Bn ∈ V and n ≥ d. Let θi ∈ Con(Bi) for all i ∈ [n], let
θ := θ1 × · · · × θn ∈ Con(B1 × · · · ×Bn), and let θB be the restriction of θ to B.

(1) For any element b ∈ B1 × · · · ×Bn we have that

b/θ is in B/θB (≤ B1/θ1 × · · · ×Bn/θn) ⇐⇒ b is in B[θ].

(2) If G is a generating set for B, then for any sets L, F ⊆ B[θ] satisfying con-
ditions (L) and (F) below, G ∪ L ∪ F is a generating set for B[θ].

(L) For every I ∈
(

[n]
d−1

)
and for every d ∈ B[θ]|I there exist r2[I, d] ∈ L∩B[θ]

and r1[I, b] ∈ B such that

r2[I, d]|I = d, r1[I, b]|I = b, and r2[I, d] ≡θ r1[I, b].

(F) For every i ∈ [n] and (β, γ) ∈ θi with β ∈ B|i, F contains elements
f1[i, β, γ] ∈ B and f2[i, β, γ] ∈ B[θ] such that

f1[i, β, γ]|i = β, f2[i, β, γ]|i = γ, and f1[i, β, γ]|[n]\{i} = f2[i, β, γ]|[n]\{i}.

Proof. Statement (1) is an immediate consequence of the fact that B[θ] is the full
inverse image of B/θB under the natural homomorphism

B1 × · · · ×Bn � (B1 × · · · ×Bn)/θ ∼= B1/θ1 × · · · ×Bn/θn.

To prove statement (2) let L, F ⊆ B[θ] satisfy conditions (L) and (F). Let C denote
the subalgebra of B1 × · · · × Bn generated by G ∪ L ∪ F . Clearly, B ≤ C ≤ B[θ].
To show that C = B[θ], choose an arbitrary element d = (d1, . . . , dn) in B[θ]. Then
there exists b = (b1, . . . , bn) in B such that b ≡θ d. Using that L satisfies condition
(L), choose and fix elements bI ∈ B and dI ∈ L ∩B[θ] such that

bI |I = b|I , dI |I = d|I , and bI ≡θ dI for each I ∈
(

[n]
d−1

)
.

We will use the P -terms in Lemma 3.6 with e = 2 to show that

(3.10) d = Tn(v(d), v̂(d), . . . , v(n), v̂(n), dI
[n]

)

holds for appropriately chosen elements v(d), v̂(d), . . . , v(n), v̂(n) in C. Since all dI are
in L (⊆ C), this will show that d ∈ C, and hence will complete the proof of (2).

By the definition of the term Td−1 := w[d−1] and by the choice of b[d−1] and d[d−1]

we have that

b|[d−1] = b[d−1]|[d−1], d|[d−1] = d[d−1]|[d−1],

and

Td−1(b[d−1]) = b[d−1] ≡θ d[d−1] = Td−1(d[d−1]).



SUBPOWER MEMBERSHIP PROBLEM 17

Now we proceed by induction to show that for every m = d, . . . , n there exist tuples
u(d), û(d), . . . , u(m), û(m) in B and tuples v(d), v̂(d), . . . , v(m), v̂(m) in C such that

b|[m] = Tm(u(d), û(d), . . . , u(m), û(m), bI
[m]

)|[m],(3.11)

d|[m] = Tm(v(d), v̂(d), . . . , v(m), v̂(m), dI
[m]

)|[m],(3.12)

and

(3.13) u(j) ≡θ v(j), û(j) ≡θ v̂(j) for all j = d, . . . ,m,

hence also

(3.14) (B 3) Tm(u(d), û(d), . . . , u(m), û(m), bI
[m]

)

≡θ Tm(v(d), v̂(d), . . . , v(m), v̂(m), dI
[m]

) (∈ C).

Then, equality (3.12) for m = n yields the desired equality (3.10).
Our induction hypothesis is that the statement in the preceding paragraph is true

for m − 1, that is, there exist tuples u(d), û(d), . . . , u(m−1), û(m−1) in B and tuples
v(d), v̂(d), . . . , v(m−1), v̂(m−1) in C such that (3.11)–(3.14) hold for m− 1 in place of m.
To simplify notation, let

b(m−1) := Tm−1(u(d), û(d), . . . , u(m−1), û(m−1), bI
[m−1]

),

d(m−1) := Tm−1(v(d), v̂(d), . . . , v(m−1), v̂(m−1), dI
[m−1]

).

Then we have that b(m−1)|[m−1] = b|[m−1] and d(m−1)|[m−1] = d|[m−1]. Let γ := bm =

b|m, β := b(m−1)|m, τ := dm = d|m, and σ := d(m−1)|m. If we can show the existence

of a pair of witnesses u(m), û(m) in B for the fork (γ, βγ
2
) ∈ forkm(B) and a pair of

witnesses v(m), v̂(m) in C for the fork (τ, στ
2
) ∈ forkm(C) such that u(m) ≡θ v(m) and

û(m) ≡θ v̂(m), then (3.13)–(3.14) will follow for m, and by Lemma 3.6, (3.11)–(3.12)
will also hold for m.

To prove the existence of such u(m), û(m) and v(m), v̂(m), notice first that our in-
duction hypothesis that (3.14) holds for m − 1 in place of m has the effect that
(B 3) b(m−1) ≡θ d(m−1) (∈ C), so in particular, (B|m 3) β ≡θm σ. By our choice
of b and d, we also have that (B|m 3) γ = bm ≡θm dm = τ . Thus, by assumption,
F contains witnesses bβ := f1[m,β, σ] ∈ B and cσ := f2[m,β, σ] ∈ C for the fork
(β, σ) ∈ forkm(C) such that

(3.15) bβ|m = β, cσ|m = σ, and bβ|[n]\{m} = cσ|[n]\{m};

F also contains witnesses bγ := f1[m, γ, τ ] ∈ B and cτ := f2[m, γ, τ ] ∈ C for the fork
(γ, τ) ∈ forkm(C) such that

(3.16) bγ|m = γ, cτ |m = τ, and bγ|[n]\{m} = cτ |[n]\{m}.
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Let bβγ := p(bβ, bγ, bγ), cβτ := p(bβ, cτ , cτ ), and cστ := p(cσ, cτ , cτ ). Clearly, bβγ ∈ B
and cβτ , cστ ∈ C. Furthermore, the equalities in (3.15)–(3.16) imply that

(3.17) bβγ |m = βγ, cβτ |m = βτ , cστ |m = στ ,

and bβγ |[n]\{m} = cβτ |[n]\{m} = cστ |[n]\{m}.

It follows that cβτ and cστ are witnesses in C for the fork (βτ , στ ) ∈ forkm(C). In
addition, we get from (3.15)–(3.17) that

(3.18) bβ ≡θ cσ, bγ ≡θ cτ , and bβγ ≡θ cβτ ≡θ cστ .

Since b and b(m−1) are witnesses in B for the fork (γ, β) ∈ forkm(B) ⊆ forkm(C),
we can apply Lemma 3.7 first to (τ, γ) and (β, γ) to obtain witnesses

z := p(p(cτ , bγ, b), p(cτ , bγ, bγ), cτ ) (∈ C)

z′ := p(b(m−1), cτ , cτ ) (∈ C)

for the fork (τ, βτ ) ∈ forkm(C). The analogous construction for the forks (γ, γ) and
(β, γ) yields witnesses

w := p(p(bγ, bγ, b), p(bγ, bγ, bγ), bγ) = p(b, bγ, bγ) (∈ B)

w′ := p(b(m−1), bγ, bγ) (∈ B)

for the fork (γ, βγ) ∈ forkm(B). Since w,w′ are obtained from z, z′ by replacing cτ
with bγ, the relation bγ ≡θ cτ in (3.18) implies that z ≡θ w and z′ ≡θ w′. Applying
Lemma 3.7 again, now to the forks (τ, βτ ) and (στ , βτ ), we obtain witnesses

v(m) := p(p(z, z′, cβτ ), p(z, z
′, z′), z) (∈ C)

v̂(m) := p(cστ , z, z) (∈ C)

for the fork (τ, στ
2
) = (τ, (στ )τ ) ∈ forkm(C). Similarly, for the corresponding forks

(γ, βγ) and (βγ, βγ), we get witnesses

u(m) := p(p(w,w′, bβγ ), p(w,w
′, w′), w) (∈ B)

û(m) := p(bβγ , w, w) (∈ B)

for the fork (γ, βγ
2
) = (γ, (βγ)γ) ∈ forkm(B). Since u(m) and û(m) are obtained from

v(m) and v̂(m) by replacing z with w, z′ with w′, and cστ , cβτ with bβγ , the relations
z ≡θ w, z′ ≡θ w′ proved earlier, and the relations bβτ ≡θ cβτ ≡θ cστ in (3.18) imply
that v(m) ≡θ u(m) and v̂(m) ≡θ û(m). This completes the proof of Theorem 3.8. �
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4. Algorithms Involving Compact Representations

Let V be a variety in a finite language with a d-cube term, and let K be a finite
set of finite algebras in V .

Our aim in this section is to use the results of Section 3 to show that the prob-
lems SMP(K) and SMP(HSK) are polynomial time equivalent (Theorem 4.8), and
SMP(K) is also polynomial time equivalent to the problem of finding compact repre-
sentations for algebras in SPfinK given by their generators (Theorem 4.6). The latter
problem can be described in more detail as follows:

CompactRep(K):

• INPUT: a1, . . . , ak ∈ A1 × · · · ×An with A1, . . . ,An ∈ K.
• OUTPUT: A compact representation for the subalgebra of A1 × · · · × An

generated by {a1, . . . , ak}.
In addition, we will present a nondeterministic, polynomial time algorithm for solving
CompactRep(K) (Theorem 4.5), which will show that both CompactRep(K) and
SMP(K) are in NP.

To set up some terminology and notation, let B be a subalgebra of A1 × · · · ×An

with A1, . . . ,An ∈ K, and let R be a representation for B (with e = 1, see Defi-
nition 3.2). Condition (ii) in the definition makes sure that for every I ⊆ [n] with
|I| = min{n, d − 1} and for every tuple b ∈ B|I there exists an element r[I, b] in R
such that r[I, b]|I = b. Similarly, condition (iii) makes sure that for every derived
fork (γ, δ) ∈ fork′i(B) there exists a pair (u[i, γ, δ], v[i, γ, δ]) of elements in R which
witness that (γ, δ) ∈ forki(R). For some of the algorithms we are going to discuss,
it will be convenient to fix these choices for witnesses in R. Therefore we introduce
the following definition.

Definition 4.1. Under the same assumptions as in Definition 3.2 with e = 1, we
will call a representation R for B a standardized representation if the following two
conditions are satisfied.

(ii)′ For every I ⊆ [n] with |I| = min{n, d − 1} and for every tuple b ∈ B|I , an
element r[I, b] of R is fixed so that r[I, b]|I = b; this element will be referred
to as the designated witness in R for b ∈ R|I .

(iii)′ For every i ∈ [n] there is a set Fi with fork′i(B) ⊆ Fi ⊆ forki(R) such that
for every (γ, δ) ∈ Fi a pair (u[i, γ, δ], v[i, γ, δ]) in R2 is fixed which witnesses
that (γ, δ) ∈ forki(R); this element will be referred to as the designated
witness in R for (γ, δ) ∈ forki(R).

(iv) Every element of R has at least one designation.

Remark 4.2. It is clear that if the algebras A1, . . . ,An all belong to our fixed
finite set K of finite algebras in V , then a standardized representation for any B ⊆
A1× · · · ×An is compact. Moreover, it follows from the proof of Theorem 3.3 that if
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R is a standardized representation for B, then the equality (3.8) in Lemma 3.6 (with
e = 1) holds provided

• bI is an enumeration of the elements bI of R designated to witness bI |I = b|I
for all I ∈

(
[n]
d−1

)
; and

• for every d ≤ m ≤ n, the pair (u(m), û(m)) is the designated witness in R for
the fork (γ, βγ) ∈ forkm(R) where γ and β are determined by (3.6).

When we construct standardized representations, the following concepts will be
useful.

Definitions 4.3. Let A1, . . . ,An ∈ K with n ≥ d, and let R ⊆ A1 × · · · ×An and
b ∈ A1 × · · · ×An.

1. We will call R a partial standardized representation if every element of R is
designated to witness either b ∈ R|I for some I ∈

(
[n]
d−1

)
or a fork in forkm(R) for

some m.
2. For a partial standardized representation R, we will say that b is representable

by R if the following conditions are met:

(i) for each I ∈
(

[n]
d−1

)
, R contains elements bI designated to witness bI |I = b|I ,

and
(ii) for every d ≤ m ≤ n, R contains designated witnesses u(m), û(m) for the fork

(γ, βγ) where β, γ are as defined in (3.6) (with e = 1).

It is clear from Lemma 3.6 that if b is representable by R, then the equality (3.8)
(with e = 1) holds for b.

The proof of Lemma 3.6 can easily be turned into a polynomial time algorithm for
solving the following problem:

IsRepresentable(K):

• INPUT: b ∈ A1 × · · · ×An and a partial standardized representation
R ⊆ A1 × · · · × An (A1, . . . ,An ∈ K) such that R contains elements bI

designated to witness bI |I = b|I for each I ∈
(

[n]
d−1

)
.

• OUTPUT: (YES, ∅, S) or (NO, S ′, S) where S ′, S (⊆ 〈R ∪ {b}〉P ) are lists of
designated witnesses (missing from R) for the derived forks and for the forks
that are not derived forks, respectively, so that b becomes representable by
the partial standardized representation R ∪ S ′.

Note that the designated witnesses (for forks that are note derived forks) collected
in the set S do not play a role in determining whether or not b is representable, but
they will be useful in other algorithms that call IsRepresentable(K).

Lemma 4.4. Let V be a variety in a finite language with a d-cube term. For any
finite set K of finite algebras in V, Algorithm 1 solves IsRepresentable(K) in
polynomial time.
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Algorithm 1: For IsRepresentable(K)

Input: b ∈ A1×· · ·×An and a partial standardized representation R ⊆ A1×· · ·×An

(A1, . . . ,An ∈ K) such that R contains elements bI designated to witness bI |I = b|I
for each I ∈

(
[n]
d−1

)
.

Output: (YES, ∅, S) or (NO, S ′, S) where S ′, S (⊆ 〈R∪{b}〉P ) are lists of designated
witnesses (missing from R) for the derived forks and for the forks that are not de-
rived forks, respectively, so that b becomes representable by the partial standardized
representation R ∪ S ′.

1. S = ∅, S ′ = ∅,
2. b(d−1) = b[d−1]

3. for m = d, . . . , n do
3.1. β = b(m−1)|m, γ = b|m, c = p(b(m−1), b, b)
3.2. if R has no designated witnesses for (γ, βγ) ∈ forkm(R) then

add b, c to S ′ as designated witnesses for (γ, βγ) ∈ forkm(R)
end if

3.3. if R ∪ S ′ has no designated witness for (γ, β) ∈ forkm(R) then
add b, b(m) to S as designated witnesses for (γ, β) ∈ forkm(R)
end if

3.4. let u, û ∈ R ∪ S ′ be the designated witnesses for (γ, βγ) ∈ forkm(R)

3.5. b(m) = tm(b(m−1), û, u, bI
[m]

)
end for

4. if S ′ = ∅ then
return (YES, S ′, S) else
return (NO, S ′, S)

Table 1

Proof. First we prove that Algorithm 1 is correct. In Step 2, b[d−1] ∈ R is the
designated witness for b[d−1]|[d−1] = b|[d−1]. Step 3 follows the induction step in

the proof of Lemma 3.6 (with e = 1). For each m = d, . . . , n, if b(m−1) has been
constructed such that b(m−1) ∈ 〈R〉P and b(m−1)|[m−1] = b|[m−1], then to construct

b(m) = tm(b(m−1), û, u, bI
[m]

) we need designated witnesses u, û for the fork (γ, βγ) ∈
forkm(R) where γ = b|m and β = b(m−1)|m. If such designated witnesses exist in
R, then b(m) ∈ 〈R〉P is computed, and the loop starts over, except when m = n.
Therefore, if R contains designated witnesses for the appropriate forks for every m,
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then b is representable, and the algorithm stops in step 4 with the correct output:
(YES, ∅, S).

If, for some m, R fails to contain designated witnesses for the fork (γ, βγ) in the
m-th coordinate, then it is clear that b is not representable by R. Furthermore, in
this case b, b(m) witness the fork (γ, β) ∈ forkm(〈R ∪ {b}〉B). It follows that b and
c = p(b(m−1), b, b) witness derived fork (γ, βγ) ∈ fork′m(〈R∪{b}〉P ), because c|[m−1] =

p(b(m−1)|[m−1], b|[m−1], b|[m−1] = p(b|[m−1], b|[m−1], b|[m−1]) = b|[m−1] and b|m = γ, c|m =

p(b(m−1)|m, b|m, b|m) = p(β, γ, γ) = βγ. Thus, after performing the designations in
Steps 3.2 and 3.3 the algorithm can continue as before until it finishes, in step 4,
with the correct output, (NO, S ′, S), where S ′ is a list of designated derived forks
such that b is representable by the partial standardized representation R ∪ S ′. This
proves the correctness of Algorithm 1.

To estimate the time complexity of Algorithm 1, notice that step 1 requires con-
stant time, while steps 2 and 4 can be done in time O(n|R|) and O(n|S| + n|S ′|),
respectively, where |R| + |S| + |S ′| ≤ O(nd−1). Finally, by Lemma 3.6 (with e = 1),
if b is representable by R, the computations in the loop in step 3 require at most
4
(
n+1
d+1

)
applications of P so step 3 (including the search for witnesses for forks in R)

can be done in O(nd+2) time. If b is not representable by R, essentially the same
computation is performed, so the bound O(nd+2) applies in this case as well. This
proves that Algorithm 1 runs in time O(nd+2). �

Theorem 4.5. Let V be a variety in a finite language with a d-cube term. For any
finite set K of finite algebras in V, there is a nondeterministic algorithm which solves
CompactRep(K) in polynomial time.

Proof. We claim that nondeterministic Algorithm 2 runs in polynomial time and
solves CompactRep(K).

To prove the correctness of Algorithm 2, let a1, . . . , ak ∈ A1×· · ·×An (A1, . . . ,An ∈
K) be an arbitrary input for CompactRep(K), and let B denote the subalgebra of
A1 × · · · ×An generated by a1, . . . , ak. We have to show that the set R returned by
Algorithm 2 is a standardized representation for B.

The set R = R0 produced in steps 1–3 clearly satisfies R0 ⊆ B, and contains one
designated witness r[I, b] for each b ∈ B|I and every I ∈

(
[n]
d−1

)
.

In step 4, by applying IsRepresentable(K) k times, finitely many new pairs of
elements from 〈R ∪ {a1, . . . , ak}〉P (⊆ B) are added to R to be designated witnesses
for forks in 〈R ∪ {a1, . . . , ak}〉P (⊆ B) so that a1, . . . , ak become representable by R.
At this point it is clear that R is a partial standardized representation for B; however,
R may not contain designated witnesses for all derived forks in B. Notice also that
R will remain a partial standardized represenration for B as long as the elements
added to R later on in the algorithm all come from B, and only designated elements
are added to R.
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Algorithm 2: For CompactRep(K) (nondeterministic)

Input: a1, . . . , ak ∈ A1 × · · · ×An with A1, . . . ,An ∈ K (n ≥ d).
Output: Standardized representation R for the subalgebra B of A1 × · · · ×An generated
by a1, . . . , ak.

1. R0 = ∅
2. for I ∈

( [n]
d−1

)
do

2.1. generate B|I by a1|I , . . . , ak|I , and simultaneously,
2.2. for each new b ∈ B|I , add to R0 an element r[I, b] ∈ B that is designated to

witness r[I, b]|I = b.
end for

3. R = R0

4. for b ∈ {a1, . . . , ak} do
4.1. run Algorithm 1 for IsRepresentable(K) with input b, R to get output

(YES, S′, S) or (NO, S′, S)
4.2. R = R ∪ S ∪ S′
end for

5. closed := false
6. while not closed do

6.1. closed := true
6.2. for (nondeterministically chosen) basic operation symbol f (say, t-ary) do

6.2.1. for (nondeterministically chosen) tuples bIi ∈ R0

(
i ∈ [t], I ∈

( [n]
d−1

))
and u

(d)
i , û

(d)
i , . . . , u

(n)
i , û

(n)
i ∈ R \R0 such that each pair u

(m)
i , û

(m)
i is a

designated witness for a fork in fork′m(R) do

6.2.1.1. bi = Tn(u
(d)
i , û

(d)
i , . . . , u

(n)
i , û

(n)
i , bIi ) (i ∈ [t])

6.2.1.2. b = f(b1, . . . , bt)
6.2.1.3. run Algorithm 1 for IsRepresentable(K) with input b, R, to get

output (YES, S′, S) or (NO, S′, S)
6.2.1.4. if S ∪ S′ 6= ∅ then

closed := false; R = R ∪ S ∪ S′
end if

end for
end for

end while
7. for m = d, . . . , n do

7.1. for all (γ, δ), (β, δ) ∈ forkm(R) which have designated witnesses in R do
7.1.1. if R has no designated pair of witnesses for (γ, βγ) then

7.1.1.1. find the pairs of designated witnesses (v, v′), (u, u′) for the forks
(γ, δ), (β, δ) ∈ forkm(R)

7.1.1.2. add the pair
(
p(p(v, v′, u′), p(v, v′, v′), v), p(u, v, v)

)
to R, and des-

ignate it to witness the fork (γ, βγ) ∈ forkm(R).
end if

end for
end for

8. return R

Table 2
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Therefore, we will be done if we show that the rest of the algorithm, namely steps 6–
7, add to R a pair of designated witnesses from B for every derived fork in B which
has not been witnessed yet. First, the loop in step 6 is run as many times as necessary
to make sure — by adding new elements to R, using IsRepresentable(K) — that

(∗) the set R̃ of all elements representable by R is a subuniverse of A1×· · ·×An.

All pairs of designated witnesses for forks that are added to R in step 6 belong to
〈R∪{b}〉P ⊆ B (with the current b ∈ B and R), therefore R ⊆ B throughout step 6.

So, (∗) implies that R̃ is a subuniverse of B. On the other hand, by step 4, the

generators a1, . . . , ak of B are all in R̃, therefore B is contained in R̃. Thus, B = R̃,
and every element of B is representable by R.

By Lemma 3.7, the designated witnesses for forks added to R in step 7 all belong
to the P -subalgebra generated by the preceding version of R, and hence all belong
to B. Moreover, they are witnesses for derived forks in B.

It remains to prove that by the end of step 7, R contains designated witnesses for
all derived forks of B in coordinates ≥ d. Let m ≥ d, and let (γ, σ) ∈ fork′m(B).
Then there exists (γ, β) ∈ forkm(B) such that σ = βγ. Hence, there exist b, b′ ∈ B
such that b|[m−1] = b′|[m−1] and b|m = β, b′|m = γ. By step 6, both b and b′ are
representable by R. Since b|[m−1] = b′|[m−1], the standardized representations of b and
b′ agree up to step m− 1; in particular,

b(m−1) = Tm−1(u(d), û(d), . . . , u(m−1), û(m−1), bI
[m−1]

) = (b′)(m−1).

Let δ := b(m−1)|m. Since b and b′ are representable by R, R contains designated
witnesses (u, u′) and (v, v′) for the forks (β, δ), (γ, δ) ∈ forkm(R). Step 7 makes
sure that in this situation, a designated pair of witnesses for the fork (γ, βγ) = (γ, σ)
gets into R (if it was not there before). This proves that by the end of step 7, the
set R returned by Algorithm 2 is a standardized representation for B. Hence R is a
compact representation for B.

To bound the time complexity of Algorithm 2 we have to look at the run times of
steps 2, 4, 6, and 7. In step 2, the subalgebras B|I can be generated in a constant
number of steps that depeneds on K only (and is independent of the size of the input),
therefore the time complexity is determined by the number

(
n

d−1

)
of iterations of the

loop in step 2 and the time needed for computing the designated witnesses that are
added to R in each loop, which is bounded above by O(n). Thus, step 2 runs in
O(nd) time.

The time required by Step 4 is dominated by the k calls of Algorithm 1 for
IsRepresentable(K), which is O(knd+2).

The nondeterministic loop in step 6 is repeated as long as a nonempty list of pairs
of witnesses for forks needs to be added to R. Since there are at most O(n) forks to
be witnessed, the loop will be repeated at most O(n) times. In each loop, computing
every bi requires at most 3

(
n+1
d+1

)
applications of P (by Lemma 3.6, e = 1), b can
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Algorithm 3: Reduction of CompactRep(K) to SMP(K)

Input: a1, . . . , ak ∈ A1 × · · · ×An with A1, . . . ,An ∈ K.
Output: Standardized representation R for the subalgebra B of A1 × · · · × An

generated by a1, . . . , ak.

1. R0 = ∅
2. for I ∈

(
[n]
d−1

)
do

2.1. generate B|I by a1|I , . . . , ak|I , and simultaneously,
2.2. for each new b ∈ B|I , add to R0 an element r[I, b] ∈ B that is designated

to witness r[I, b]|I = b.
end for

3. R = R0

4. for i = d, . . . , n and γ ∈ B|i do
4.1. find b ∈ R0 with b|i = γ
4.2. for β ∈ B|i do

4.2.1. let c ∈ A1 × · · · ×Ai be such that c|[i−1] = b|[i−1] and c|i = βγ

4.2.2. run SMP(K) with input a1|[i], . . . , ak|[i], c ∈ A1 × · · · ×Ai

4.2.3. if answer is YES then
for j = i+ 1, . . . , n do

4.2.3.1. find cj ∈ Aj such that SMP(K) with input
a1|[j], . . . , ak|[j], (c, cj) ∈ A1 × · · · ×Aj answers YES

4.2.3.2. c = (c, cj)
end for
end if

4.2.4. add the pair (b, c) to R and designate it to witness the fork (γ, βγ) ∈
forki(R).

end for
end for

5. return R

Table 3

be obtained in O(n) time, and then Algorithm 1 for IsRepresentable(K) runs in
O(nd+2) time. Thus, the time required by step 6 is O(nd+3).

Finally, in step 7 the loop is repeated O(n) times, and each loop requires no more
than O(n) time (including the search for designated witnesses for forks).

Thus, the overall run time for Algorithm 2 is O(knd+3). �
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Algorithm 4: Reduction of SMP(K) to CompactRep(K)

Input: a1, . . . , ak, b ∈ A1 × · · · ×An with A1, . . . ,An ∈ K.
Question: Is b in the subalgebra B of A1 × · · · ×An generated by a1, . . . , ak?

1. Run CompactRep(K) with input a1, . . . , ak, and let R be its output (a
standardized representation for B)

2. for I ∈
(

[n]
d−1

)
do

2.1. if R contains no designated witness for b|I then
return NO
end if

end for
3. Run Algorithm 1 for IsRepresentable(K) with input b, R, to get output

(A, S ′, S) with A = YES or A = NO
4. return A

Table 4

Theorem 4.6. Let V be a variety in a finite language with a d-cube term. For any
finite set K of finite algebras in V, the decision problem SMP(K) and the computa-
tional problem CompactRep(K) are polynomial time reducible to one another.

Proof. First we will prove that Algorithm 3 solves CompactRep(K) by repeated
calls of SMP(K) in polynomial time.

For the correctness notice that steps 1–3 of Algorithm 3 are the same as those of
Algorithm 2, so by the end of step 3, R = R0 contains a designated witness r[I, b] ∈ B

for r[I, b]|I = b for each b ∈ B|I and for all I ∈
(

[n]
d−1

)
. Elements without designations

are not added to R during this process or later in step 4, therefore we will be done if
we show that step 4 adds to R a pair of designated witnesses (from B) for all derived
forks of B in coordinates ≥ d.

Lines 4, 4.1–4.2, and 4.2.1–4.2.2 show that step 4 examines each pair (γ, β) ∈
B|i×B|i for every i = d, . . . , n, finds b = (b1, . . . .bn) ∈ R0 (⊆ R ⊆ B) such that bi = γ,
and checks — using SMP(K) — whether or not the tuple c = (b1, . . . , bi−1, β

γ) is in
the subalgebra B|[i] generated by the elements a1|[i], . . . , ak|[i]. If the answer is YES,
then B contains a tuple of the form (c, ci+1, . . . , cn) = (b1, . . . , bi−1, β

γ, ci+1, . . . , cn)
for some cj ∈ Aj (j = i + 1, . . . , n), which will be found, coordinate-by-coordinate,
by repeated applications of SMP(K) in 4.2.3. Moreover, in this case it is clear that
(b, c) witnesses that (γ, βγ) is a derived fork in B, so this witness is correctly added
to R. If the instance of SMP(K) run in 4.2.2 gives the answer NO, then we have that
the tuple c = (b1, . . . , bi−1, β

γ) is not in B|[i]. An application of Lemma 3.1(2) with
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δ := βγ shows that in this case (γ, βγ) is not a derived fork in the i-th coordinate
of B. Hence step 4 correctly adds no witnesses for (γ, βγ) to R in this case. This
completes the proof of correctness of Algorithm 3.

As we saw in the proof of Theorem 4.5 the run time of steps 1–3 is O(nd). Step 4
requires running SMP(K) O(n2) times on inputs not larger than the input for Algo-
rithm 3, and adding one pair of witnesses to R no more than O(n) times. This show
that Algorithm 3 reduces CompactRep(K) to SMP(K) in polynomial time.

For the reverse direction we will argue that Algorithm 4 reduces SMP(K) to
CompactRep(K) in polynomial time. The algorithm starts with computing a stan-
dardized representation R for the algebra B generated by the input tuples a1, . . . , ak
— using CompactRep(K). A necessary condition for the input tuple b to be in B

is that b|I ∈ B|I for all I ∈
(

[n]
d−1

)
. Since R contains designated witnesses r[I, b] for all

b ∈ B|I and I ∈
(

[n]
d−1

)
, b will satisfy this necessary condition if and only if R contains

designated witnesses for all projections b|I
(
I ∈

(
[n]
d−1

))
of b. This is being checked in

step 2 of Algorithm 4; if the condition fails for some I ∈
(

[n]
d−1

)
, the algorithm returns

the correct answer NO, meaning, b /∈ B.
If the algorithm passes step 2 without returning NO, then b, R is a correct input for

IsRepresentableK, which checks in step 3 whether b is representable by R. Since
every tuple representable by R must be in B, and conversely, by Remark 4.2, every
element of B is representable by R, we get that the YES/NO answer provided by
IsRepresentable(K) is the correct answer to SMP(K) for the given input. This
shows the correctness of Algorithm 4.

Step 2 of Algorithm 4 runs in O(nd−1) time, while IsRepresentable(K) in step 3
requires O(nd+2) time. Thus, Algorithm 4 reduces SMP(K) to CompactRep(K) in
O(nd+2) time. �

The following statement is now an immediate consequence of Theorems 4.5–4.6.

Corollary 4.7. If V is a variety in a finite language with a d-cube term, and K is a
finite set of finite algebras in V, then SMP(K) ∈ NP.

Now we prove that for a finite set K of finite algebras in a variety (in a finite
language) with a cube term, the problems SMP(K) and SMP(HSK) are polynomial
time equivalent.

Theorem 4.8. Let V be a variety in a finite language with a d-cube term. For any
finite set K of finite algebras in V, the decision problems SMP(K) and SMP(HSK)
are polynomial time equivalent.

Proof. SMP(K) is a subproblem of SMP(HSK), so SMP(K) is clearly polynomial
time reducible to SMP(HSK). For the converse we will show that Algorithm 5
reduces SMP(HSK) to SMP(K) in polynomial time.
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Algorithm 5: Reduction of SMP(HSK) to SMP(K)

Input: c1, . . . , ck, ck+1 ∈ C1 × · · · ×Cn with C1, . . . ,Cn ∈ HSK.
Question: Is ck+1 in the subalgebra D of C1 × · · · ×Cn generated by c1, . . . , ck?

1. for j = 1, . . . , n do
find Aj ∈ K, Bj ≤ Aj and θj ∈ Con(Bj) such that Cj = Bj/θj
end for

2. G = ∅, F = ∅, L = ∅
3. for i = 1, . . . , k + 1 do

3.1. ai = ()
3.2. for j = 1, . . . , n do

find aij ∈ Bj with aij/θj = ci|j
ai = (ai, aij)
end for

3.3. if i ≤ k then G = G ∪ {ai} end if
end for

4. for j = 1, . . . , n do
4.1. generate B|j by a1j, . . . , akj, and simultaneously,
4.2. for each new β in B|j do

4.2.1. find an element f1[j, β, ∗] generated by a1, . . . , ak satisfying
f1[j, β, ∗]|j = β

4.2.2. for all γ ≡θj β (γ ∈ Bj) do
add to F the tuple f2[j, β, γ] satisfying f2[j, β, γ]|j = γ and
f2[j, β, γ]|[n]\{j} = f1[j, β, ∗]|[n]\{j}
end for

end for
end for

5. for I ∈
(

[n]
d−1

)
do

5.1. generate B|I by (G ∪ F )|I , and simultaneously,
5.2. for each new b ∈ B|I do

5.2.1. find an element r1[I, b] ∈ B such that r1[I, b]|I = b
5.2.2. for all d such that d|j ≡θj b|j for all j ∈ I do

add to L the tuple r2[I, d] satisfying r2[I, d]|I = d and
r2[I, d]|[n]\I = r1[I, b]|[n]\I
end for

end for
end for

6. run SMP(K) with the input G∪L∪F ⊆ A1×· · ·×An and ak+1 ∈ A1×· · ·×An

(A1, . . . ,An ∈ K), to get an answer A = YES or A = NO
7. return A

Table 5
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In step 1 Algorithm 5 finds the algebras Ai ∈ K, their subalgebras Bi and their
congruences θi such that the algebras Ci in the input are Ci = Bi/θi (i ∈ [n]).
Step 2 initializes the computation of three sets G, F , and L, which will be completed
in steps 3, 4, and 5, respectively.

In step 3 tuples a1, . . . , ak+1 ∈ B1 × · · · × Bn (≤ A1 × · · · ×An) are found such
that for the product congruence θ = θ1×· · ·×θn we have cj = aj/θ for all j ∈ [k+1].
Thus, the set G = {a1, . . . , ak} obtained at the end of step 3 is a generating set for a
subalgebra B of B1 × . . .Bn such that B/θ|B = D.

By Theorem 3.8(1),

(4.1) ck+1 ∈ D ⇐⇒ ak+1 ∈ B[θ].

Therefore, Algorithm 5 gives the correct answer in steps 6–7, provided the setG∪L∪F
produced earlier in the process is a generating set for B[θ]. By Theorem 3.8(2) it
suffices to check that the set L constructed in step 5 satisfies condition (L), while
the set F constructed in step 4 satisfies condition (F) in Theorem 3.8. For L this is
straightforward to check. For F note that, given j ∈ [n] and β ∈ B|j as in step 4.2,
the tuple f1[j, β, ∗] obtained in step 4.2.1 belongs to B. Hence, when the ‘for’ loop in
step 4.2.2 is performed for γ = β, we get the tuple f2[j, β, β] = f1[j, β, ∗] ∈ B, which
is added to F . This tuple can serve as the tuple denoted f1[j, β, γ] in condition (F)
for every f2[j, β, γ] added to F in step 4.2.2. This shows that the set F constructed
in step 4 satisfies condition (F) in Theorem 3.8, and hence finishes the proof of the
correctness of Algorithm 5.

Steps 1–3 run in O(kn) time, step 4 in O(n2) time, while steps 5 in O(nd) time.
So, the reduction of SMP(HSK) to SMP(K) takes O(knd) time. For an input of size
O(kn) of SMP(HSK) we get an input of size O(knd) for SMP(K). �

5. Structure Theory and the Subpower Membership Problem

The main result of [10] is a structure theorem for the critical subalgebras of finite
powers of algebras with cube (or parallelogram) terms. In this section we adapt the
structure theorem from [10] to find a new representation (different from compact
representations) for subalgebras of products of algebras in a variety V with a cube
term. In the next section, this representation will be used to prove the main result
of the paper.

To restate the result from [10] that we need here, we introduce some terminol-
ogy and notation. Let V be a variety with a d-cube term (or equivalently, a d-
parallelogram term, see Theorem 2.1), and let R be a subalgebra of a product
A(1) × · · · × A(n) of some algebras A(1), . . . ,A(n) ∈ V . Let Ai := R|i for each
i ∈ [n], and let C := A1 × · · · ×An. So, R is a subdirect product of the subalgebras
Ai of A(i) (i ∈ [n]), and R is a subalgebra of C.

We say that R is a critical subalgebra of A(1) × · · · ×A(n) if



30 ANDREI BULATOV, PETER MAYR, AND ÁGNES SZENDREI

• R is completely ∩-irreducible in the lattice of subalgebras of A(1)×· · ·×A(n),
and
• R is directly indecomposable in the following sense: [n] cannot be partitioned

into two nonempty sets I and J such that R and R|I ×R|J differ only by a
permutation of coordinates.

Now let us assume that R is a critical subalgebra of A(1)× · · ·×A(n). Choose and
fix δi ∈ Con(Ai) (i ∈ [n]) such that δ := δ1×· · ·×δn is the largest product congruence
of C with the property that R is a δ-saturated subalgebra of C. (Such a congruence
exists, because the join of product congruences is a product congruence, and if R
is saturated with respect to a family of congruences of C, then it is saturated with
respect to their join.) With this notation, let R := R/(δ�R), and let Ai := Ai/δi
(i ∈ [n]); we call R the reduced representation of R.

Theorems 2.5 and 4.1 of [10] yield a structure theorem for the critical subalgebras
of finite powers An of an arbitrary algebra A ∈ V . The relevant proofs in [10],
namely the proofs of Theorem 2.5 (and its preparatory Lemmas 2.1, 2.3, 2.4) and
Theorem 3.6 (part (3), implication ⇒), carry over without any essential changes to
the more general situation when instead of subalgebras of powers An with A ∈ V we
consider subalgebras of products A(1)× · · ·×A(n) with A(1), . . . ,A(n) ∈ V . Thus, we
get the theorem below, where we state only those parts of the structure theorem that
we need later on, retaining the numbering from [10, Theorem 2.5], but replacing ‘d-
parallelogram term’ by ‘d-cube term’. The superscript [ in (6)[ indicates that instead
of the original condition (6) we state a weaker condition which is sufficient for our
purposes.

Theorem 5.1 (Cf. [10]). Let V be a variety with a d-cube term, let A(1), . . . ,A(n) ∈ V,
and let R be the reduced representation of a critical subalgebra R of A(1)×· · ·×A(n).
If n ≥ d, then the following hold.

(1) R ≤
∏n

i=1 Ai is a representation of R as a subdirect product of subdirectly

irreducible algebras Ai.
(6)[ Ai and Aj are similar for any i, j ∈ [n].
(7) If n > 2, then each Ai has abelian monolith µi (i ∈ [n]).
(8) For the centralizers ρ` := (0 : µ`) of the monoliths µ` (` ∈ [n]), the image of

the composite map

R
projij→ Ai ×Aj � Ai/ρi ×Aj/ρj.

is the graph of an isomorphism Ai/ρi → Aj/ρj for any i, j ∈ [n].

Note that the homomorphism in part (8) is the same as in [10, Theorem 2.5 (8)];
the slightly different description presented here will be more convenient later on.

Now we are ready to discuss our representation theorem. Let B1, . . . ,Bn be non-
trivial algebras in V , and let B be a subdirect subalgebra of B1 × · · · ×Bn.
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First, we replace each Bj (j ∈ [n]) by its image under the embedding

(5.1) Bj ↪→
∏

σ∈Irr(Bj)

Bj/σ, xj 7→ (xj/σ)σ∈Irr(Bj);

thus, each Bj is replaced by a subdirect product of all of its subdirectly irreducible
quotients Bj/σ. To set up a more convenient notation, let

W := {(j, σ) : j ∈ [n], σ ∈ Irr(Bj)},
and for each j ∈ [n], let Wj := {j}× Irr(Bj); thus, W = W1∪· · ·∪Wn. Furthermore,

for each w = (j, σ) ∈ W let B̂w := Bj/σ, and for every element xj ∈ Bj let
x̂w := xj/σ. Then the product of the embeddings (5.1) for all j ∈ [n] yields an
embedding ̂ :

∏
j∈[n]

Bj ↪→
∏
w∈W

B̂w x = (xj)j∈[n] 7→ x̂ := (x̂w)w∈W .

We will denote the image of B under this embedding ̂ by B̂. By construction, B̂ is a

subdirect product of the subdirectly irreducible algebras B̂w (w ∈ W ); equivalently,

B̂w = B̂|w for all w ∈ W . For each w ∈ W let µw denote the monolith of B̂w and ρw
its centralizer (0 : µw).

Next we define a relation ∼ on W as follows: we require ∼ to be reflexive, and for
distinct v, w ∈ W we define v ∼ w to hold if and only if

• the subdirectly irreducible algebras B̂v and B̂w are similar with abelian mono-
liths µv and µw, and

• the image of B̂|vw under the natural map B̂v × B̂w � (B̂v/ρv)× (B̂w/ρw) is

the graph of an isomorphism B̂v/ρv → B̂w/ρw.

It is easy to see that ∼ is an equivalence relation on W .

Our representation theorem describes the algebra B in terms of its image B̂,

namely, it shows that B̂ is determined by its projections onto small sets of coor-
dinates (i.e., small subsets of W ) and by its projections onto the blocks of ∼. A

block of ∼ may be large, but the image of B̂ under a projection onto a block of ∼
has a special structure.

Theorem 5.2. Let V be a variety with a d-cube term, let B1, . . . ,Bn be nontrivial
algebras in V, and let B be a subdirect subalgebra of B1×· · ·×Bn. Furthermore, let W ,̂ , B̂w (w ∈ W ), B̂, and ∼ be as defined above. Then, for any tuple c ∈ B1×· · ·×Bn,
the following conditions are equivalent:

(a) c ∈ B.
(b) c satisfies c|I ∈ B|I for all I ⊆ [n] such that |I| < max{d, 3}, and

the image ĉ ∈
∏

w∈W B̂w of c under the map ̂ satisfies ĉ|U ∈ B̂|U for all
blocks U (⊆ W ) of ∼ of size |U | ≥ max{d, 3}.
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(c) the image ĉ ∈
∏

w∈W B̂w of c under the map ̂ satisfies ĉ|U ∈ B̂|U for all
U ⊆ W such that
• |U | < max{md, 3} where m = max{| Irr(Bj)| : j ∈ [n]}, or
• U is a block of ∼ of size |U | ≥ max{md, 3}.

Remark 5.3. The equivalence of conditions (a) and (c) in Theorem 5.2 can be

restated as follows: B̂ is the intersection of the subalgebras

proj−1
U

(
projU(B̂)

)
= proj−1

U

(
B̂|U

)
of
∏

w∈W B̂w as U runs over the subsets of W listed in (c).

Proof of Theorem 5.2. Since ̂ and |U (U ⊆ W ) are homomorphisms, it is clear that

c ∈ B implies ĉ|U ∈ B̂|U for all U ⊆ W . This proves (a) ⇒ (c).

For the implication (c)⇒ (b), assume that (c) holds. Then ĉ|U ∈ B̂|U for all blocks
U of ∼, so the second statement in (b) holds. To establish the first statement, choose
I ⊆ [n] such that |I| < max{d, 3}, and let WI :=

⋃
j∈IWj. Since the product of

the isomorphisms Bj → B̂|Wj
, xj 7→ (x̂w)w∈Wj

(induced by the embeddings in (5.1))
yields an isomorphism∏

j∈I

Bj →
∏
j∈I

B̂|Wj

(
≤
∏
w∈WI

B̂w

)
, (xj)j∈I 7→ (xw)w∈WI

(xj ∈ Bj),

which maps B|I onto B̂|WI
, we get that c|I ∈ B|I holds if and only if ĉ|WI

∈ B̂|WI
. The

latter follows from assumption (c), because |WI | ≤
∑

j∈I |Wj| =
∑

j∈I | Irr(Bj)| ≤
m|I|. This completes the proof of (c) ⇒ (b).

The remaining implication (b) ⇒ (a) is the heart of Theorem 5.2, which we will
prove now. Assume that c /∈ B, but c|I ∈ B|I for all I ⊆ [n] with |I| < max{d, 3}. We

have to show that ĉ|U /∈ B̂|U for some block U (⊆ W ) of ∼ of size |U | ≥ max{d, 3}.
Using the assumption c /∈ B, we first choose and fix a subalgebra M of B1×· · ·×Bn

containing B, which is maximal for the property that it fails to contain c. Then M is
completely ∩-irreducible in the lattice of subalgebras of B1×· · ·×Bn. Let {T1, . . . , T`}
be a partition of [n] such that M|Ti is directly indecomposable for every i ∈ [`], and
M differs from M|T1 × · · · ×M|T` by a permutation of variables only; we will denote
this fact by M ≈ M|T1 × · · · ×M|T` . We must have c|T /∈ M|T for at least one
block T := Ti, because otherwise M ≈M|T1 × · · · ×M|T` would imply that c ∈M,
contradicting the choice of M. Let us fix such a T for the rest of the proof. Note
that |T | > 1, because M is a subdirect product of B1, . . . ,Bn (as B ≤ M), so we
have c|j = cj ∈ Bj = M|j for every one-element set {j} ⊆ [n].
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It follows from M ≈M|T1×· · ·×M|T` that M is the intersection of two subalgebras
of B1 × · · · ×Bn, as shown below:

M ≈
(
M|T ×

∏
j∈[n]\T

Bj

)
∩
(∏
j∈T

Bj ×M|[n]\T

)
.

Since M is a completely ∩-irreducible subalgebra of B1 × · · · × Bn, we get that
M ≈ M|T ×

∏
j∈[n]\T Bj or M ≈

∏
j∈T Bj × M|[n]\T . The latter is impossible,

because M|T �
∏

j∈T Bj (as witnessed by c|T ). Hence, for the subalgebra R :=

M|T of
∏

j∈T Bj we get that M ≈ R ×
∏

j∈[n]\T Bj. Furthermore, R is both ∩-

irreducible (because M is) and directly indecomposable (by construction), therefore
R is a critical subalgebra of

∏
j∈T Bj. Our construction also implies that B|T ≤ R

and c|T /∈ R. Hence, in particular, c|T /∈ B|T . Thus, our assumption that c|I ∈ B|I
holds for all I ⊆ [n] with |I| < max{d, 3} forces that |T | ≥ max{d, 3}.

Now we can apply Theorem 5.1 to the variety V , the algebras Bt (t ∈ T ) in
V , and the critical subalgebra R of

∏
t∈T Bt where the number of factors in the

product is |T | ≥ max{d, 3}. Since R is a subdirect product of the algebras Bt

(t ∈ T ), the reduced representation R of R is the quotient algebra R/(δ�R) where
δ =

∏
t∈T δt (δt ∈ Con(Bt)) is the largest product congruence of

∏
t∈T Bt for which R

is δ-saturated. Let Bt := Bt/δt for every t ∈ T . So, the conclusions of Theorem 5.1
can be restated as follows:

(1) R ≤
∏

t∈T Bt is a representation of R as a subdirect product of subdirectly

irreducible algebras Bt.
(6)[ Bs and Bt are similar for any s, t ∈ T .
(7) Each Bt has abelian monolith µt (t ∈ T ).
(8) For the centralizers ρ` := (0 : µ`) of the monoliths µ` (` ∈ T ), the image of

the composite map

(5.2) R
projst→ Bs ×Bt � Bs/ρs ×Bt/ρt

is the graph of an isomorphism Bs/ρs → Bt/ρt for any s, t ∈ T .

By conclusion (1), we have for each t ∈ T that Bt = Bt/δt is subdirectly irreducible,
so δt ∈ Irr(Bt) and (t, δt) ∈ W . Hence, the algebra Bt = Bt/δt is one of the subdirect

factors of B̂, namely, Bt = Bt/δt = B̂w for w = (t, δt). This implies also that µt, ρt
are the congruences of Bt = B̂w that we denoted earlier by µw, ρw.

Let T̂ := {(t, δt) : t ∈ T}. Next we want to show that any two elements of T̂
are related by ∼. Let s, t ∈ T , and let v := (s, δs), w := (t, δt). As we noticed in

the preceding paragraph, we have that Bs = B̂v, µs = µv, ρs = ρv, and Bt = B̂w,
µt = µw, ρt = ρw. If s = t, then v = w, and hence v ∼ w holds because ∼ is an
equivalence relation. So, assume from now on that s 6= t. Hence v 6= w. In this case,
checking whether v ∼ w holds involves two conditions. One is that the subdirectly
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irreducible algebras B̂v and B̂w are similar with abelian monoliths µv and µw, which

follows from conclusions (6)[–(7). The other is that the image of B̂|vw under the

natural map ψ : B̂v × B̂w � (B̂v/ρv) × (B̂w/ρw), is the graph of an isomorphism

B̂v/ρv → B̂w/ρw. We will establish this property by proving that B̃vw := ψ(B̂|vw) is
equal to the image of R under the homomorphism in (5.2).

Let ϕ denote the natural homomorphism Bs × Bt � Bs/ρs × Bt/ρt, and let

R̃st := ϕ(R|st); thus, R̃st is the image of R under the composite map in (5.2).

Since B̂v = Bs, B̂w = Bt, ρv = ρs, and ρw = ρr, we have that ϕ = ψ. Therefore

B̃vw = ϕ(B̂|vw). Moreover, since B̂|vw is a subdirect product of B̂v and B̂w, we get

that B̃vw is a subdirect product of B̂v/ρv and B̂w/ρw. By the construction of R, we
have that R ≥ B|T , and ≥ is preserved under the natural homomorphism

(5.3)
∏
r∈T

Br �
∏
r∈T

Br/δr =
∏
u∈T̂

B̂u.

The images of R and B|T under this homomorphism are R and B̂|T̂ , respectively,

hence we conclude that R ≥ B̂|T̂ . Projecting further onto the coordinates s, t in T ,

and the corresponding coordinates v = (s, δs), w = (t, δt) in T̂ , we get that R|st ≥
B̂|vw. Hence, it follows that R̃st = ϕ(R|st) ≥ ϕ(B̂|vw) = B̃vw. By conclusion (8)

above, R̃st is the graph of an isomorphism Bs/ρs → Bt/ρt, or equivalently, the graph

of an isomorphism B̂v/ρv → B̂wρw. Combining this fact with the earlier observation

that B̃vw is a subdirect product of B̂v/ρv and B̂wρw, we obtain that R̃st and B̃vw must

be equal. This proves that B̃vw is the graph of an isomorphism B̂v/ρv → B̂w/ρw,
and hence finishes the proof of v ∼ w.

Our arguments in the last two paragraphs show that T̂ is contained in one of the

blocks U of ∼. We have |U | ≥ |T̂ | = |T | ≥ max{d, 3}. It remains to verify that

ĉ|U /∈ B̂|U .

Assume, for a contradiction, that ĉ|U ∈ B̂|U . Then projecting further to T̂ ⊆ U

yields that ĉ|T̂ ∈ B̂|T̂ . As we saw earlier, B̂|T̂ ≤ R, therefore we get that the tuple

ĉ|T̂ = (cr/δr)r∈T lies in R. Hence the tuple c|T = (cr)r∈T lies in the full inverse

image of R under the natural homomorphism (5.3). This inverse image is R, because
R = R/(δ�R) with δ =

∏
r∈T δr, and R is δ-saturated in

∏
r∈T Br. Thus, we obtain

that c|T ∈ R, which is impossible, since R was chosen so that c|T /∈ R. This

contradiction proves that ĉ|U /∈ B̂|U , and completes the proof of Theorem 5.2. �

6. Algorithms Based on Theorem 5.2

In this section we will assume that V is a fixed variety (in a finite language) with
a d-cube term, and K is a finite set of finite algebras in V .
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Definition 6.1. Let a1, . . . , ak, b ∈ A1 × · · · ×An (A1, . . . ,An ∈ K) be an input for
SMP(K) where ar = (ar1, . . . , arn) (r ∈ [k]) and b = (b1, . . . , bn). We call this input
d-coherent if the following conditions are satisfied:

(i) n ≥ max{d, 3};
(ii) A1, . . . ,An are similar subdirectly irreducible algebras, and each A` has

abelian monolith µ`;
(iii) b|I is in the subalgebra of

∏
i∈I Ai generated by {a1|I , . . . , ak|I} for all I ⊆ [n],

|I| < max{d, 3}; and
(iv) for the centralizers ρ` := (0 : µ`) of the monoliths µ`, the subalgebra of

Ai/ρi×Aj/ρj generated by {(a1i/ρi, a1j/ρj), . . . , (aki/ρi, akj/ρj)} is the graph
of an isomorphism Ai/ρi → Aj/ρj for any i, j ∈ [n].

Definition 6.2. We define SMPd-coh(K) to be the restriction of SMP(K) to d-
coherent inputs.

It is clear from Definition 6.1 that d-coherence for inputs of SMP(K) can be checked
in polynomial time.

Theorem 6.3. If V is a variety in a finite language with a d-cube term, then the
decision problems SMP(K) and SMPd-coh(HSK) are polynomial time equivalent for
every finite family K of finite algebras in V.

Proof. By Theorem 4.8, SMP(K) is polynomial time equivalent to SMP(HSK).
Clearly, SMPd-coh(HSK) is polynomial time reducible to SMP(HSK), because it is a
subproblem of SMP(HSK). Therefore we will be done if we show that Algorithm 6
reduces SMP(HSK) to SMPd-coh(HSK) in polynomial time.

The correctness of Algorithm 6 is based on Theorem 5.2. Let B denote the sub-
algebra of A1 × · · · ×An generated by b1, . . . , bk. In steps 1–2, the projections B|I
of B are computed for all I ∈

(
[n]
d−

)
if n > d− := max(d − 1, 2), and for I = [n] if

n ≤ d−. Furthermore, it is checked whether bk+1|I ∈ B|I holds for all such I. If
bk+1|I /∈ B|I for one of these I’s, then clearly bk+1 /∈ B, so in this case the algorithm
correctly returns the answer ‘NO’ in step 2.2. In steps 3–4 the algebras Bi := B|i
are computed for every i ∈ [n], and every coordinate i with |Bi| = 1 is omitted from
the input tuples (but the earlier notation is kept for simplicity). Note that since
bk+1 passed the tests in step 2.2, we had bk+1|i ∈ Bi for every deleted coordinate i.
Therefore, deletion of the trivial coordinates does no affect whether or not bk+1 ∈ B.
It follows that by the end of step 4 we have that

(1) B is a subdirect subalgebra of B1× · · · ×Bi where B1, . . . ,Bn are nontrivial,
and

(2) bk+1|I ∈ B|I for all I ∈
(

[n]
d−

)
if n > d− := max(d − 1, 2), and for I = [n] if

n ≤ d−.

In the latter case B|I = B|[n] = B, so in step 5 the algorithm correctly returns the
answer ‘YES’. Thus, we may assume from now on that n > d−.



36 ANDREI BULATOV, PETER MAYR, AND ÁGNES SZENDREI

Algorithm 6: Reduction of SMP(K) to SMPd-coh(HSK)

Input: b1, . . . , bk, bk+1 ∈ A1 × · · · ×An (A1, . . . ,An ∈ K)
Question: Is bk+1 in the subalgebra of A1 × · · · ×An generated by b1, . . . , bk?

1. d− = max(d− 1, 2), d∗ = min(d−, n)

2. for I ∈
([n]
d∗

)
do

2.1. generate B|I by b1|I , . . . , bk|I
2.2. if bk+1|I /∈ B|I then

return NO
end if

end for
3. for i ∈ [n] do

Bi = 〈b1|i, . . . , bk|i〉
end for

4. omit all coordinates i from the input for which |Bi| = 1 (but keep earlier notation)
5. if n ≤ d− then

return YES
end if

6. W := {(j, σ) : j ∈ [n], σ ∈ Irr(Bj)}
7. for i = 1, . . . , k + 1 do

b̂i = (̂biw)w∈W where for each w = (j, σ), b̂iw = bi|j/σ
end for

8. for w = (j, σ) ∈W do

B̂w = Bj/σ, µw = monolith of B̂w, ρw = (0 : µw)
end for

9. for distinct v, w ∈W do

B̃vw = 〈(̂biv/ρv, b̂iw/ρw) : i ∈ [k]〉
end for

10. compute the equivalence relation ∼ on W determined by the following condition:
for distinct v, w ∈W ,

v ∼ w ⇔

{
µv ≤ ρv, µw ≤ ρw, B̂v and B̂w are similar, and

B̃vw is the graph of an isomorphism B̂v/ρv → B̂w/ρw

11. find the equivalence classes E1, . . . , Eκ of ∼ of size > d−

12. if κ > 0 then
12.1. for λ = 1, . . . , κ do

12.1.1 run SMPd-coh(HSK) with input b̂1|Eλ, . . . , b̂k|Eλ, b̂k+1|Eλ ∈
∏
w∈Eλ B̂w

to get answer A ∈ {YES,NO}
12.1.2. if A = NO then

return NO
end if

end for
end if

13. return YES

Table 6
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(1) implies that the algebra B satisfies the assumptions of Theorem 5.2, and (2)
shows that the tuple c := bk+1 ∈ B1×· · ·×Bn satisfies the first part of condition (b)
in Theorem 5.2.

In steps 6–11, Algorithm 6 computes the data needed to check whether or not
c = bk+1 satisfies the second part of condition (b) as well. In more detail, the

algorithm computes the set W , the images b̂i of the input tuples bi (i ∈ [k + 1])

under the homomorphism ̂, the subdirectly irreducible algebras B̂w (w ∈ W ), their
congruences µw (the monolith) and ρw = (0 : µw), and finally, the equivalence relation
∼ on W , and its equivalence classes E1, . . . , Eκ of size > d−. All computations follow
the definitions exactly, except step 10. We explain now why the conditions used in
step 10 to compute ∼ are equivalent to the conditions in the definition of ∼ (stated
right before Theorem 5.2):

• The inclusion µw ≤ ρw (w ∈ W ) is equivalent to the condition that µw is
abelian, because the inclusion is true if µw is abelian, and ρw = 0 (and hence
the inclusion fails) if µw is nonabelian.

• As discussed in the proof of Theorem 5.2, B̃vw is the image of B̂|vw under the

natural map B̂v × B̂w � (B̂v/ρv)× (B̂w/ρw).

Since c = bk+1 satisfies the first part of condition (b) in Theorem 5.2, it follows
from the equivalence of conditions (a) and (b) in Theorem 5.2 that bk+1 ∈ B if and
only if c = bk+1 satisfies the second part of condition (b) as well, that is,

(3) b̂k+1|Eλ ∈ B̂|Eλ for all λ ∈ [κ].

This is clearly equivalent to the condition that

(3)′ b̂k+1|Eλ belongs to the subalgebra of
∏

w∈Eλ B̂w generated by the tuples

b̂1|Eλ , . . . , b̂k|Eλ for all λ ∈ [κ].

It follows from the construction that for each λ ∈ [κ], b̂1|Eλ , . . . , b̂k|Eλ , b̂k+1|Eλ is a d-
coherent input for SMP(HSK), so condition (3)′ can be checked using SMPd-coh(HSK).
This is exactly what Algorithm 6 does in steps 12–13, and returns the correct an-
swer: ‘YES’ if (3)′ holds (including the case when κ = 0), and ‘NO’ otherwise. This
completes the proof of the correctness of Algorithm 6.

Now we show that Algorithm 6 reduces SMP(K) to SMPd-coh(HSK) in polynomial
time. Clearly, steps 1, 5, and 13 require constant time. Since each Bi (i ∈ [n]) is
a subalgebra of some member of K, we have |Bi| ≤ aK where the constant aK is
independent of the input. The parameter d is also independent of the input, and so
is s := max{| Irr(A)| : A ∈ SK}. It follows that |W | ≤ ns and that each iteration of
the ‘for’ cycles in steps 2, 3, 8, and 9 require constant time. Hence, steps 2, 3, 4, 6, 8,
and 9 run in O(nd−1), O(n), O(n), O(n), O(n), O(n2) time, respectively. In step 7
the ‘for’ cycle is iterated k + 1 times, and each iteration requires O(n) time, so the
total run time of step 7 is O(nk).
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In step 10, to determine whether v ∼ w holds for a particular pair of elements
v, w ∈ W requires constant time, because the condition only involves data on algebras
in HSK and on products of two such algebras. (In particular, recall from Section 2

that similarity of B̂v and B̂w can be checked by looking at congruences of subalgebras

of B̂v × B̂w.) Thus, step 10 runs in O(n2) time. Step 11 requires no more that O(n2)
time. Since E1, . . . , Eκ are disjoint subsets of W and |W | ≤ ns, we get that κ ≤ ns
and each Eλ has size |Eλ| ≤ ns. Thus, in step 12, SMPd-coh(HSK) has to be run at
most O(n) times, and the input size of each run is O(nk), approximately the same
as the size of the original input.

This proves that Algorithm 6 reduces SMP(K) to SMPd-coh(HSK) in polynomial
time. �

Theorem 6.4. If V is a residually small variety in a finite language with a d-cube
term, then for every finite set K of finite algebras in V,

SMP(K) ∈ P.

Proof. We will show that, under the assumption of the theorem, Algorithm 7 solves
SMP(K) in polynomial time.

First we discuss the correctess of Algorithm 7. Let a1, . . . , ak, b ∈ A1 × . . .An

(A1, . . . ,An ∈ K) be a correct input for SMPd-coh(K) (i.e., a d-coherent input for
SMP(K)). Then conditions (i)–(iv) in Definition 6.1 hold. By condition (ii), the
algebras Aj (j ∈ [n]) are subdirectly irreducible with abelian monoliths, so in step 1
of Algorithm 7 the monoliths µj and their centralizers ρj will be found. Moreover,
since K is assumed to be in a residually small variety, we get from ... (CM) and ...
(char.of.RS) that

(†) ρj is an abelian congruence of Aj for every j ∈ [n].

Let B denote the subalgebra of A1 × · · · × An generated by the input tuples
a1, . . . , ak, and let ρ denote the product congruence ρ1 × · · · × ρn on A1 × · · · ×An.
The restriction of ρ to B will be denoted by ρB. Condition (iv) in Definition 6.1
implies that

(‡) the map B/ρB → Aj/ρj, (x1, . . . , xn)/ρB 7→ xj/ρj is a bijection for every
j ∈ [n].

Finally, conditions (i) and (iii) together imply that for the input tuple b we have b|I ∈
B|I for all sets I ∈

(
[n]
2

)
. Hence, we have b|i,j/(ρi×ρj) ∈ B|i,j/(ρi×ρj) for all i, j ∈ [n].

Since, by condition (iv), B|i,j/(ρi×ρj) is the graph of an isomorphism Ai/ρi → Aj/ρj
for every pair i, j ∈ [n], it follows that the tuple b/ρ = (b|1/ρ1, . . . , b|n/ρn) belongs to
B/ρB. Hence,

(∗) b is an element of the algebra B[ρ], the ρ-saturation of B.

Let’s return to the analysis of Algorithm 7. After appropriately reindexing a1, . . . , ak,
Steps 2–3 produce a subset O of B such that the first coordinates of the tuples in O
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Algorithm 7: For SMPd-coh(HSK) if K is in a RS variety

Input: d-coherent a1, . . . , ak, b ∈ A1×· · ·×An (A1, . . . ,An ∈ K) where ai = (ai1, . . . , ain)
for all i ∈ [k]
Question: Is b in the subalgebra of A1 × · · · ×An generated by a1, . . . , ak?

1. for j ∈ [n] do
µj = monolith of Aj , ρj = (0 : µj)
end for

2. reindex a1, . . . , ak such that a11/ρ1, . . . , ar1/ρ1 are pairwise distinct and
{a11/ρ1, . . . , ar1/ρ1} = {a11/ρ1, . . . , ak1/ρ1}
let O = {a1, . . . , ar}

3. generate A1/ρ1 by a11/ρ1, . . . , ar1/ρ1, and simultaneously,
3.1. for each new a/ρ1 = t(a11/ρ1, . . . , ar1/ρ1) ∈ A1/ρ1 do

3.1.1 O = O ∪ {t(ai1 , . . . , air)}
end for

4. find the equivalence relation ≡ on [n] defined by

s ≡ t ⇔ As = At and o|s = o|t for all o ∈ O (s, t ∈ [n])

let T be a transversal for the blocks of ≡, and let AT =
∏
j∈T Aj

5. compute the subalgebra P of AAT
T generated by the identity function AT → AT

and by the constant functions with value o|T (o ∈ O) (so P is a set of functions
AT → AT )

6. find o ∈ O such that b ∈ o/ρ; let o = (o1, . . . , on)
7. H = ∅
8. for p ∈ P do

8.1 for t ∈ T do
8.1.1 compute the function pt : At → At, x 7→ p(x̆)|t where x̆|t = x and

x̆|s = o|s for all s ∈ T \ {t}
end for

8.2 for c ∈ {a1, . . . , ak} do
8.2.1 d = ()
8.2.2 for j ∈ [n] do

8.2.2.1 find t ∈ T with t ≡ j
let dj = pt(c|j)

8.2.2.2 d = (d, dj)
end for

8.2.3 if d ∈ o/ρ then H = H ∪ {d}
end if

end for
end for

9. run Sims’ algorithm for SMP(G) with the input H ∪ {b} ⊆ G1 × · · · ×Gn where
Gj is the group (oj/ρj ; +oj ,−oj , oj) for each j ∈ [n] and G is the family of all
induced abelian groups on blocks of abelian congruences of algebras in K; get
answer A ∈ {YES,NO}

10. return A

Table 7
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form a transversal for the ρ1-classes of A1. Thus, it follows from (‡) that the tuples
in O form a transversal for the ρB-classes of B (and hence also for the ρ-classes of
B[ρ]). Let |O| = `. Since |O| = |O|1, we have ` ≤ |A1/ρ1| < |A1|.

Now let ≡, T , and AT be as defined (and computed) in step 4. It is easy to see
that the set P of functions AT → AT computed in step 5 is

(6.1) P = {tAT (x,O|T ) : t is a (1 + `)-ary term}
where we assume that an ordering of O has been fixed to ensure that its elements are
always substituted into terms in that fixed order. Our observation (∗) shows that in
step 6, Algorithm 7 will find an element o ∈ O such that b ∈ o/ρ.

To simplify notation on our discussion of steps 7–8 let A := A1 × · · · ×An.

Claim 6.5. The set H obtained by Algorithm 7 after completing steps 7–8 is

(6.2) H = {tA(ai,O) ∈ o/ρ : i ∈ [k], t is a (1 + `)-ary term}.

Proof of Claim 6.5. We will use the notation in step 8. Let p ∈ P and c ∈ {a1, . . . , ak},
say c = (c1, . . . , cn). Then, by (6.1), p ∈ P if and only if p is a unary polynomial
operation of AT of the form tAT (x,O|T ) for some (1 + `)-ary term t. Our goal is to
show that for such p and c the tuple d computed in steps 8.1.1-8.1.2 is

(6.3) d = tA(c,O).

This will prove that the tuples d computed in steps 8.1.1-8.1.2 are exactly the elements
of A of the form tA(c,O) where c ∈ {a1, . . . , ak} and t is a (1 + `)-ary term. Since
such a tuple d is added to H in step 8.1.3 if and only if d also satisfies d ∈ o/ρ, the
equality (6.2) will follow.

To verify (6.3) let j ∈ [n] and let t ∈ T be the unique transversal element such
that t ≡ j. By the definition of ≡ we have that and o′|t = o′|j for all o′ ∈ O. The
latter condition may be written as O|t = O|j (with the fixed ordering of O in mind,
these are tuples of elements in At = Aj). The function pt : At → At computed in
step 8.1 assigns to every x ∈ At the element

pt(x) = p(x̆)|t = tAT (x̆,O|T )|t = tAt(x̆|t,O|t) = tAt(x,O|t).
So, pt is the polynomial function tAt(x,O|t) of At. Thus, using the equalities At = Aj

and O|t = O|j we get that

dj = pt(cj) = tAt(cj,O|t) = tAj(cj,O|j) = tA(c,O)|j.
This holds for every j ∈ [n], so the proof of (6.3), and hence the proof of Claim 6.5,
is complete. �

To establish the correctness of the last two steps of Algorithm 7 recall from (†)
that ρj is an abelian congruence of Aj for every j ∈ [n]. Therefore, ρ = ρ1× · · · × ρn
is an abelian congruence of A = A1 × · · · ×An. Hence, by ...(see prelim), there is
an induced abelian group G = (o/ρ; +0,−o, o) on the ρ-class o/ρ. Moreover, since ρ
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is the product congruence ρ1 × · · · × ρn of A, we get that G = G× · · · ×Gn where
Gj is the group (oj/ρj; +oj ,−oj , oj) for every j ∈ [n]. Recall also that b ∈ o/ρ, that
is, b ∈ G = G1 × · · · ×Gn.

Claim 6.6. The following conditions on b are equivalent:

(a) b is in the subalgebra B of A = A1 × · · · ×An generated by {a1, . . . , ak};
(b) b is in the subgroup of G = G1 × · · · ×Gn generated by the set H.

Proof of Claim 6.6. To prove the implication (a) ⇒ (b) assume that b ∈ B, that is,
b = gB(a1, . . . , ak) for some k-ary term g. For each i ∈ [k], let o(i) denote the unique
element of O in the ρB-class of ai. Since gB(a1, . . . , ak) = b ∈ o/ρ, it follows from ...
(term ops are linear) that

gB(a1, . . . , ak) = gB(a1, o
(2) . . . , o(k)) +o g

B(o(1), a2, o
(3) . . . , o(k)) +o . . .

+o g
B(o(1), . . . , o(k−1), ak)−o (k − 1)gB(o(1), . . . , o(k−1), o(k)).

All +o-summands on the right hand side belong to H, therefore b is in the subgroup
of G = G1 × · · · ×Gn generated by H.

For the reverse implication (b)⇒ (a) notice first that H ⊆ B, because the elements
of H are obtained from a1, . . . , ak ∈ B by unary polynomials that are obtained
from term operations using parameters from O only, and O ⊆ B. Since the group
operations +o, −o, o of G are also polynomial operations of B obtained from term
operations using parameters from O only, we get that the subgroup of G generated
by H is contained in B. �

As in step 8 of Algorithm 7, let G denote the set of all induced abelian groups
on blocks of abelian congruences of algebras in K. Then, clearly, G1, . . . ,Gn ∈
G. Therefore, Claim 6.6 shows that SMP(K) run with the input a1, . . . , ak, b in
A1×· · ·×An (A1, . . . ,An ∈ K) has the same answer as SMP(G) run with the input
H and b in G1 × · · · ×Gn (G1, . . . ,Gn ∈ G). Hence, Algorithm 7 finds the correct
answer in steps 8–9, so the proof of the correctness of Algorithm 7 is complete.

To prove that Algorithm 7 runs in polynomial time, we will estimate the time
complexity of each steps separately. Recall that aK denotes the maximum size of an
algebra in K.

Each one of Steps 1–3 runs in O(n) time. In step 4, ≡ and a transversal T for the
blocks of ≡ can be found in O(n2) time, since ` = |O| is bounded above by a constant
(≤ |A1|− 1 ≤ aK) which is independent of the size of the input. Since ≡ is the kernel
of the map [n] → K ×

⋃
j∈[n] A

`
j, j 7→ (Aj,O|j), the number |T | of the ≡-blocks is

at most |K|a`K, which is a constant, independent of the input. Therefore, AT can
be computed in constant time, so step 4 altogether requires O(n2) time. For the
same reason, |AAT

T | is also bounded above by a constant, independent of the input,
therefore step 5 runs in constant time. Step 6 also runs in constant time, because, in
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view of (‡), b ∈ o/ρ is equivalent to b|1 ∈ o|1/ρ1. Clearly, step 7 also runs in constant
time.

Using the previous estimates on |P | (≤ |AAT
T |) and |T | we see that the number of

iterations of the outer ‘for’ cycle (line 8) and the ‘for’ cycle on line 8.1 is bounded
above by a constant. Step 8.1.1 also needs constant time only, therefore step 8.1
runs in constant time. In step 8.2 the outer ‘for’ cycle is iterated k times; in each
iteration steps 8.2.1 and 8.2.3 require constant time, while in step 8.2.2 the ‘for’ cycle
is repeated n times, and each time the computation requires constant time. Thus,
step 8 runs in O(nk) time.

In step 8, at most one element is added to H for each choice of p ∈ P and c ∈
{a1, . . . , ak}. Since |P | is bounded above by a constant independent of the input, we
get that |H| has size O(k). Thus, in step 9, the size of the input H ∪{b} for SMP(G)
is O(nk). Moreover, the size of each group in G is ≤ aK. Since Sims’ algorithm for
SMP(G) runs in O(n3k) time [check this!!!] on an input H ∪ {b} ⊆ G1 × · · · ×Gn

with |H| = O(k), we get that step 9 of Algorithm 7 requires O(n3k) time. Clearly,
step 10 runs in constant time.

Combining the time complexities of steps 1–10 we get that Algorithm 7 runs in
O(n3k) time. This competes the proof of Theorem 6.4. �
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(Ágnes Szendrei) Department of Mathematics, University of Colorado, Boulder CO,
USA, 80309-0395

E-mail address: Agnes.Szendrei@Colorado.EDU


